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The sensitivity of reef-building coral to elevated temperature is a function of their symbiosis with dinoflagellate algae in the family
Symbiodiniaceae. Changes in the composition of the endosymbiont community in response to thermal stress can increase coral
thermal tolerance. Consequently, this mechanism is being investigated as a human-assisted intervention for rapid acclimation of
coral in the face of climate change. Successful establishment of novel symbioses that increase coral thermal tolerance have been
demonstrated in laboratory conditions; however, it is unclear how long these heterologous relationships persist in nature. Here, we
test the persistence of a novel symbiosis between Acropora palmata and Durusdinium spp. from Mote Marine Laboratory’s ex situ
nursery by outplanting clonal replicates (ramets) of five A. palmata host genotypes to natural reefs in the lower Florida Keys.
Amplicon sequencing analysis of ITS2-type profiles revealed that the majority of surviving ramets remained dominated by
Durusdinium spp. two years after transplantation. However, 15% of ramets, including representatives of all genotypes, exhibited
some degree of symbiont shuffling or switching at six of eight sites, including complete takeover by site-specific strains of the
native symbiont, Symbiodinium fitti. The predominant long-term stability of the novel symbiosis supports the potential effectiveness
of symbiont modification as a management tool. Although, the finding that 6–7 year-old coral can alter symbiont community
composition in the absence of bleaching indicates that Symbiodiniaceae communities are indeed capable of great flexibility under
ambient conditions.
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Increasingly frequent and severe thermal stress events are the
predominant threat to reef ecosystems in the Anthropocene.
Thermal stress perturbs the photosynthetic mechanism and can
result in loss or expulsion of the dinoflagellate algae in the process
known as bleaching [1]. While persistent bleaching can result in
coral death due to the loss of autotrophic carbon contributed by
the symbionts [2], bleaching can also precipitate an acclimatory
change in the composition of the endosymbiont community that
can subsequently increase coral thermal tolerance [3, 4]. For coral
hosting multiple symbiont types, changes in their relative
abundance, or “shuffling”, can facilitate survival and recovery [3].
The ability for adult coral to acquire completely new symbiont
types following bleaching was also recently confirmed [5].
Although this capacity for flexibility is not universal [6], is
influenced by environmental cues, and physiological trade-offs
[7], symbiont shuffling and/or switching has been proposed as an
important target for human-assisted evolution [8]. Successful
establishment of novel symbioses that increase bleaching
tolerance have been demonstrated in laboratory conditions [9];
however, it is unclear how long these heterologous relationships
persist, especially in natural reef environments. In an essential test
of the utility of this approach, we investigate the long-term
stability of a heterologous coral symbiosis in the context of reef
restoration.

Acropora palmata were once one of the dominant habitat
builders of shallow Caribbean reefs [10]. Unprecedented demo-
graphic declines since the mid-1970’s have resulted in extensive
propagation efforts in both land and ocean-based nursery systems
to maintain existing genetic diversity and produce biomass for
outplanting efforts aimed at restoring ecosystem structure and
function [11]. Naturally occurring populations of A. palmata are
highly specific in their symbiosis with Symbiodinium fitti, formerly
ITS2-type A3 [12, 13]. Single nucleotide polymorphism genotyping
of ex situ nursery-reared lines of A. palmata, and work by Gantt
et al. (in press) [14] revealed the dominance of Durusdinium
spp. and presence of Cladocopium in Mote A. palmata genotypes
(Fig. S1A, Supplementary Methods, GenBank Accessions:
ON455821–ON455829) [14]. This provided a unique opportunity
to test the maintenance of this heterologous symbiotic relation-
ship after outplanting back to the reef environment.
In April 2018, we transplanted three clonal replicates (ramets) of

five exclusively ex situ nursery-reared A. palmata genotypes to
nine reefs in the lower Florida Keys (n= 27 ramets per genet) to
evaluate the long-term stability of the Durusdinium association on
natural reefs using periodic phenotypic monitoring and ITS2
amplicon sequencing for symbiont typing using the SymPortal
pipeline [15] (Supplementary Methods, Fig. 1). A random sub-
sampling of 10–12 ramets per genet confirmed that no
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Symbiodinium fitti were detectable prior to outplanting in most
genotypes (Supplementary Results, Supplementary Table 3 and
Supplementary Fig. 2 and Fig. 2A). Four genets were exclusively
dominated by a Durusdinium ITS2 type, whereas genet 13-XK
showed consistent co-infection with a Cladocopium ITS2 type
composed of three co-occurring C1 amplicon sequence variants at
T0 (Fig. 2A). Four sequence variants (0.1% of reads) matching to an
S. fitti type were identified in one ramet of genet 13-XK at T0
(Supplementary Table 3). An ordination of T0 samples confirmed a
significant effect of genotype (p < 0.001) with 13-XK driving
divergence (Fig. 2B).
No bleaching was observed during quarterly site visits, but

site-specific mortality was evident, with 100% ramet mortality at
Bahia Honda following 18 months (Supplementary Methods,
Table S2). At the remaining eight sites, Durusdinium remained
the dominant ITS2 profile after 2 years of outplanting
(T24, Fig. 2B, C). Surviving co-infected 13-XK ramets also shuffled
to Durusdinium dominance across sites (Fig. 2C) and a
PERMANOVA confirmed genotype was no longer a significant
factor (p= 0.764). Novel symbiont types were detected at T24,
with site-specific patterns (PERMANOVA, p < 0.031, Fig. 2C,
Supplementary Table 3 and Supplementary Fig. 3). The
homologous symbiont Symbiodinium fitti (A3) was observed at
four sites, with ITS2-type profiles indicating potential sub-
species or strain-level differences between Dave’s Ledge,
Eastern Dry Rocks, Looe Key, and Maryland Shoals (Fig. 2C and
Supplementary Table 3). Two ramets of 13-X7 acquired
Cladocopium types which were unobserved at T0, including
one apparently novel strain (C66) although their relative
abundance remained low (Fig. 2C and Supplementary Table 3).
A Gerakladium (G) type profile was also detected in ramets of

two different genets at two different sites, also at low relative
abundance (Fig. 2C and Supplementary Table 3).
The general long-term stability of the heterologous symbiosis

between A. palmata and Durusdinium spp. on natural reefs
supports the potential effectiveness of symbiont modification as a
management intervention, although the ethical implications and
long-term ramifications remain to be considered. Infection of coral
larvae from mass spawning events with thermally tolerant
symbionts and outplanting them to degraded reefs could also
be a restoration tool [16]. However, the occasional (re)acquisition
of homologous, site-specific strains of Symbiodinium fitti indicates
that the temporal dynamics of symbiosis establishment in coral
may be more complicated than previously thought. While corals
can uptake symbionts in their larval phase, the current consensus
is that the majority of symbionts are acquired after settlement.
New recruits and juvenile corals can form a variety of novel
symbiont associations [17], but this diversity is generally pruned to
one numerically dominant taxon per genus over the first few years
of life [18]. Consensus suggests that changes to the dominant
symbiont taxon in adult coral occur in response to bleaching-level
stress with reversion to the dominant symbiont profile in the
absence of bleaching stress [3, 5, 19].
The A. palmata used in this study were produced using

individual larvae from batch crosses in 2013/14. Although
physically small, at the time of outplanting, experimental ramets
were 4–5 years old, which under field conditions is the age of
sexual maturity for this species [20]. The finding that adult corals
can shuffle or switch their symbionts in situ in the absence of
bleaching suggests that acquisition and winnowing may be
dependent on other factors rather than a simple age-dependent
process. It is also possible that Symbiodiniaceae communities are

Fig. 1 Experimental setup showing genotypes subsampled at time point 0 (T0), the locations of outplanting sites, the locations of water
quality monitoring stations, and the genotype array strategy at each site. All surviving corals were sampled at time point 24 (T24).
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indeed capable of greater flexibility under ambient conditions
[21]. However, the stability of the heterologous symbiosis in most
individuals suggests that infection with a novel symbiont type as a
recruit and maintenance till maturity could produce a stable
symbiosis.
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