Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional and structural diversification of incomplete phosphotransferase system in cellulose-degrading clostridia

Abstract

Carbohydrate utilization is critical to microbial survival. The phosphotransferase system (PTS) is a well-documented microbial system with a prominent role in carbohydrate metabolism, which can transport carbohydrates through forming a phosphorylation cascade and regulate metabolism by protein phosphorylation or interactions in model strains. However, those PTS-mediated regulated mechanisms have been underexplored in non-model prokaryotes. Here, we performed massive genome mining for PTS components in nearly 15,000 prokaryotic genomes from 4,293 species and revealed a high prevalence of incomplete PTSs in prokaryotes with no association to microbial phylogeny. Among these incomplete PTS carriers, a group of lignocellulose degrading clostridia was identified to have lost PTS sugar transporters and carry a substitution of the conserved histidine residue in the core PTS component, HPr (histidine-phosphorylatable phosphocarrier). Ruminiclostridium cellulolyticum was then selected as a representative to interrogate the function of incomplete PTS components in carbohydrate metabolism. Inactivation of the HPr homolog reduced rather than increased carbohydrate utilization as previously indicated. In addition to regulating distinct transcriptional profiles, PTS associated CcpA (Catabolite Control Protein A) homologs diverged from previously described CcpA with varied metabolic relevance and distinct DNA binding motifs. Furthermore, the DNA binding of CcpA homologs is independent of HPr homolog, which is determined by structural changes at the interface of CcpA homologs, rather than in HPr homolog. These data concordantly support functional and structural diversification of PTS components in metabolic regulation and bring novel understanding of regulatory mechanisms of incomplete PTSs in cellulose-degrading clostridia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Architectural and compositional diversification of phosphotransferase systems (PTS) in prokaryotes.
Fig. 2: The mini “PTS” of R. cellulolyticum is essential for microbial metabolism.
Fig. 3: Distinct roles of the mini “PTS” components in carbohydrate dependent transcriptional regulation.
Fig. 4: Distinct DNA binding profiles of R. cellulolyticum CcpA homologs that are independent of Cph and its phosphorylation status.
Fig. 5: Structural basis of Cph-independent regulation by CcpA and CcpB in R. cellulolyticum.

Data availability

Raw sequences of the ChIP-seq experiments are available in the NCBI SRA database (http://www.ncbi.nlm.nih.gov/sra) under accession number PRJNA748961. The MS proteomic data of IP-MS or phosphorylation determination are deposited in the ProteomeXchange consortium (http://www.proteomexchange.org/) via the iProX partner repository with the accession number PXD027554. Microarray data are deposited in the ArrayExpress under accession number E-MTAB-11755 and E-MTAB-11774. The structures of CcpB and Cph have been deposited to the Protein Data Bank (PDB) with accession numbers 7FF4 and 7FF5, respectively. Our in-house protein database can be accessed through http://www.ou.edu/ieg/publications/datasets. All other relevant data are available in Supplementary Information. Source data are provided with this paper.

Code availability

The genome mining and other analysis codes have been deposited in GitHub (https://github.com/adarobot/PTS).

References

  1. Josef D, Galinier A, Martin-Verstraete I. Carbohydrate uptake and metabolism. Bacillus subtilis and its closest relatives. 2014. ASM Press, Washington, DC, USA, 129–50.

  2. Deutscher J, Aké FMD, Derkaoui M, Zébré AC, Cao TN, Bouraoui H, et al. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev. 2014;78:231–56.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Galinier A, Deutscher J. Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Mol Biol. 2017;429:773–89.

    Article  CAS  PubMed  Google Scholar 

  4. Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 2006;70:939–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pflüger-Grau K, Görke B. Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol. 2010;18:205–14.

    Article  PubMed  Google Scholar 

  6. Snyder H, Kellogg SL, Skarda LM, Little JL, Kristich CJ. Nutritional control of antibiotic resistance via an interface between the phosphotransferase system and a two-component signaling system. Antimicrob Agents Chemother. 2014;58:957–65.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sánchez S, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, et al. Carbon source regulation of antibiotic production. J Antibiot. 2010;63:442–59.

    Article  Google Scholar 

  8. Houot L, Chang S, Pickering BS, Absalon C, Watnick PI. The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J Bacteriol. 2010;192:3055–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Houot L, Chang S, Absalon C, Watnick PI. Vibrio cholerae phosphoenolpyruvate phosphotransferase system control of carbohydrate transport, biofilm formation, and colonization of the germfree mouse intestine. Infection Immunity. 2010;78:1482-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu M-C, Chen Y-C, Lin T-L, Hsieh P-F, Wang J-T. Cellobiose-specific phosphotransferase system of Klebsiella pneumoniae and its importance in biofilm formation and virulence. Infect Immun. 2012;80:2464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kok M, Bron G, Erni B, Mukhija S. Effect of enzyme I of the bacterial phosphoenolpyruvate : sugar phosphotransferase system (PTS) on virulence in a murine model. Microbiology. 2003;149:2645–52.

    Article  CAS  PubMed  Google Scholar 

  12. Kim H-J, Lee C-R, Kim M, Peterkofsky A, Seok Y-J. Dephosphorylated NPr of the nitrogen PTS regulates lipid A biosynthesis by direct interaction with LpxD. Biochem Biophys Res Commun. 2011;409:556–61.

    Article  CAS  PubMed  Google Scholar 

  13. Ha J-H, Hauk P, Cho K, Eo Y, Ma X, Stephens K, et al. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. Sci Adv. 2018;4:eaar7063.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kundig W, Ghosh S, Roseman S. Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system. Proc Natl Acad Sci USA. 1964;52:1067–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martin-Verstraete I, Charrier V, Stülke J, Galinier A, Erni B, Rapoport G, et al. Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol. 1998;28:293–303.

    Article  CAS  PubMed  Google Scholar 

  16. Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6:613–24.

    Article  PubMed  Google Scholar 

  17. Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell. 2004;118:731–41.

    Article  CAS  PubMed  Google Scholar 

  18. Barabote RD, Saier MH Jr. Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev. 2005;69:608–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. 2016;1:16203.

    Article  CAS  PubMed  Google Scholar 

  20. Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol. 2021;39:499–509.

    Article  CAS  PubMed  Google Scholar 

  21. Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol. 2008;11:87–93.

    Article  CAS  PubMed  Google Scholar 

  22. Delannoy-Bruno O, Desai C, Raman AS, Chen RY, Hibberd MC, Cheng J, et al. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature. 2021;7865:91–95.

    Article  Google Scholar 

  23. Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell. 2019;179:59–73.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, et al. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021;184:4137–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun. 2020;11:5104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2022;50:D785–D794.

    Article  CAS  PubMed  Google Scholar 

  27. Cai L, Cai S, Zhao D, Wu J, Wang L, Liu X, et al. Analysis of the transcriptional regulator GlpR, promoter elements, and posttranscriptional processing involved in fructose-induced activation of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Haloferax mediterranei. Appl Environ Microbiol. 2014;80:1430–40.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pickl A, Johnsen U, Schonheit P. Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphate kinase, and class ii fructose-1,6-bisphosphate Aldolase. J Bacteriol. 2012;194:3088–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hartman AL, Norais C, Badger JH, Delmas S, Haldenby S, Madupu R, et al. The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS One. 2010;5:e9605.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. J Iran Chem Soc. 2013;10:593–630.

    Article  CAS  Google Scholar 

  31. Plumbridge J. Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr Opin Microbiol. 2002;5:187–93.

    Article  CAS  PubMed  Google Scholar 

  32. Saier MH Jr, Reizer J. Domain shuffling during evolution of the proteins of the bacterial phosphotransferase system. Res Microbiol. 1990;141:1033–8.

    Article  CAS  PubMed  Google Scholar 

  33. Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Desvaux M. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev. 2005;29:741–64.

    Article  CAS  PubMed  Google Scholar 

  35. Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019;13:413–29.

    Article  CAS  PubMed  Google Scholar 

  36. Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, Cookson AL, et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat Biotechnol. 2018;36:359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van den Bogaard PTC, Kleerebezem M, Kuipers OP, de Vos WM. Control of lactose transport, β-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar. J Bacteriol. 2000;182:5982–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Parche S, Beleut M, Rezzonico E, Jacobs D, Arigoni F, Titgemeyer F, et al. Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. J Bacteriol. 2006;188:1260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Collier DN, Hager PW, Phibbs PV Jr. Catabolite repression control in the Pseudomonads. Res Microbiol. 1996;147:551–61.

    Article  CAS  PubMed  Google Scholar 

  40. Park H, McGill SL, Arnold AD, Carlson RP. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell Mol Life Sci. 2020;77:395–413.

    Article  CAS  PubMed  Google Scholar 

  41. Xu T, Li Y, Shi Z, Hemme CL, Li Y, Zhu Y, et al. Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase. Appl Environ Microbiol. 2015;81:4423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mijakovic I, Poncet S, Galinier A, Monedero V, Fieulaine S, Janin J, et al. Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: a relic of early life? Proc Natl Acad Sci USA. 2002;99:13442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tobisch S, Zühlke D, Bernhardt J, Stülke J, Hecker M. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol. 1999;181:6996–7004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abranches J, Nascimento MM, Zeng L, Browngardt CM, Wen ZT, Rivera MF, et al. CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans. J Bacteriol. 2008;190:2340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jones BE, Dossonnet V, Küster E, Hillen W, Josef Deutscher, Klevit RE. Binding of the catabolite repressor protein CcpA to Its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem. 1997;272:26530–5.

    Article  CAS  PubMed  Google Scholar 

  46. Deutscher J, Josef D, Küster E, Bergstedt U, Charrier V, Hillen W. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol Microbiol. 1995;15:1049–53.

    Article  CAS  PubMed  Google Scholar 

  47. Xu C, Huang R, Teng L, Jing X, Hu J, Cui G, et al. Cellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilization. Nat Commun. 2015;6:1–13.

    CAS  Google Scholar 

  48. Maamar H, Abdou L, Boileau C, Valette O, Tardif C. Transcriptional analysis of the cip-cel gene cluster from Clostridium cellulolyticum. J Bacteriol. 2006;188:2614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abdou L, Boileau C, de Philip P, Pagès S, Fiérobe H-P, Tardif C. Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element. J Bacteriol. 2008;190:1499–506.

    Article  CAS  PubMed  Google Scholar 

  50. Xu C, Huang R, Teng L, Wang D, Hemme CL, Borovok I, et al. Structure and regulation of the cellulose degradome in Clostridium cellulolyticum. Biotechnol Biofuels. 2013;6:1–15.

    Article  Google Scholar 

  51. Ye F, Wang C, Fu Q, Yan X-F, Bharath SR, Casanas A, et al. Structural basis of a novel repressor, SghR, controlling Agrobacterium infection by cross-talking to plants. J Biol Chem. 2020;295:12290–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huffman JL, Lu F, Zalkin H, Brennan RG. Role of residue 147 in the gene regulatory function of the Escherichia coli purine repressor. Biochemistry. 2002;41:511–20.

    Article  CAS  PubMed  Google Scholar 

  53. Cases I, Velázquez F, de Lorenzo V. The ancestral role of the phosphoenolpyruvate–carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics. Res Microbiol. 2007;158:666–70.

    Article  CAS  PubMed  Google Scholar 

  54. Dürre P. Physiology and Sporulation in Clostridium. Microbiol Spectr. 2014;2:2–4.

    Article  Google Scholar 

  55. Errington J. Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol. 2003;1:117–26.

    Article  CAS  PubMed  Google Scholar 

  56. Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun. 2020;11:1–12.

    Article  Google Scholar 

  57. Wittekind M, Reizer J, Deutscher J, Saier MH, Klevit RE. Common structural changes accompany the functional inactivation of HPr by seryl phosphorylation or by serine to aspartate substitution. Biochemistry. 1989;28:9908–12.

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodriguez M Jr, Liao JC, et al. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels. 2012;5:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Higashide W, Li Y, Yang Y, Liao JC. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol. 2011;77:2727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Desvaux M, Guedon E, Petitdemange H. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl Environ Microbiol. 2000;66:2461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hemme CL, Fields MW, He Q, Deng Y, Lin L, Tu Q, et al. Correlation of genomic and physiological traits of thermoanaerobacter species with biofuel yields. Appl Environ Microbiol. 2011;77:7998–8008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tao X, Xu T, Kempher ML, Liu J, Zhou J. Precise promoter integration improves cellulose bioconversion and thermotolerance in Clostridium cellulolyticum. Metab Eng. 2020;60:110–8.

    Article  CAS  PubMed  Google Scholar 

  63. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Davis SE, Mooney RA, Kanin EI, Grass J, Landick R, Ansari AZ. Mapping E. coli RNA polymerase and associated transcription factors and identifying promoters genome-wide. Methods Enzymol. 2011;498:449–71.

    Article  CAS  PubMed  Google Scholar 

  65. Nelson JD, Denisenko O, Bomsztyk K. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc. 2006;1:179–85.

    Article  CAS  PubMed  Google Scholar 

  66. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAM tools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using MACS. Nat Protoc. 2012;7:1728–40.

    Article  CAS  PubMed  Google Scholar 

  69. Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011;27:1696–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.

    Article  PubMed  Google Scholar 

  71. Guo X, Li Z, Yao Q, Mueller RS, Eng JK, Tabb DL, et al. Sipros Ensemble improves database searching and filtering for complex metaproteomics. Bioinformatics. 2018;34:795–802.

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Zhang S-P, Zhang M-Y, Kempher ML, Guo D-D, Han J-T, et al. The antitoxin MqsA homologue in Pseudomonas fluorescens 2P24 has a rewired regulatory circuit through evolution. Environ Microbiol. 2019;21:1740–56.

    Article  CAS  PubMed  Google Scholar 

  73. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.

    Article  CAS  PubMed  Google Scholar 

  74. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.

    Article  CAS  PubMed  Google Scholar 

  75. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19:679–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics. 2022;38:5315–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301.

    Article  CAS  PubMed  Google Scholar 

  78. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.

    Article  CAS  PubMed  Google Scholar 

  79. Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.

    Article  Google Scholar 

  80. Wagih O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017;33:3645–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Genome mining, construction of mutant strains, phenotypic and omics experiments were supported by the Office of the Vice President for Research at the University of Oklahoma to JZ. Biochemical assays, crystallization, and structure determination were supported by the National Natural Science Foundation of China (Grant No. 31971422) to YH and (Grant No.31970103) to HG, and Key Research and Development Plan Project of Anhui Province (grant No. 202004a06020035) to NZ. We thank SSRF beamline BL18U1 for synchrotron data collection. We also thank the staff for providing technical support by using the facility of the Institute of Health Sciences and Technology of Anhui University.

Author information

Authors and Affiliations

Authors

Contributions

TX, XT, and JZ developed the original concepts. TX, XT, YH, and NZ designed the experiments. TX conducted the genome mining analyses. XT and TX carried out the experiments for mutant construction, phenotype determination, microarray and ChIP-seq. XT, DW, and CP carried out the IP-MS experiment. HH, SZ, XL, JW, NZ, and YH carried out all biochemical experiments including protein purification, EMSA, ITC, and phosphorylation site determination. HH, HG, and NZ carried out the crystallization and collected the data. NZ and YH solved the structures. DN assisted with the statistical analysis. TX, XT, YH, and NZ wrote the paper. MLK and JZ edited the manuscript. All authors were given the opportunity to review the results and comment on the manuscript.

Corresponding authors

Correspondence to Nannan Zhang, Yong-Xing He or Jizhong Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Tao, X., He, H. et al. Functional and structural diversification of incomplete phosphotransferase system in cellulose-degrading clostridia. ISME J 17, 823–835 (2023). https://doi.org/10.1038/s41396-023-01392-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01392-2

Search

Quick links