Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mining chicken ileal microbiota for immunomodulatory microorganisms

Abstract

The gut microbiota makes important contributions to host immune system development and resistance to pathogen infections, especially during early life. However, studies addressing the immunomodulatory functions of gut microbial individuals or populations are limited. In this study, we explore the systemic impact of the ileal microbiota on immune cell development and function of chickens and identify the members of the microbiota involved in immune system modulation. We initially used a time-series design with six time points to prove that ileal microbiota at different succession stages is intimately connected to immune cell maturation. Antibiotics perturbed the microbiota succession and negatively affected immune development, whereas early exposure to the ileal commensal microbiota from more mature birds promoted immune cell development and facilitated pathogen elimination after Salmonella Typhimurium infection, illustrating that early colonization of gut microbiota is an important driver of immune development. Five bacterial strains, Blautia coccoides, Bacteroides xylanisolvens, Fournierella sp002159185, Romboutsia lituseburensis, and Megamonas funiformis, which are closely related to the immune system development of broiler chickens, were then screened out and validated for their immunomodulatory properties. Our results provide insight into poultry immune system–microbiota interactions and also establish a foundation for targeted immunological interventions aiming to combat infectious diseases and promote poultry health and production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of experiment design.
Fig. 2: Temporal and spatial development of ileum microbiota in broiler chickens.
Fig. 3: Sequential waves of immune cell expansion after birth.
Fig. 4: Interaction between bacteria and the proportion of immune cells.
Fig. 5: The antibiotic chlortetracycline interferes with the development of ileum microbiota and immune cells.
Fig. 6: Early exposure to ileal commensal microbiota from more mature individuals influences the immune cell composition of chickens.
Fig. 7: Microbiota transplantation enhances the resistance to Salmonella Typhimurium infection of broiler chickens.
Fig. 8: Immunomodulatory properties of five bacterial strains.

Similar content being viewed by others

Data availability

The raw 16S rRNA gene sequencing data of luminal microbiota from the antibiotic-untreated broiler chickens were obtained from NCBI BioProject PRJNA817429 (unpublished data from our own laboratory), and additional raw 16S rRNA gene sequencing data have been deposited in NCBI BioProject PRJNA904673. The genome data have been deposited in NCBI BioProject PRJNA903494 and PRJNA902159. The transcriptome data have been deposited in NCBI BioProject PRJNA904665. Raw datasets used for multicolor flow cytometry and qRT-PCR are available on FigShare (https://doi.org/10.6084/m9.figshare.21825042).

References

  1. Skarp CPA, Hänninen ML, Rautelin HIK. Campylobacteriosis: the role of poultry meat. Clin Microbiol Infect. 2016;22:103–9.

    Article  CAS  PubMed  Google Scholar 

  2. Qi J, Li X, Zhang W, Wang H, Zhou G, Xu X. Influence of stewing time on the texture, ultrastructure and in vitro digestibility of meat from the yellow-feathered chicken breed. Anim Sci J. 2018;89:474–82.

    Article  CAS  PubMed  Google Scholar 

  3. Sedeik ME, El-Shall NA, Awad AM, Abd El-Hack ME, Alowaimer AN, Swelum AA. Comparative evaluation of HVT-IBD vector, immune complex, and live IBD vaccines against vvIBDV in commercial broiler chickens with high maternally derived antibodies. Animals. 2019;9:72.

    Article  PubMed  PubMed Central  Google Scholar 

  4. El-Shall NA, Shewita RS, Abd El-Hack ME, AlKahtane A, Alarifi S, Alkahtani S, et al. Effect of essential oils on the immune response to some viral vaccines in broiler chickens, with special reference to Newcastle disease virus. Poult Sci. 2020;99:2944–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maron DF, Smith TJS, Nachman KE. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Glob Health. 2013;9:48.

    Article  Google Scholar 

  6. Favier CF, de Vos WM, Akkermans AD. Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe. 2003;9:219–29.

    Article  PubMed  Google Scholar 

  7. Wang S, Ryan CA, Boyaval P, Dempsey EM, Ross RP, Stanton C. Maternal vertical transmission affecting early-life microbiota development. Trends Microbiol. 2020;28:28–45.

    Article  CAS  PubMed  Google Scholar 

  8. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–18.

    Article  CAS  PubMed  Google Scholar 

  9. Baumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535:85–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535:75–84.

    Article  CAS  PubMed  Google Scholar 

  11. Kim YG, Sakamoto K, Seo SU, Pickard JM, Gillilland MG 3rd, Pudlo NA, et al. Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science. 2017;356:315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ostman S, Rask C, Wold AE, Hultkrantz S, Telemo E. Impaired regulatory T cell function in germ-free mice. Eur J Immunol. 2006;36:2336–46.

    Article  PubMed  Google Scholar 

  14. Tastan C, Karhan E, Zhou W, Fleming E, Voigt AY, Yao X, et al. Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation. Mucosal Immunol. 2018;11:1591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;136:485–98.

    Article  Google Scholar 

  16. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–6.

    Article  CAS  PubMed  Google Scholar 

  17. Verma R, Lee C, Jeun EJ, Yi J, Kim KS, Ghosh A, et al. Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3+ regulatory T cells. Sci Immunol. 2018;3:eaat6975.

    Article  PubMed  Google Scholar 

  18. Dibner JJ, Knight CD, Kitchell ML, Atwell CA, Downs AC, Ivey FJ. Early feeding and development of the immune system in neonatal poultry. J Appl Poult Res. 1998;7:425–36.

    Article  CAS  Google Scholar 

  19. Khadem A, Soler L, Everaert N, Niewold TA. Growth promotion in broilers by both oxytetracycline and Macleaya cordata extract is based on their anti-inflammatory properties. Br J Nutr. 2014;112:1110–8.

    Article  CAS  PubMed  Google Scholar 

  20. Pourabedin M, Guan L, Zhao X. Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome. 2015;3:15.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Varmuzova K, Kubasova T, Davidova-Gerzova L, Sisak F, Havlickova H, Sebkova A, et al. Composition of gut microbiota influences resistance of newly hatched chickens to Salmonella Enteritidis infection. Front Microbiol. 2016;7:957.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Akhtar M, Chen Y, Ma Z, Liang Y, Shi D, et al. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation. Microbiome. 2022;10:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Freeman TC, Ivens A, Baillie JK, Beraldi D, Barnett MW, Dorward D, et al. A gene expression atlas of the domestic pig. BMC Biol. 2012;10:90.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mach N, Berri M, Esquerré D, Chevaleyre C, Lemonnier G, Billon Y, et al. Extensive expression differences along porcine small intestine evidenced by transcriptome sequencing. PLoS ONE. 2014;9:e88515.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lu J, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol. 2003;69:6816–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oakley BB, Buhr RJ, Ritz CW, Kiepper BH, Berrang ME, Seal BS, et al. Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives. BMC Vet Res. 2014;10:282.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Oakley BB, Kogut MH. Spatial and temporal changes in the broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression. Front Vet Sci. 2016;3:11.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hu J, Chen L, Tang Y, Xie C, Xu B, Shi M, et al. Standardized preparation for fecal microbiota transplantation in pigs. Front Microbiol. 2018;9:1328.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Withanage GS, Kaiser P, Wigley P, Powers C, Mastroeni P, Brooks H, et al. Rapid expression of chemokines and proinflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar typhimurium. Infect Immun. 2004;72:2152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beal RK, Wigley P, Powers C, Hulme SD, Barrow PA, Smith AL. Age at primary infection with Salmonella enterica serovar Typhimurium in the chicken influences persistence of infection and subsequent immunity to re-challenge. Vet Immunol Immunopathol. 2004;100:151–64.

    Article  CAS  PubMed  Google Scholar 

  31. Beal RK, Powers C, Wigley P, Barrow PA, Kaiser P, Smith AL. A strong antigen-specific T-cell response is associated with age and genetically dependent resistance to avian enteric Salmonellosis. Infect Immun. 2005;73:7509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kogut MH, Genovese KJ, He HQ, Swaggerty CL, Jiang YW. Modulation of chicken intestinal immune gene expression by small cationic peptides as feed additives during the first week posthatch. Clin Vaccin Immunol. 2013;20:1440–8.

    Article  CAS  Google Scholar 

  33. Hoszowski A, Truszczynski M. Prevention of Salmonella typhimurium caecal colonisation by different preparations for competitive exclusion. Comp Immunol Microbiol Infect Dis. 1997;20:111–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kramer J, Visscher AH, Wagenaar JA, Boonstra-Blom AG, Jeurissen SH. Characterization of the innate and adaptive immunity to Salmonella enteritidis PT1 infection in four broiler lines. Vet Immunol Immunopathol. 2001;79:219–33.

    Article  CAS  PubMed  Google Scholar 

  35. Kogut MH, Genovese KJ, He H, Li MA, Jiang YW. The effects of the BT/TAMUS 2032 cationic peptides on innate immunity and susceptibility of young chickens to extraintestinal Salmonella enterica serovar Enteritidis infection. Int Immunopharmacol. 2007;7:912–9.

    Article  CAS  PubMed  Google Scholar 

  36. Crippen TL, Bischoff KM, Lowry VK, Kogut MH. rP33 activates bacterial killing by chicken peripheral blood heterophils. J Food Prot. 2003;66:787–92.

    Article  PubMed  Google Scholar 

  37. Rychlik I, Elsheimer-Matulova M, Kyrova K. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella. Vet Res. 2014;45:119.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kashiwagi M, Hosoi J, Lai J-F, Brissette J, Ziegler SF, Morgan BA, et al. Direct control of regulatory T cells by keratinocytes. Nat Immunol. 2017;18:334–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell. 2015;163:367–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lécuyer E, Rakotobe S, Lengliné-Garnier H, Lebreton C, Picard M, Juste C, et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity. 2014;40:608–20.

    Article  PubMed  Google Scholar 

  41. Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389:1218–28.

    Article  PubMed  Google Scholar 

  42. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41.

    Article  CAS  PubMed  Google Scholar 

  43. Quandt D, Rothe K, Baerwald C, Rossol M. GPRC6A mediates Alum-induced Nlrp3 inflammasome activation but limits Th2 type antibody responses. Sci Rep. 2015;5:16719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blander JM. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation. Immunol Rev. 2016;272:65–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shirakawa K, Endo J, Kataoka M, Katsumata Y, Yoshida N, Yamamoto T, et al. IL (Interleukin)-10-STAT3-Galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction. Circulation. 2018;138:2021–35.

    Article  CAS  PubMed  Google Scholar 

  46. Hörhold F, Eisel D, Oswald M, Kolte A, Röll D, Osen W, et al. Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Comput Biol. 2020;16:e1007657.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dillmann C, Mora J, Olesch C, Brüne B, Weigert A. S1PR4 is required for plasmacytoid dendritic cell differentiation. Biol Chem. 2015;396:775–82.

    Article  CAS  PubMed  Google Scholar 

  48. Liu J, Zhang X, Chen K, Cheng Y, Liu S, Xia M, et al. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity. 2019;50:600–15.

    Article  CAS  PubMed  Google Scholar 

  49. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med. 2009;15:808–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao D-M, Yu S, Zhou X, Haring JS, Held W, Badovinac VP, et al. Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J Immunol. 2010;184:1191–9.

    Article  CAS  PubMed  Google Scholar 

  51. Xu W-D, Wang J, Yuan T-L, Li Y-H, Yang H, Liu Y, et al. Interactions between canonical Wnt signaling pathway and MAPK pathway regulate differentiation, maturation and function of dendritic cells. Cell Immunol. 2016;310:170–7.

    Article  CAS  PubMed  Google Scholar 

  52. Chen D, Jin D, Huang S, Wu J, Xu M, Liu T, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett. 2020;469:456–67.

    Article  CAS  PubMed  Google Scholar 

  53. Richards-Rios P, Fothergill J, Bernardeau M, Wigley P. Development of the ileal microbiota in three broiler breeds. Front Vet Sci. 2020;7:17.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Borda-Molina D, Vital M, Sommerfeld V, Rodehutscord M, Camarinha-Silva A. Insights into broilers’ gut microbiota fed with phosphorus, calcium, and phytase supplemented diets. Front Microbiol. 2016;7:2033.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li H, Limenitakis JP, Fuhrer T, Geuking MB, Lawson MA, Wyss M, et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun. 2015;6:8292.

    Article  CAS  PubMed  Google Scholar 

  56. Hansson GC. Mucins and the microbiome. Annu Rev Biochem. 2020;89:769–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen CH, Gobel TW, Kubota T, Cooper MD. T cell development in the chicken. Poult Sci. 1994;73:1012–8.

    Article  CAS  PubMed  Google Scholar 

  58. Lowenthal JW, Connick TE, McWaters PG, York JJ. Development of T cell immune responsiveness in the chicken. Immunol Cell Biol. 1994;72:115–22.

    Article  CAS  PubMed  Google Scholar 

  59. Toivanen P, Toivanen A, Good RA. Ontogeny of bursal function in chicken. 3. Immunocompletent cell for humoral immunity. J Exp Med. 1972;136:816–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen CH, Six A, Kubota T, Tsuji S, Kong FK, Göbel TW, et al. T cell receptors and T cell development. Curr Top Microbiol Immunol. 1996;212:37–53.

    CAS  PubMed  Google Scholar 

  61. Tang MS, Poles J, Leung JM, Wolff MJ, Davenport M, Lee SC, et al. Inferred metagenomic comparison of mucosal and fecal microbiota from individuals undergoing routine screening colonoscopy reveals similar differences observed during active inflammation. Gut Microbes. 2015;6:48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sonnenburg JL, Angenent LT, Gordon JI. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol. 2004;5:569–73.

    Article  CAS  PubMed  Google Scholar 

  63. Ennamorati M, Vasudevan C, Clerkin K, Halvorsen S, Verma S, Ibrahim S, et al. Intestinal microbes influence development of thymic lymphocytes in early life. Proc Natl Acad Sci USA. 2020;117:2570–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Legoux F, Bellet D, Daviaud C, El Morr Y, Darbois A, Niort K, et al. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science. 2019;366:494–9.

    Article  CAS  PubMed  Google Scholar 

  65. Zegarra-Ruiz DF, Kim DV, Norwood K, Kim M, Wu W-JH, Saldana-Morales FB, et al. Thymic development of gut-microbiota-specific T cells. Nature. 2021;594:413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kundu P, Blacher E, Elinav E, Pettersson S. Our gut microbiome: the evolving inner self. Cell. 2017;171:1481–93.

    Article  CAS  PubMed  Google Scholar 

  67. Hill DA, Hoffmann C, Abt MC, Du Y, Kobuley D, Kirn TJ, et al. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol. 2010;3:148–58.

    Article  CAS  PubMed  Google Scholar 

  68. Schwartz DJ, Langdon AE, Dantas G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med. 2020;12:82.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gao P, Ma C, Sun Z, Wang L, Huang S, Su X, et al. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome. 2017;5:91.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vicente-Dueñas C, Janssen S, Oldenburg M, Auer F, González-Herrero I, Casado-García A, et al. An intact gut microbiome protects genetically predisposed mice against leukemia. Blood. 2020;136:2003–17.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kawaguchi-Miyashita M, Shimizu K, Nanno M, Shimada S, Watanabe T, Koga Y, et al. Development and cytolytic function of intestinal intraepithelial T lymphocytes in antigen-minimized mice. Immunology. 1996;89:268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Imaoka A, Matsumoto S, Setoyama H, Okada Y, Umesaki Y. Proliferative recruitment of intestinal intraepithelial lymphocytes after microbial colonization of germ-free mice. Eur J Immunol. 1996;26:945–8.

    Article  CAS  PubMed  Google Scholar 

  73. Renz H, Brandtzaeg P, Hornef M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol. 2011;12:9–23.

    Article  PubMed  Google Scholar 

  74. Fulde M, Hornef MW. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol Rev. 2014;260:21–34.

    Article  CAS  PubMed  Google Scholar 

  75. Crhanova M, Hradecka H, Faldynova M, Matulova M, Havlickova H, Sisak F, et al. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar enteritidis infection. Infect Immun. 2011;79:2755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang H, Cai R, Zhang YH, Chen YY, Gu B. Gold nanoclusters as an antibacterial alternative against Clostridium difficile. Int J Nanomed. 2020;15:6401–8.

    Article  CAS  Google Scholar 

  77. Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, et al. Blautia-a new functional genus with potential probiotic properties? Gut Microbes. 2021;13:1–21.

    Article  PubMed  Google Scholar 

  78. Vaiserman AM, Koliada AK, Marotta F. Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res Rev. 2017;35:36–45.

    Article  CAS  PubMed  Google Scholar 

  79. Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, et al. Mining the human gut microbiota for immunomodulatory organisms. Cell. 2017;168:928–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koyama A, Wallenstein MD, Simpson RT, Moore JC. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Front Microbiol. 2014;5:516.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hitch TCA, Riedel T, Oren A, Overmann J, Lawley TD, Clavel T. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Commun. 2021;1:1–16.

    Article  Google Scholar 

  82. Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13:e1005752.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wise MG, Siragusa GR. Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. J Appl Microbiol. 2007;102:1138–349.

    CAS  PubMed  Google Scholar 

  84. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32172685), the National Key Research and Development Program of China (2022YFD1300400) and the 2115 Talent Development Program of China Agricultural University. Figure 1 was produced with BioRender.

Author information

Authors and Affiliations

Authors

Contributions

DL designed the project. YL carried out the experimental work and drafted the manuscript. MZ carried out bioinformatic analyses. YF, XY, ZL, PL and FW collected samples. All the other authors revised and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All the experiments were reviewed and approved by China Agricultural University Animal Care and Use Committee (statement no. AW30112202-1-1).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Feng, Y., Yang, X. et al. Mining chicken ileal microbiota for immunomodulatory microorganisms. ISME J 17, 758–774 (2023). https://doi.org/10.1038/s41396-023-01387-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01387-z

Search

Quick links