Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bacterial volatile organic compounds attenuate pathogen virulence via evolutionary trade-offs

Abstract

Volatile organic compounds (VOCs) produced by soil bacteria have been shown to exert plant pathogen biocontrol potential owing to their strong antimicrobial activity. While the impact of VOCs on soil microbial ecology is well established, their effect on plant pathogen evolution is yet poorly understood. Here we experimentally investigated how plant-pathogenic Ralstonia solanacearum bacterium adapts to VOC-mixture produced by a biocontrol Bacillus amyloliquefaciens T-5 bacterium and how these adaptations might affect its virulence. We found that VOC selection led to a clear increase in VOC-tolerance, which was accompanied with cross-tolerance to several antibiotics commonly produced by soil bacteria. The increasing VOC-tolerance led to trade-offs with R. solanacearum virulence, resulting in almost complete loss of pathogenicity in planta. At the genetic level, these phenotypic changes were associated with parallel mutations in genes encoding lipopolysaccharide O-antigen (wecA) and type-4 pilus biosynthesis (pilM), which both have been linked with outer membrane permeability to antimicrobials and plant pathogen virulence. Reverse genetic engineering revealed that both mutations were important, with pilM having a relatively larger negative effect on the virulence, while wecA having a relatively larger effect on increased antimicrobial tolerance. Together, our results suggest that microbial VOCs are important drivers of bacterial evolution and could potentially be used in biocontrol to select for less virulent pathogens via evolutionary trade-offs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the experimental design, where plant pathogenic Ralstonia solanacearum was evolved in the absence and presence of three VOC mixture concentrations in sealed flasks for 22 days with two-day serial transfers.
Fig. 2: Population density dynamics of plant pathogenic Ralstonia solanacearum in the absence and presence of three concentrations of volatile organic compound (VOC) mixture.
Fig. 3: Selection by volatile organic compounds (VOCs) leads to increased tolerance to both VOCs and antibiotics.
Fig. 4: Evolution of volatile organic compound (VOC)-tolerance leads to trade-off with Ralstonia solanacearum virulence.
Fig. 5: Evolution of volatile organic compounds (VOC)-tolerance leads to trade-off with Ralstonia solanacearum virulence.
Fig. 6: Volatile organic compounds (VOC)-tolerance is linked to parallel mutations in lipopolysaccharide and type-IV pilus encoding genes.
Fig. 7: Comparison of tolerance of evolved clones and ΔpilMiG and ΔwecAiC mutants to volatile organic compounds (VOC) and antibiotics.
Fig. 8: Comparison of virulence traits in vitro and in planta (disease index) of evolved clones and ΔpilMiG and ΔwecAiC mutants.

Data availability

The genome sequences of ancestral, No-VOC and H-VOC clones of Ralstonia solanacearum QL-Rs1115 are available at NCBI Sequence Read Archive (SRA) under the accession number SAMN29421919. The rest of the data are available in the article and its online supplementary material.

References

  1. Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 2018;12:1252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garbeva P, Weisskopf L. Airborne medicine: bacterial volatiles and their influence on plant health. N Phytol. 2020;226:32–43.

    Article  Google Scholar 

  3. Raza W, Wang J, Wu Y, Ling N, Wei Z, Huang Q, et al. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. Appl Microbiol Biotechnol. 2016;100:7639–50.

    Article  CAS  PubMed  Google Scholar 

  4. Raza W, Ling N, Liu D, Wei Z, Huang Q, Shen Q. Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol Res. 2016;192:103–13.

    Article  CAS  PubMed  Google Scholar 

  5. Tyc O, Zweers H, de Boer W, Garbeva P. Volatiles in inter-specific bacterial interactions. Front Microbiol. 2015;6:1412.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yuan J, Zhao M, Li R, Huang Q, Raza W, Rensing C, et al. Microbial volatile compounds alter the soil microbial community. Environ Sci Pollut Res. 2017;24:22485–93.

    Article  CAS  Google Scholar 

  7. Rajer FU, Wu H, Xie Y, Xie S, Raza W, Tahir HAS, et al. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology. 2017;163:523–30.

    Article  CAS  PubMed  Google Scholar 

  8. Toral L, Rodríguez M, Martínez-Checa F, Montaño A, Cortés-Delgado A, Smolinska A, et al. Identification of volatile organic compounds in extremophilic bacteria and their effective use in biocontrol of postharvest fungal phytopathogens. Front Microbiol. 2021;12:773092.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alpha CJ, Campos M, Jacobs-Wagner C, Strobel SA. Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environm Microbiol. 2015;81:1147–56.

    Article  Google Scholar 

  10. Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. Evol Appl. 2015;8:273–83.

    Article  PubMed  Google Scholar 

  11. Basra P, Alsaadi A, Bernal-Astrain G, O’Sullivan ML, Hazlett B, Clarke LM, et al. Fitness tradeoffs of antibiotic resistance in extraintestinal pathogenic Escherichia coli. Genome Biol Evol. 2018;10:667–79.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Raza W, Ling N, Yang L, Huang Q, Shen Q. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep. 2016c;6:24856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang D, Qiang R, Zhao J, Zhang J, Cheng J, Zhao D, et al. Mechanism of a volatile organic compound (6-methyl-2-heptanone) emitted from Bacillus subtilis ZD01 against Alternaria solani in potato. Front Microbiol. 2022;12:808337.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, et al. Bacterial wilt in China: history, current status, and future perspectives. Front Plant Sci. 2017;8:1549.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tan S, Dong Y, Liao H, Huang J, Song S, Xu Y, et al. Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. Pest Manag Sci. 2013;69:1245–52.

    Article  CAS  PubMed  Google Scholar 

  16. Wei Z, Yang XM, Yin SX, Shen Q, Ran W, Xu Y. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol. 2011;48:152–9.

    Article  Google Scholar 

  17. Kelman A. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology. 1954;44:693–5.

    Google Scholar 

  18. Gurney J, Brown SP, Kaltz O, Hochberg ME. Steering phages to combat bacterial pathogens. Trends Microbiol. 2020;28:85–94.

    Article  CAS  PubMed  Google Scholar 

  19. Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 2016;17:172.

    Article  Google Scholar 

  20. Chance B, Maehly AC. Assay of catalase and peroxidases. Methods Enzymol. 1955;2:764–75.

    Article  Google Scholar 

  21. Zhou Z, White KA, Polissi A, Georgopoulos C, Raetz CR. Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J Biol Chem. 1998;273:12466–75.

    Article  CAS  PubMed  Google Scholar 

  22. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Analy Chem. 1956;28:350–6.

    Article  CAS  Google Scholar 

  23. O’Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescensWCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 1998;28:449–61.

    Article  PubMed  Google Scholar 

  24. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol. 1962;15:473–97.

    Article  CAS  Google Scholar 

  25. Andrews S. FastQC: A quality control tool for high throughput sequence data. 2020. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  26. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.

    Article  Google Scholar 

  27. Sarovich DS, Price EP. SPANDx: a genomics pipeline for comparative analysis of large haploid whole genome re-sequencing datasets. BMC Res Notes. 2014;7:618.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Seemann T Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30:2068–9.

  29. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Greenrod STE, Stoycheva M, Elphinstone J, Friman VP. Genetically related Ralstonia solanacearum phytopathogenic bacteria carry similar insertion sequences. BioRxv. 2022. https://doi.org/10.1101/2022.07.16.500299

  31. Xie Z, Tang H. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics. 2017;33:3340–7.

    Article  CAS  PubMed  Google Scholar 

  32. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hawkey J, Hamidian M, Wick RR, Edwards DJ, Billman-Jacobe H, Hall RM, et al. ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genom. 2015;16:667.

    Article  Google Scholar 

  34. Zhang Y, Luo F, Wu D, Hikichi Y, Kiba A, Igarashi Y, et al. PrhN, a putative marR family transcriptional regulator, is involved in positive regulation of type III secretion system and full virulence of Ralstonia solanacearum. Front Microbiol. 2015;6:357.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994;145:69–73.

    Article  PubMed  Google Scholar 

  36. Hammer Ø, Harper DA, Ryan PD. PAST: paleontological statistical software package for education and data analysis. Palaeontol Electron. 2001;4:1–9.

    Google Scholar 

  37. van Overbeek LS, Eberl L, Givskov M, Molin S, van Elsas JD. Survival of, and induced stress resistance in, carbon-starved Pseudomonas fluorescence cells residing in soil. Appl Environ Microbiol. 1995;61:4202–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liao H, Li X, Yang Q, Bai Y, Cui P, Wen C, et al. Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol Biol Evol. 2021;38:2337–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barbosa da Costa N, Hébert MP, Fugère V, Terrat Y, Fussmann GF, Gonzalez A, et al. A glyphosate-based herbicide cross-selects for antibiotic resistance genes in bacterioplankton communities. mSystems 2022;7:e0148221.

    Article  PubMed  Google Scholar 

  40. Alderley CL, Greenrod STE, Friman VP. Plant pathogenic bacterium can rapidly evolve tolerance to an antimicrobial plant allelochemical. Evol Appl. 2021;15:735–50.

    Article  Google Scholar 

  41. Perrier A, Peyraud R, Rengel D, Barlet X, Lucasson E, Gouzy J, et al. Enhanced in planta fitness through adaptive mutations in EfpR, a dual regulator of virulence and metabolic functions in the plant pathogen Ralstonia solanacearum. PLoS Pathog. 2016;12:e1006044.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang X, Wei Z, Li M, Wang X, Shan A, Mei X, et al. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs. Evolution. 2017;71:733–46.

    Article  PubMed  Google Scholar 

  43. Vogwill T, MacLean RC. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl. 2015;8:284–95.

    Article  PubMed  Google Scholar 

  44. Bagel S, Hüllen V, Wiedemann B, Heisig P. Impact of gyrA and parC mutations on quinolone resistance, doubling time, and supercoiling degree of Escherichia coli. Antimicrob Agents Chemother. 1999;434:868–75.

    Article  Google Scholar 

  45. Olivares J, Alvarez-Ortega C, Linares JF, Rojo F, Köhler T, Martínez JL. Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol. 2012;148:1968–81.

    Article  Google Scholar 

  46. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, et al. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature. 2002;415:497–502.

    Article  CAS  PubMed  Google Scholar 

  47. Lehrer J, Vigeant KA, Tatar LD, Valvano MA. Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. J Bacteriol. 2007;189:2618–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Delcour AH. Outer membrane permeability and antibiotic resistance. BBA. 2009;1794:808–16.

    CAS  PubMed  Google Scholar 

  49. Wang J, Ma W, Fang Y, Liang H, Yang H, Wang Y, et al. Core oligosaccharide portion of lipopolysaccharide plays important roles in multiple antibiotic resistance in Escherichia coli. Antimicrob Agents Chemother. 2021;65:e00341–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother. 2005;49:2474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nandi S, Swanson S, Tomberg J, Nicholas RA. Diffusion of antibiotics through the PilQ secretin in Neisseria gonorrhoeae occurs through the immature, sodium dodecyl sulfate-labile form. J Bacteriol. 2015;197:1308–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O’Brien TJ, Figueroa W, Welch M. Decreased efficacy of antimicrobial agents in a polymicrobial environment. ISME J. 2022;16:1694–704.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Karuppiah V, Derrick JP. Structure of the PilM-PilN inner membrane type IV pilus biogenesis complex from Thermus thermophilus. J Biol Chem. 2011;286:24434–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gilbreath JJ, Colvocoresses Dodds J, Rick PD, Soloski MJ, Merrell DS. Enterobacterial common antigen mutants of Salmonella enterica serovar Typhimurium establish a persistent infection and provide protection against subsequent lethal challenge. Infect Immun. 2012;80:441–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jurcisek J, Greiner L, Watanabe H, Zaleski A, Apicella MA, Bakaletz LO. Role of sialic acid and complex carbohydrate biosynthesis in biofilm formation by nontypeable Haemophilus influenzae in the chinchilla middle ear. Infect Immun. 2005;73:3210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi W, Sun H. Type IV pilus-dependent motility and its possible role in bacterial pathogenesis. Infect Immun. 2002;70:1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Allen C, Gay J, Simon-Buela L. A regulatory locus, pehSR, controls polygalacturonase production and other virulence functions in Ralstonia solanacearum. Mol Plant Microbe Interact. 1997;10:1054–64.

    Article  CAS  PubMed  Google Scholar 

  58. Narulita E, Addy HS, Kawasaki T, Fujie M, Yamada T. The involvement of the PilQ secretin of type IV pili in phage infection in Ralstonia solanacearum. Biochem Biophys Res Commun. 2016;469:868–72.

    Article  CAS  PubMed  Google Scholar 

  59. Clough SJ, Lee KE, Schell MA, Denny TP. A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester. J Bacteriol. 1997;179:3639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Razavi M, Kristiansson E, Flach CF, Larsson DGJ. The association between insertion sequences and antibiotic resistance genes. mSphere. 2020;5:e00418–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang X, Wei Z, Yang K, Wang JN, Jousset A, Xu YC, et al. Phage combination therapies for bacterial wilt disease in tomato. Nat Biotechnol. 2019;37:1513–20.

    Article  CAS  PubMed  Google Scholar 

  62. Raza W, Mei X, Wei Z, Ling N, Yuan J, Wang J, et al. Profiling of soil volatile organic compounds after long-term application of inorganic, organic and organic-inorganic mixed fertilizers and their effect on plant growth. Sci Total Environ. 2017;607-608:326–38.

    Article  CAS  PubMed  Google Scholar 

  63. Loftie-Eaton W, Bashford K, Quinn H, Dong K, Millstein J, Hunter S, et al. Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nat Ecol Evol. 2017;1:1354–63.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Raza W, Wei Z, Jousset A, Qirong S, Friman VP. Extended plant metarhizobiome: understanding volatile organic compound signaling in plant-microbe metapopulation networks. mSystems. 2021;6:e00849–21.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Raza W, Wang J, Jousset A, Friman VP, Wang S, Wei Z, et al. Bacterial community richness shifts the balance between volatile organic compound-mediated microbe–pathogen and microbe–plant interactions. Proc R Soc B. 2020;287:20200403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alseth EO, Pursey E, Luján AM, McLeod I, Rollie C, Westra ER. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature. 2019;574:549–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bottery MJ, Pitchford JW, Friman VP. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 42090064, 42090062, 42007038, 31972504, 32170180, 42277113, 41922053) to ZW, GJ and QS, and the National Key Research and Development Program of China (No. 2018YFD1000800), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (No. 838710-ReproDev to WR), the Royal Society (No. RSG\R1\180213 and No. CHL\R1\180031 to VPF) and jointly by a grant from UKRI, Defra, and the Scottish Government, under the Strategic Priorities Fund Plant Bacterial Diseases Programme (No. BB/T010606/1 to VPF), the Natural Science Foundation of Jiangsu Province (No. BK20190518), the Fundamental Research Funds for the Central Universities (grant no. XUEKEN2022025), and the Jiangxi Branch of China National Tobacco Corporation, China (grant no. 2021.01.010).

Author information

Authors and Affiliations

Authors

Contributions

WR, ZW, AJ, VPF and SQ conceived the study and designed the experiments; WR, ZY and JW performed the evolution experiment and in vitro and in planta assays; BF and SG performed the variant calling analysis; GJ, ZY and JW performed the reverse-genetics experiment; WR, GJ, BF and VPF wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Waseem Raza, Ville-Petri Friman or Zhong Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Raza, W., Jiang, G. et al. Bacterial volatile organic compounds attenuate pathogen virulence via evolutionary trade-offs. ISME J 17, 443–452 (2023). https://doi.org/10.1038/s41396-023-01356-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01356-6

Search

Quick links