
ARTICLE OPEN

Genomic insights into the coupling of a Chlorella-like
microeukaryote and sulfur bacteria in the chemocline
of permanently stratified Lake Cadagno
Jaspreet S. Saini 1,2,3,6✉, Mosè Manni2,3, Christel Hassler1,4, Rachel N. Cable 5, Melissa B. Duhaime 5 and
Evgeny M. Zdobnov 2,3✉

© The Author(s) 2023

Meromictic Lake Cadagno is a permanently stratified system with a persistent microbial bloom within the oxic-anoxic boundary
called the chemocline. The association between oxygenic and anoxygenic photosynthesis within the chemocline has been known
for at least two decades. Although anoxygenic purple and green sulfur bacteria have been well studied, reports on oxygenic
phytoplankton have remained sparse since their discovery in the 1920s. Nearly a century later, this study presents the first near-
complete genome of a photosynthetic microbial eukaryote from the chemocline of Lake Cadagno, provisionally named Chlorella-
like MAG. The 18.9 Mbp nuclear genome displays a high GC content (71.5%), and the phylogenetic placement suggests that it is a
novel species of the genus Chlorella of Chlorophytes. Functional annotation of the Chlorella-like metagenome-assembled genome
predicted 10,732 protein-coding genes, with an approximate 0.6% proportion potentially involved in carbon, sulfur, and nitrogen
(C, N, and S) metabolism. In addition to C4 photosynthesis, this study detected genes for heat shock proteins (HSPs) in the Chlorella-
like algae, consistent with the other Chlorella species. Altogether, the genomic insights in this study suggest the cooperation of
photosynthetic algae with phototrophic sulfur bacteria via C, N, and S metabolism, which may aid their collective persistence in the
Lake Cadagno chemocline. Furthermore, this work additionally presents the chloroplast genome of Cryptomonas-like species, which
was likely to be presumed as cyanobacteria in previous studies because of the presence of phycobilisomes.
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INTRODUCTION
Meromictic Lake Cadagno is situated at an altitude of 1921 m within
the Swiss Alps, with permanent stratification into three zones:
mixolimnion (upper oxic), monimolimnion (lower anoxic), and
chemocline (oxic-anoxic boundary) [1–6]. The chemocline harbors a
persistent microbial bloom that coincides with decreased oxygen and
light concentrations but increased ammonium, iron, and sulfide
concentrations [7–13]. Within these physicochemical changes of the
chemocline, Chl a and turbidity peaks have been used as a proxies for
oxygenic phytoplankton (Chl a) and anoxygenic photo- and
chemotrophic sulfur bacteria (turbidity) for at least two decades
[14–16]. Oxygenic photosynthesis specifically facilitates dark aerobic
sulfide oxidation [17] by Chromatium okenii, a purple sulfur bacterium,
which is also known to contribute most to the biomass of Lake
Cadagno chemocline [1, 18]. Oxygenic photosynthesis also fuels
in situ oxygen for methane oxidation [19] and may create
microaerophilic conditions for iron oxidation [20]. Since in situ oxygen
production is proposed to be essential for methane oxidation, iron
oxidation, and dark aerobic sulfide oxidation in the chemocline,
identifying oxygen-producing phototrophs, including photosynthetic
algae and diatoms, remains limited to microscopy [17, 19].

Phycobilin-containing cells and phycocyanin signals are often
used as proxies for cyanobacteria in Lake Cadagno (June and
October 2013 [21], August [12] and September 2017 [22], and
August 2019 [15]) and were hypothesized to create microoxic
conditions by facilitating in situ oxygen production [12, 22].
However, information on cyanobacterial species contributing to
phycobilin and phycocyanin signals was lacking. While these
studies used flow cytometry to identify cyanobacteria, a parallel
16S amplicon gene phylogeny from samples collected in August
2017 revealed that cyanobacteria were rare and that the
chloroplasts of Chlorophyta (green algae) and Ochrophyta species
(diatoms) were abundant in the chemocline [16]. These contrast-
ing findings on cyanobacteria and chloroplasts warrant the
genomic characterization of the microbial communities present
in the chemocline of Lake Cadagno, as both can perform oxygenic
photosynthesis.
The photosynthetic pigments (chlorophyll a and phycocyanin)

of oxygenic phototrophs or phytoplankton peak at the beginning
of the chemocline [7, 14, 15], where particulate sulfur, hydrogen
sulfide, particulate organic nitrogen, and ammonium concentra-
tions also start to rise [16]. Sulfide is toxic to most eukaryotes, but
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algae may acquire sulfur from sulfate [23], and some microalgae,
such as Chlorella sorokiniana, are also capable of reducing sulfide
to sulfate [24]. In addition to sulfur, some reports have highlighted
that microbial eukaryotes [25] and cyanobacteria [26] can also
metabolize nitrogen. However, their prospective roles in sulfur and
nitrogen cycling in Lake Cadagno remain unknown.
The prokaryotic population of Lake Cadagno has been

rigorously studied, and the genomes of anoxygenic purple sulfur
bacteria (for example, C. okenii and Thiodictyon syntrophicum) that
modulate sulfur and nitrogen metabolism have been uncovered
[11, 27]. No microbial eukaryotic genome has been described for
the Lake Cadagno water column since its initial observation in the
1920s [28]. This study presents the first near-complete genome of
the most abundant photosynthetic microbial eukaryote at the
beginning of the Lake Cadagno chemocline, focusing on its
potential for carbon, sulfur, and nitrogen (C, N, and S) metabolism.

RESULTS AND DISCUSSION
Phytoplankton, and phototrophic sulfur bacteria peak in the oxic-
anoxic boundary called the chemocline of Lake Cadagno, as
indicated by photosynthetic pigments (chlorophyll a and phyco-
cyanin) and turbidity (13–15.5 m, Fig. S1) [16]. These microbial
peaks distinguish upper-oxic mixolimnion from lower anoxic-

monimolimnion, and shotgun DNA sequencing in this study
investigated these communities following prior hypotheses of
in situ oxygen production by photosynthetic algae [17, 19], and
cyanobacteria [22].

Protist community composition and reconstruction of algae
and diatoms genomes
From the four chemocline samples, millions of raw reads were quality
checked, normalized (29,747,969–80,546,876; Table S1), and assembled
into contigs using SPAdes. The total size of assembled contigs ranged
between 360–890Mbpwith N50 values between 3,496–8,393 bp and a
total number of contigs between 87,929–232,398 (Fig. S2A–D). At 15m
depth, where phytoplankton (Chl a, phycocyanin) were close to the
maximum, 7,659 contigs (L50) contributed to 50% of the whole
metagenome assembly with a minimum length of 8,393 bp (N50),
indicating the contribution of longer contigs (Fig. S2C; 15-w). From
each depth of the chemocline, hundreds of Metagenome-Assembled
Genomes (MAGs) were obtained based on the coverage and sequence
composition using CONCOCT (Fig. 1A) [29]. Most of the resulting MAGs
belonged to bacterial lineages, with only a few microbial eukaryotic
genomes (4.7 to 13.6% of total MAGs; Fig. 1A, B). This low occurrence of
eukaryotic MAGs may be due to their low abundance and may also
reflect the challenges associated with eukaryotic genome binning
owing to their larger genome size than most prokaryotes observed in
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the Lake Cadagno chemocline (Fig. 1B, C) [30]. MAGs of phytoplankton,
including cyanobacteria and photosynthetic microbial eukaryotes,
have been further scrutinized for their involvement in in situ oxygen
production via oxygenic photosynthesis [17, 19, 22]. Typical
cyanobacteria-specific phycocyanin and phycobilin signals have been
reported (years 2013 [21], 2017 [12, 22], and 2019 [15]) for the
chemocline of Lake Cadagno. In contrast, this study recovered only one
putative cyanobacteria-like MAG with 11.4% completion, based on
marker genes detected by BUSCO (Benchmarking Universal Single-
Copy Orthologs) (13m_Bin_1, Table S2), which may be due to their
previously observed low abundance in the chemocline [16].
By analyzing metagenomics reads for 18S rRNA genes, this

study observed a mixed population of microbial eukaryotes
(Fig. 1D). The relative abundance of eukaryotic community
composition in the chemocline was as follows: Alveolata
(4.3–13.8%), Cryptomonadales (6.0–16.2%), Obozoa (12.7–27.8%),
Rhizaria (8.3–12.1 %), Chloroplastida (10.7–19.5%) and Strameno-
piles (5.3–26.2%). Previously, the relative abundance (%) based on
18 S rRNA gene sequences indicated the dominance (>70%) of
Cryptophyta with approximately 5–10% of Perkinsozoa (Alveolata)
and Stramenopiles [6]. Dinoflagellates (Alveolata), cryptophytes
(Cryptomonadales), chlorophytes (Chloroplastida), and diatoms
(Stramenopiles) contain chlorophyll a (Chl a) [31], which may
contribute to oxygenic photosynthesis in the chemocline. How-
ever, genus or species-level investigations are required to know
the identity of microorganisms, and eukaryotic MAGs provide
further insights.
From the overall eukaryotic populations, BUSCO in the auto-

lineage mode identified eukaryotic MAGs with a wide range of
gene content completeness (38–94.8%), including Chlorophyta
(algae; genus Chlorella, up to 94.8% completeness) and Strame-
nopile (diatom; genus Nitzschia, up to 62% completeness), when
using both competitive (Fig. 1C; Table S2), and non-competitive
binning (Fig. S2G; Table S3). Genomes from these photosynthetic
clades were expected because chloroplast amplicons of Chlor-
ophyta and Ochrophyta (Stramenopile) were identified in a
previous study [16]. Putative MAGs of other eukaryotic algae
(Cryptophyceae), including the genus Cryptomonas and Gullardia,
were also obtained but had low completion (<10%, Table S10).
Overall, these results provide the first assembled genomes of
algae and diatoms from the chemocline of Lake Cadagno, which
have the potential to contribute to oxygenic photosynthesis.

High-quality eukaryotic genome of a novel species of
Chlorella-like microorganism
More genomes of protists are needed to advance our under-
standing of their biology [32, 33]; however, obtaining well-curated
microbial eukaryotic genomes from metagenomes remains
challenging owing to their large genome size and complexity
[30, 34]. Although there are pioneering studies in other systems
[35, 36], there have been no prior reports on eukaryotic genomics
from the Lake Cadagno chemocline. In this study, after co-
assembling the Chlorophyta-specific reads, a representative
Chlorophyta genome of 19.4 Mb (636 contigs; minimum length:
2500 bp, N50: 45 Kbp, Table S4) was obtained by re-assembling
and re-binning using SPAdes and CONCOCT respectively. From
this representative genome, prospective contaminant contigs
(n= 40, Table S5) were removed by referring to GC content and
coverage using the Anvi’o interface guided by CAT taxonomy.
After removing the contaminants, a final 18.9 Mbp-genome with
596 contigs with a maximum contig length of 181 Kbp was
obtained (N50: 46 Kbp, Table S6). The refined Chlorophyta MAG
had 93.2% BUSCO completion (n= 1519, Chlorophyta dataset),
with 10,732 protein-coding genes and an average genome
coverage of 141X (Fig. 2A–C). Not only did the rebinning and
refining step result in a decrease in the total number of contigs,
but the contribution of long contigs also increased (total contig =
596, of which 19 > 100 Kbp, 119 > 50 Kbp, and 282 > 25 Kbp)

compared to the best-quality MAG obtained during primary
competitive binning (15-w_36, total contig = 1104, of which
3 > 100 Kbp, 49 > 50 Kbp, and 257 > 25 Kbp). However, the BUSCO
completeness score of the refined MAG slightly decreased (by
1.6%) compared with that before refinement MAG (15-w_36,
94.8% complete; Fig. 1C).
The taxonomic classification with contig annotation tool (CAT)

and the diamond BLASTx results against the nr database indicated
that this MAG belonged to Chlorellaceae family (Table S2, Fig. 2E).
The phylogenomic analysis also placed it close to other Chlorella
species (Fig. 3A). Hence, we provisionally refer to this newly
assembled genome as Chlorella-like MAG. It is likely that this
Chlorella-like species belongs to an early branching lineage of
small microbial eukaryotes such as Nannochloris and Chlorella
desiccata, but had a significantly higher GC content when
compared to the closest relatives (Fig. 3A–C; 71.50 vs. 40–45).
Microscopic images of the closest relatives (species from
Chlorellaceae) indicated that the Chlorella-like MAG belonged to
the nanophytoplankton community (2–20 µm) [37]. The Chlorella-
like assembly exhibited high genome quality (93.2% single copy,
1.1% duplicated, 4.7% missing, and 1.0% fragmented) compared
to the mean completeness of Chlorellaceae assemblies available at
NCBI (87.9%, Fig. 3D).
The predicted proteome from the Chlorella-like MAG was

mapped to the OrthoDB v10.1 [38] online database at the
Trebouxiophyceae level (Chlorophyta Class) which includes 5 spe-
cies: Auxenochlorella protothecoides (GCF_000733215.1), C. sorokini-
ana (GCA_002245835.2), Chlorella variabilis (GCF_000147415.1),
Coccomyxa subellipsoidea C-169 (GCF_000258705.1), and Helicos-
poridium sp. ATCC 50920, (GCA_000690575.1). Approximately 6,000
protein-coding genes from the Chlorella-like MAG had orthologs in
at least one of the other five species (Fig. S3). From the chemocline
of the meromictic Lake Cadagno, these findings represent the first
extensively curated high-quality eukaryotic genome and its
predicted proteome.

Genomes of Chlorella-like and Cryptomonas-like chloroplasts
in the chemocline
Previous studies have reported the possible presence of
cyanobacteria in the chemocline of Lake Cadagno based on
phycocyanin and phycobilin signals [12, 21, 22]; however, a 16S
amplicon gene phylogenetic study limited to amplicon data
identified chloroplasts [16]. Here, the metagenomic dataset
provides evidence for Cryptophyceae (Cryptomonas curvata and
Guillard theta) with 9 putative MAGs from the chemocline samples
(Table S2). Cryptomonas are known for their phycobiliproteins, two
of which (phycocyanobilin and phycoerythrobilin) are present in
cyanobacteria [39]. The putative cyanobacterial-like MAG detected
in Lake Cadagno was classified as C. curvata using the contig
annotation tool (CAT) (Table S2). The phycobiliproteins are located
at the thylakoid lumen of Cryptomonas chloroplast [40], and
Cryptomonas have also been previously identified in Lake
Cadagno [6, 14]. Thus, in addition to identifying the chloroplasts
of newly identified Chlorella-like species, the Cryptomonas
chloroplasts were also targeted. Using the available chloroplast
genomes of Chlorellaceae (Parachlorella kessleri; NC_012978.1) and
Cryptophyceae (G. theta; NC_000926.1) from NCBI, BLASTn
identified two prospective contigs with a size of at least 100
Kbp, here referred to as Chloroplast A (cpA) and Chloroplast B
(cpB) (Fig. 4A, B). Followed by the circularization of cpA and cpB
using NOVOPlasty, phylogenetics analysis confirmed that these
prospective chloroplasts belonged to the Chlorellaceae and
Cryptophyceae (Fig. 5A).
Chlorella-like chloroplast (cpA) coverage and the number of

reads (log) peaked in the chemocline and persisted in the
monimolimnion, a pattern also matching the nuclear genome
(Fig. 5B, Fig. 6A–C). Comparing the mean coverage depths of the
nuclear and chloroplast genome within the chemocline (48.6 vs
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55.6X at 13m, Fig. 5B, Fig. 6B), each Chlorella-like cell is likely to
have a single copy of the chloroplast genome and thus one
chloroplast. A single chloroplast was also observed in Chlorella
protothecoides using microscopy [41].
Cryptomonas-like chloroplast (cpB) coverage and read patterns

coincided with phycobilisome-containing cells that peaked in the
chemocline for sampling season (August 2017) [16] as this study
(Fig. 5C). The genes coding for these photosynthetic reaction
centers (PSI psa and PSII psb) exist in cpA and cpB chloroplasts

(Fig. 4A, B). However, the phycobilisome-specific phycoerythrin
protein (cpeB) has only been found in Cryptomonas-like chlor-
oplast, and phycoerythrin has also been identified in Cryptomonas
in Lake Cadagno [14]. In previous studies, Cyanobacteria in Lake
Cadagno have been identified by targeting phycocyanins in
phycobilisomes [12, 21, 22]. In contrast, this study did not recover
phycocyanin genes in the Cryptomonas-like chloroplasts, although
phycoerythrin is attached to the phycocyanins and is part of the
overall phycobilisome structure [42–45]. Overall, this genomics
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Fig. 3 Comparative analyses of Lake Cadagno Chlorella-like MAG with relatives from the Chlorellaceae family (NCBI ID 35461).
A Phylogenomic tree of Chlorella-like MAG with other species from the Chlorellaceae family (NCBI TaxID: 35461). The maximum likelihood
phylogeny was estimated from a super-alignment (43,679 aa) of 95 single-copy orthologs, using Chlamydomonas reinhardtii as the outgroup
species. Branch length represents the substitutions per site. Values on the nodes indicate bootstrap support. B Pictures of Chlorella species
obtained from the culture collection of algae and protozoa (CCAP; https://www.ccap.ac.uk). C Size and GC content comparison. D BUSCO
quality assessment using the Chlorophyta_odb10 dataset (number of markers = 1519). The values displayed on the bars represent the
number of contigs in the genome assembly.

cpA cpB

Chlorella-like Cryptomonas-like

A B

Fig. 4 GeSeq based annotation of chloroplasts genomes detected in the chemocline of Lake Cadagno. A Chloroplast of Chlorella-like (cpA)
algae with the genome size of 103 Kbp. B Chloroplast of Cryptomonas-like (cpA) algae with the genome size of 130 Kbp.
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evidence on MAGs [12, 21, 22] and chloroplast suggests that peaks
of phycobilisome-containing cells by flow cytometry [12, 21, 22]
and phycocyanin signals [15, 16] in chemocline may have been
sourced from Cryptomonas-like cells.
The persistence of Chlorella-like algae and their chloroplasts

provides new evidence of ongoing oxygenic photosynthesis in the
bottom-monimolimnion. This scenario has also been proposed
before for chemocline [19], where a limited amount of light may
still be available for oxygenic photosynthesis. The occurrence of
Chlorella-like eukaryotic phototrophs in the monimolimnion may
also be due to sinking particles in the lower layers of the lake.
However, if this scenario is true, this study would expect
Cryptomonas-like chloroplasts to sink. Still, their read and coverage
patterns decrease in monimolimnion contrary to the Chlorella-like
algae and suggest their abundance is restricted to chemocline
(Fig. 5B, C). Taken together, the phylogenetic tree, coverage, and
read pattern provide evidence that both Chlorella-like and
Cryptomonas-like algae may synergistically contribute to oxygenic

photosynthesis in the chemocline. However, Chlorella-like eukar-
yotic algae may also persist in dark monimolimnion, where
hydrogen sulfide and ammonia concentrations are at their
maximum.

Metabolic potential of Chlorella-like algae with the focus on C,
N, and S pathways
The contributions of purple sulfur bacteria (C. okenii, Lamprocystis
purpurea, T. syntrophicum, and Thiocystis sp.) and green sulfur
bacteria (Chlorobium phaeobacteroides, Chlorobium sp.) for carbon,
sulfur, and nitrogen metabolism in the chemocline of Lake Cadagno
have been rigorously studied [1, 11, 14, 15, 17, 21, 22, 27, 46, 47]. In
contrast, direct evidence of eukaryotic metabolism is yet to
be established for the Lake Cadagno chemocline. New Chlorella-
like MAG had higher read counts, coverage (48.6X), and relative
abundance (3.4%) at the beginning of the chemocline than the
purple sulfur bacteria (PSB) and green sulfur bacteria (GSB)
(Fig. 6A–C at 13m). PSB C. okenii and GSB Chlorobium sp. coverage
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(100 and 61X) and relative abundance (6.3 and 3.5%) were
maximum at 15m whole water sample from the turbidity peak
(15-w, Fig. 6B, C). The increased coverage of Chlorella-like green
algae, followed by the dominance of Chromatium and Chlorobium is
expected as phytoplankton tend to stay above the phototrophic
sulfur bacteria, as observed by the peak of phycocyanin, Chl a, and
turbidity.

Functional annotations of Chlorella-like MAG using OrthoLoger
(Table S7) and eggNOG (Table S8) mappers revealed a repertoire
of genes potentially involved in carbon [PATH:ko00710], nitrogen
[PATH:ko00910], and sulfur metabolism [PATH:ko00920], with
higher coverage in the chemocline and monimolimnion than in
the mixolimnion (Fig. 6D; Table S9). The C, N, and S genes for
Chlorella-like MAG constituted approximately 0.6% (n= 66) of
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the total predicted genes (n= 10,732) (Fig. 7A, B). The majority of
C, N, and S genes belonged to carbon fixation (50%), followed by
sulfur (31%) and nitrogen (18%) metabolism (Fig. 7A, B).
Although this study did not detect pathways particularly
enriched for Chlorella-like MAG, the C, N, and S metabolism, on
the other hand, is consistent with the other Chlorella species
(Fig. 7B, C). Yet, the relative abundance comparison indicates that
other Chlorella species were not present in the chemocline
(Fig. 7D). Further investigation on carbon metabolism (Figs. 6D,
7B; PATH:ko00710) identifies near-complete pathways for the C4
dicarboxylic cycle and crassulacean acid metabolism (CAM)
(Fig. S4). These carbon fixation metabolisms are specialized to
uptake CO2 in the dark and increase the CO2 availability for
photosynthesis [48, 49]. Some genes involved in C4 photosynth-
esis are shown for Chlorella variabilis; surprisingly, they are not
well described for Chlorella species but have been identified in
other Chlorophyta genomes [50]. The functional annotations of
Chlorella species in this study suggest genes for C4 photosynth-
esis are consistently present within the Chlorellaceae family
(Fig. 7B; PATH:ko00710, Tables S7, S8). Under limited light in the
chemocline of Lake Cadagno, such specialized carbon fixation
pathways may be used for in situ oxygen production by Chlorella-
like photosynthetic algae, which is also coupled with the dark
aerobic sulfide oxidation of C. okenii [17]. The sulfur metabolic
genes [PATH:00920: Table S9] in Chlorella-like algae may

preferentially acquire sulfate [51] resulting from sulfide oxidation
by C. okenii and explain its coupling with phototrophic sulfur
bacteria in the chemocline (Fig. 6A–C). Genes involved in
nitrogen metabolism [PATH:00910: Table S9] may be used for
biomass synthesis, as it has been shown in other microalgae,
including C. sorokiniana [52], Chlorella vulgaris, and Chlamydo-
monas [53–55]. Nitrate storage in microbial eukaryotes has been
suggested to facilitate survival under anoxic conditions [56],
supporting the potential ability of Chlorella-like microorganisms
to persist in the anoxic zones of Lake Cadagno.
Additionally, the Chlorella-like microbial genome contains 17

genes belonging to heat shock protein (HSP) families consistent
with other Chlorella species (Fig. 7E). Compared to other HSPs in
the chemocline, HSP70 has a relatively higher number of genes
(Fig. 7E). The HSPs are known for participating in environmental
stress response [57], including extreme temperature [58] and
exposure to redox metals [57, 59], as shown for Chlorella [60] and
other algae [57, 58, 61]. Such environmental stress might
frequently occur in Lake Cadagno microbial bloom, owing to the
internal oscillations of the chemocline bringing fluctuations in the
temperature, light, sulfur, ammonia, and trace metal (iron and
manganese) concentrations [9, 16, 62]. Thus, the abundance of
heat shock proteins may aid Lake Cadagno Chlorella in thriving in
the chemocline while maintaining cooperation with phototrophic
sulfur bacteria via C, N, and S metabolism.
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CONCLUSION
Microbial eukaryotes are essential members of the Lake Cadagno
chemocline because of autotrophy and their interactions with
phototrophic sulfur bacteria via C, N, and S metabolism. This work
presented the first near-complete genome (including nuclear and
chloroplast assemblies) of a novel green algae species related to
Chlorellaceae, providing genomic and phylogenomic evidence for
this overlooked microbial eukaryote in Lake Cadagno. Based on this
genomic work, primers can be designed to monitor the seasonal
abundance of Chlorella-like microorganisms and morphologically
characterize them using microscopy. Notably, Chlorella-like species
thrive in almost no light and persist in anoxia; thus, its carbon
fixation metabolism and genes for heat shock proteins may warrant
its potential for biotechnological applications. Additionally, the
chloroplast genomes of Chlorella-like and Cryptomonas-like species
indicated that both microorganisms are capable of in situ oxygenic
photosynthesis, a process that has been previously proposed in the
anoxic waters of Lake Cadagno [19]. However, the similarities
between Cryptomonas and cyanobacteria containing phycobili-
somes suggest caution when reporting cyanobacteria in Lake
Cadagno using flow cytometry [12, 21, 22].

MATERIALS AND METHODS
Sample collection and DNA extraction for shotgun DNA
metagenomics
Samples were collected from Lake Cadagno, situated at an altitude of 1921m
above sea level (46.5504 °N, 8.7119 °E) in the Swiss Alps. The sampling
strategy has been described in a previous study [16]. Briefly, 20 L of water
was collected between two subsequent days, 28–29 August 2017, from the
stratified zones of Lake Cadagno. The upper-oxic mixolimnion (5, 9, and
11m) was sampled on the 28th of August (day 1), the chemocline (13, 15,
and 15.5m), and the monimolimnion (17m) was sampled on day 2 (29th of
August). The collected water samples were pre-filtered using a 55 µm mesh
to remove zooplankton [14] and subsequently passed through a filtration
setup equipped with 0.22 µm-filters (cat. #GPWP14250 142mm Express Plus
filter, Millipore, Darmstadt, Germany). After filtration, the 0.22 µm-filters were
flash-frozen at−196 °C and stored at−80 °C until DNA extraction, performed

in October 2018, as explained previously [16]. An additional whole water
sample without a mesh (15-w) was collected from the turbidity peak.

DNA sequencing and metagenome assembly
PCR-free libraries were prepared with a read length and insert size of 250 bp and
sequenced using HiSeq 4000 (Illumina, San Diego, CA, USA) at the University of
Michigan Advanced Genomics sequencing core facility. A step-by-step guide on
microbial eukaryote genome hunting is available at GitHub (https://github.com/
JSSaini/Pipeline_For_Lake_Cadagno_Eukaryotic_Metagenomics; Fig. 8). In sum-
mary, raw reads were trimmed, quality checked, and normalized using BBDuk
and BBNorm in BBTools (v38.00) [63]. These normalized reads were assembled
using SPAdes (v3.15.0) at default kmer lengths of 21, 33, and 55 using 16 CPUs
and 250GB of memory [64]. Metagenomics mode (--meta) was used for all
samples except 15-w, for which the assembly procedure was successful (i.e.,
analysis run to completion) without using the “--meta” flag. The contig names of
each assembly were simplified using Anvi’o (anvi-script-reformat-fasta, v7), and
contigs less than 1,000 nucleotides (-l 1,000) were removed [65].
Raw reads were mapped to the metagenome assemblies (including

nuclear and chloroplast) using Bowtie 2 (v2.4.2) [66] and SAMtools (v1.12)
[67]. The resulting binary alignment map (BAM) was sorted and indexed
using Anvi’o (anvi-init-bam, v7) [65]. Contigs were then binned into MAGs
using CONCOCT (clustering contigs with coverage and composition, v1.1.0
[29]) with default parameters using two strategies: by providing coverage
information from (a) the individual library and (b) from all libraries, referred
to as non-competitive and competitive binning, respectively.

Obtaining representative Chlorophyta MAG from the
chemocline
Chlorophyta MAGs with >90% BUSCO (v5.2.0) completeness were detected
in all four chemocline samples (13, 15, 15-w, and 15.5m) using competitive
and non-competitive binning. To check for similarity, these MAGs were
compared based on average nucleotide identity (Fig. S5) using dRep (v2.2.3)
[68]. Chlorophyta-specific reads were extracted by mapping raw reads using
Bowtie 2 (v2.4.2) and SAMtools (v1.12) to the concatenated Chlorophyta
MAGs from the non-competitive binning to obtain the maximum number of
Chlorophyta reads. Next, the Chlorophyta-specific raw reads (R1 and R2)
were extracted from the resulting BAM files using bamtofastq (v1.1.0).
SPAdes (v3.15.0) [64] coassembled Chlorophyta-specific raw reads at a
default kmer length of 21, 33, and 55 nucleotides using two strategies. In the
first strategy, SPAdes coassembled Chlorophyta-specific raw reads from all

Fig. 8 Overview of metagenomics pipeline to study microbial eukaryotes. Step-by-step guide to eukaryotic metagenomics pipeline
(created with Biorender.com).
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four samples (13, 15, 15-w, and 15.5m). And in the second strategy,
Chlorophyta-specific raw reads from only two samples were coassembled
(13 and 15.5m). The latter assembly was prioritized for rebinning because of
the higher N50 value.
The contig names of each assembly were simplified using Anvi’o (anvi-

script-reformat-fasta, v7), and contigs less than 2500 nucleotides (-l 2,500)
were removed [65]. The Chlorophyta-specific assembly was rebinned using
CONCOCT [29] (v1.1.0), providing coverage information (BAM) from all four
chemocline samples.

Classification, quality assessment, refinement, and
visualization of MAGs
Genomic and taxonomic classification. Raw MAGs were classified using
the contig and bin annotation tool (CAT and BAT, v5.2.3) [69]. Gene
prediction in CAT/BAT was performed using prodigal [70]. The predicted
open reading frames (ORFs) were queried to the NCBI non-redundant
protein database (updated 24 July 2021) using DIAMOND (v0.9.14.115)
[71–73]. To obtain an overview of the eukaryotic community composition,
eukaryotic 18S rRNA gene sequences were extracted from metagenomics
reads using phyloFlash (v3.4) [74]. The composition of the prokaryotic
community based on 16 S amplicon gene sequencing was presented in a
previous publication [16].

Quality assessment. MAGs were assessed with BUSCO (v5.2.0) using the
“--auto-lineage” mode [75, 76]. BUSCO relies on a collection of single-copy
orthologs generated from OrthoDB v10 [77] to identify complete,
duplicated, fragmented, and missing single-copy genes. With the “--auto-
lineage” mode, BUSCO attempts to identify the most suitable dataset for
the assessment and allows the analysis of both prokaryotic and
eukaryotic MAGs.

Bin refinement. MAGs were refined by referring to the GC content and
coverage using the Anvi’o interface (anvi-refine, Fig. S6) [65]. In addition,
the Chlorophyta MAG refinement was guided by CAT taxonomy [69],
which aided in removing potential contaminants.

Visualization. Statistics on eukaryotic MAGs (size, contig length, GC
content, and coverage) were visualized using BlobToolKit (v2) [78], which
uses Diamond BLASTx for taxonomic classification (v0.9.14.115) (nr
database, updated 24 July 2021) [71–73, 79].

Gene prediction, quantification, and functional annotation of
microbial eukaryotes
Protein-coding genes in eukaryotic genomes were predicted using
EukMetaSanity (v0.1.0) [80] based on AUGUSTUS (v3.4.0) [81] and MetaEuk
(v34c21f2bf34c76f852c0441a29b104e5017f2f6d) [82] gene predictors. The
mean depth of gene coverage was calculated using Bowtie 2 (v2.4.2) [66],
SAMtools (v1.12), and Anvi’o (v7). The identified protein-coding genes
were mapped against the OrthoDB database at the Trebouxiophyceae
level (which includes 5 species, v10.1) using the online mapping and
charting tool [38, 83], and also mapped at the Chlorophyta level (which
includes 17 species, v11) using the OrthoLoger (v3.0.3) software [83].
Additionally, the proteome was mapped to eggNOG (v5.0) orthology
resource [84] using eggNOG-mapper (v2.1.9) [85]. KEGG orthology (KO; or K
numbers) of the respective genes were mapped to KEGG pathways using
the codes provided in the R script at Github under code availability.
Optionally, GhostKOALA (v2.2) was used to visualize KEGG pathways based
on the KEGG mapper (v5) [86–88].

Comparative phylogenomics and quality assessment of
Chlorellaceae genomes
We performed a phylogenomic analysis to phylogenetically place the newly
discovered Chlorophyta species. The assemblies of related species belonging
to Chlorellaceae (NCBI TaxID:35461) were retrieved from NCBI and are listed
in the supplementary table (Table S10). Chlamydomonas reinhardtii
(GCA_000002595.3) was used as the outgroup. To construct the phyloge-
nomic tree, this study followed a slightly modified version of the snakemake
workflow described by Manni et al. 2021 [89], relying on BUSCO [75, 76] to
find and extract single-copy orthologs to infer phylogenies. BUSCO (v5.2.2)
was run in genome mode (BUSCO_Metaeuk workflow) on each genome
assembly using the chlorophyta_odb10 dataset (1,519 markers). The
identified single-copy genes that were shared across 100% of the species

(with no duplicates across all species) were extracted. For each orthologous
group, proteins were aligned using MAFFT (v7.505) [90] and trimmed using
trimAl (v1.4 rev15) [91]. The single alignments were concatenated with AMAS
(v1.0) [92], and the resulting super-alignment was used to infer a maximum
likelihood phylogeny with IQ-TREE (v2.1.2) [93]. The phylogenetic tree was
visualized using Dendroscope (v3.7.6) [94] and annotated using ggtree
(v3.0.1) [95] in R-studio [96] (v1.4.1106) and Adobe Illustrator (v25.2.1). The
results from BUSCO were also used to compare the quality of the newly
assembled Chlorella-like MAG with the available Chlorellaceae genomes
deposited at NCBI.

Organelle hunting and chloroplast phylogenomics
Chloroplast contigs were identified using BLASTn to obtain the best hits
(-max_target_seqs 1) for each query sequence. P. kessleri (NC_012978.1;
Chlorella) and G. theta (NC_000926.1; Cryptophyceae) chloroplast genomes
were used as queries. The two identified tentative chloroplast genomes
(contigs c_000000000152_15mw and c_000000000134-15mm) were
termed chloroplast A (cpA) and chloroplast B (cpB), and were used as
templates for circularization via NOVOPlasty [97] with a genome size range
set to 80,000–200,000 nt and the default kmer length of 33 nucleotides.
Chloroplast phylogenomics was performed using the prospective

chloroplast genomes of Lake Cadagno (cpA and cpB) with an additional
list of chloroplast genomes from the following three families: (1)
Chlorellaceae [Taxonomy ID:35461], (2) Cryptophyceae [Taxonomy
ID:3027], and (3) Stramenopile [Taxonomy ID:33634]. Stramenopile
chloroplasts were used as the outgroups.
The accession numbers of the chloroplast genomes used in the

phylogenomic analysis are provided in supplementary (Table S11).
Eighteen marker genes were used to construct the chloroplast phyloge-
netic tree, including ATP synthase (atpA, atpB, and atpC), large ribosomal
subunits (rpl2, rpl5, rpl12, rpl14, rpl19, and rpl23), small ribosomal subunits
(rps3, rps8, rps9, and rps19), photosystem I (psaC), and photosystem II
(psbA, psbB, psbE, and psbH). These markers were individually aligned using
MAFFT (v 7.487) [98], followed by quality assessment and removal of
ambiguous sequences using Gblocks (v0.91b) [99]. Phylogenomic tree
inferences were made using MEGA (v11.0.10) [100] by selecting the
maximum likelihood using the Jones-Taylor-Thornston (JTT) method and
bootstrapping (n= 100). The tree was visualized using Dendroscope
(v3.7.6) [94] and annotated using ggtree (v3.0.1) [95] in R-studio [96]
(v1.4.1106) and Adobe Illustrator (v25.2.1).

Metagenome assembly and abundance statistics
Statistics, including size, GC content, number of contigs, N50 and L50
values of metagenomic assemblies, were calculated using stats.sh
(individual) and statswrapper.sh (multiple) scripts in BBMap (v38.96) [101].
The N50 metric is the length of the shortest contig for which half of the
genome is assembled on contigs of length N50 or longer, and the L50
value is the minimum number of contigs required to reach 50% of the
genome assembly. The mean depth of coverage, number of reads, and
relative abundance of purple and green sulfur bacteria and eukaryotic
algae MAGs were calculated using Bowtie 2 (v2.4.2) [66], SAMtools (v1.12),
Anvi’o (v7), and CoverM (v0.6.1) [102].

DATA AVAILABILITY
Raw reads are available at the NCBI under the sequence read archive SUB11916861
and under the accessions SRR21025699, SRR21025700, SRR21025701, and
SRR21025702. The GenBank ID for the Chlorella-like MAG is JAOAOU000000000.1.
The assembled contigs from raw reads, MAGs, and other data were deposited in
Zenodo (https://zenodo.org/record/7505505) [103].

CODE AVAILABILITY
A step-by-step guide to the eukaryotic metagenomics pipeline has been made
available on GitHub, including the R script used to generate figures (https://
github.com/JSSaini/Pipeline_For_Lake_Cadagno_Eukaryotic_Metagenomics).
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