Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemolithoautotroph distributions across the subsurface of a convergent margin

Abstract

Subducting oceanic crusts release fluids rich in biologically relevant compounds into the overriding plate, fueling subsurface chemolithoautotrophic ecosystems. To understand the impact of subsurface geochemistry on microbial communities, we collected fluid and sediments from 14 natural springs across a ~200 km transect across the Costa Rican convergent margin and performed shotgun metagenomics. The resulting 404 metagenome-assembled genomes (MAGs) cluster into geologically distinct regions based on MAG abundance patterns: outer forearc-only (25% of total relative abundance), forearc/arc-only (38% of total relative abundance), and delocalized (37% of total relative abundance) clusters. In the outer forearc, Thermodesulfovibrionia, Candidatus Bipolaricaulia, and Firmicutes have hydrogenotrophic sulfate reduction and Wood-Ljungdahl (WL) carbon fixation pathways. In the forearc/arc, Anaerolineae, Ca. Bipolaricaulia, and Thermodesulfovibrionia have sulfur oxidation, nitrogen cycling, microaerophilic respiration, and WL, while Aquificae have aerobic sulfur oxidation and reverse tricarboxylic acid carbon fixation pathway. Transformation-based canonical correspondence analysis shows that MAG distribution corresponds to concentrations of aluminum, iron, nickel, dissolved inorganic carbon, and phosphate. While delocalized MAGs appear surface-derived, the subsurface chemolithoautotrophic, metabolic, and taxonomic landscape varies by the availability of minerals/metals and volcanically derived inorganic carbon. However, the WL pathway persists across all samples, suggesting that this versatile, energy-efficient carbon fixation pathway helps shape convergent margin subsurface ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: General convergent margin geological structure and sample sites spanning the Costa Rican convergent margin.
Fig. 2: Heatmap of metagenomic read recruitment to each MAG and hierarchical clustering based on Spearman rank correlations between MAGs (vertical clusters) and sample sites (horizontal clusters) shows the separation of MAGs into those found mostly in the forearc/arc, the outer forearc, or delocalized across geological provinces.
Fig. 3: Average read abundance (GCPM) per site of MAGs with metabolic pathways for redox reactions and carbon fixation pathways.
Fig. 4: Nitrogen, sulfur, and hydrogen cycling pathways in MAGs with carbon fixation pathways from the outer forearc and the forearc/arc.
Fig. 5: Transformation-based canonical correspondence analysis showing variables most closely correlated with MAG abundance distribution at each site and site distribution of each MAG (scaling = 2).
Fig. 6: Schematic cross-section (to scale) of the 3D distribution of subsurface microbial communities and their metabolisms across the Costa Rica convergent margin, showing a shallowing of potential habitable area from the outer forearc to the arc.

Data availability

Metagenomic data are available in the NCBI SRA with project ID PRJNA627197. All MAGs analyzed in this study are also included under the same BioProject. BioSample accessions for each MAG are included in Supplementary Table S1. The full environmental dataset along with the R scripts for this analysis is available at https://github.com/TJrogers86/Costa-Rica-2017.git and released as a permanent version (v1.0.0) using Zenodo under https://doi.org/10.5281/zenodo.6259294.

References

  1. Kelemen PB, Manning CE. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci USA. 2015;112:E3997–4006.

    Article  CAS  Google Scholar 

  2. Vitale Brovarone A, Sverjensky DA, Piccoli F, Ressico F, Giovannelli D, Daniel I. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nat Commun. 2020;11:1–1.

    Article  Google Scholar 

  3. Harris RN, Wang K. Thermal models of the middle America trench at the Nicoya Peninsula, Costa Rica. Geophys Res Lett. 2002;29:6–1.

    Article  Google Scholar 

  4. Plümper O, King HE, Geisler T, Liu Y, Pabst S, Savov IP, et al. Subduction zone forearc serpentinites as incubators for deep microbial life. Proc Natl Acad Sci USA. 2017;114:4324–9.

    Article  Google Scholar 

  5. Lee H, Fischer TP, de Moor JM, Sharp ZD, Takahata N, Sano Y. Nitrogen recycling at the Costa Rican subduction zone: the role of incoming plate structure. Sci Rep. 2017;7:1–10.

    Google Scholar 

  6. Stern RJ. Subduction zones. Rev Geophys. 2002;40:3–38.

    Article  Google Scholar 

  7. Fullerton KM, Schrenk MO, Yücel M, Manini E, Basili M, Rogers TJ, et al. Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin. Nat Geosci. 2021;14:301–6.

    Article  CAS  Google Scholar 

  8. Barry PH, de Moor JM, Giovannelli D, Schrenk M, Hummer DR, Lopez T, et al. Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature. 2019;568:487–92.

    Article  CAS  Google Scholar 

  9. Moore EK, Jelen BI, Giovannelli D, Raanan H, Falkowski PG. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat Geosci. 2017;10:629–36.

    Article  CAS  Google Scholar 

  10. Barnes JD, Cullen J, Barker S, Agostini S, Penniston-Dorland S, Lassiter JC, et al. The role of the upper plate in controlling fluid-mobile element (Cl, Li, B) cycling through subduction zones: Hikurangi forearc, New Zealand. Geosphere. 2019;15:642–58.

    Article  Google Scholar 

  11. Clift P, Vannucchi P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev Geophys. 2004;42:1–31.

    Article  Google Scholar 

  12. Rüpke LH, Morgan JP, Hort M, Connolly JA. Serpentine and the subduction zone water cycle. Earth Planet Sci Lett. 2004;223:17–34.

    Article  Google Scholar 

  13. Carr MJ, Feigenson MD, Bennett EA. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contrib Miner Pet. 1990;105:369–80.

    Article  CAS  Google Scholar 

  14. Gazel E, Carr MJ, Hoernle K, Feigenson MD, Szymanski D, Hauff F, et al. Galapagos‐OIB signature in southern Central America: mantle refertilization by arc–hot spot interaction. Geochem Geophys Geosyst. 2009;10:1–32.

    Article  Google Scholar 

  15. Trembath-Reichert E, Butterfield DA, Huber JA. Active subseafloor microbial communities from Mariana back-arc venting fluids share metabolic strategies across different thermal niches and taxa. ISME J. 2019;13:2264–79. https://doi.org/10.1038/s41396-019-0431-y.

  16. Power JF, Carere CR, Lee CK, Wakerley GL, Evans DW, Button M, et al. Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun. 2018;9:1–2.

    Article  CAS  Google Scholar 

  17. Acocella V, Spinks K, Cole J, Nicol A. Oblique back arc rifting of Taupo Volcanic zone. NZ Tecton. 2003;22:1–18.

    Google Scholar 

  18. Curtis AC, Wheat CG, Fryer P, Moyer CL. Mariana forearc serpentinite mud volcanoes harbor novel communities of extremophilic archaea. Geomicrobiol J. 2013;30:430–41.

    Article  Google Scholar 

  19. Inskeep WP, Jay ZJ, Herrgard MJ, Kozubal MA, Rusch DB, Tringe SG, et al. Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front Microbiol. 2013;4:1–21.

    Article  Google Scholar 

  20. Colman DR, Lindsay MR, Amenabar MJ, Boyd ES. The intersection of geology, geochemistry, and microbiology in continental hydrothermal systems. Astrobiology. 2019;19:1505–22.

    Article  CAS  Google Scholar 

  21. Inskeep WP, Jay ZJ, Tringe SG, Herrgård MJ, Rusch DB, YNP Metagenome Project Steering Committee and Working Group Members. The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front Microbiol. 2013;4:1–15.

    Article  Google Scholar 

  22. Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, et al. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PloS One. 2013;8:1–15.

    Google Scholar 

  23. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  Google Scholar 

  24. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    Article  CAS  Google Scholar 

  25. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TB, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.

    Article  CAS  Google Scholar 

  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    Article  CAS  Google Scholar 

  27. Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ Microbiol. 2017;19:459–74.

    Article  CAS  Google Scholar 

  28. Probst AJ, Ladd B, Jarett JK, Geller-McGrath DE, Sieber CM, Emerson JB, et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat Microbiol. 2018;3:328–36.

    Article  CAS  Google Scholar 

  29. He C, Keren R, Whittaker M, Farag IF, Doudna J, Cate JH, et al. Genome-resoled metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat. Microbiol. 2021;6:354–65.

    Article  CAS  Google Scholar 

  30. Grettenberger CL, Hamilton TL. Metagenome-assembled genomes of novel taxa from an acid mine drainage environment. Appl Environ Microbiol. 2021;87:e0077221. https://doi.org/10.1101/2020.07.02.185728.

  31. Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP–a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:1–3.

    Article  Google Scholar 

  32. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    Article  CAS  Google Scholar 

  33. Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37. https://doi.org/10.3389/fmicb.2020.00037.

  34. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.

    Article  CAS  Google Scholar 

  35. Graham ED, Heidelberg JF, Tully BJ. Potential for primary productivity in a globally distributed bacterial phototroph. ISME J. 2018;12:1861–6.

    Article  CAS  Google Scholar 

  36. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–27.

    CAS  Google Scholar 

  37. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, et al. Autotrophic carbon fixation in archaea. Nat Rev Microbiol. 2010;8:447–60.

    Article  CAS  Google Scholar 

  38. Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol. 2011;77:1925–36.

    Article  CAS  Google Scholar 

  39. Youssef NH, Farag IF, Hahn CR, Jarett J, Becraft E, Eloe-Fadrosh E, et al. Genomic characterization of candidate division LCP-89 reveals an atypical cell wall structure, microcompartment production, and dual respiratory and fermentative capacities. Appl Environ Microbiol. 2019;85:1–19.

    Article  Google Scholar 

  40. Nigro LM, King GM. Disparate distributions of chemolithotrophs containing form IA or IC large subunit genes for ribulose-1, 5-bisphosphate carboxylase/oxygenase in intertidal marine and littoral lake sediments. FEMS Microbiol Ecol. 2007;60:113–25.

    Article  CAS  Google Scholar 

  41. Aminuddin M, Nicholas DJ. Electron transfer during sulphide and sulphite oxidation in Thiobacillus denitrificans. Microbiology. 1974;82:115–23.

    Google Scholar 

  42. Giovannelli D, Sievert SM, Hügler M, Markert S, Becher D, Schweder T, et al. Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans. eLife. 2017;6:1–31.

    Article  Google Scholar 

  43. Nakagawa S, Shataih Z, Banta A, Beveridge TJ, Sako Y, Reysenbach AL. Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum. Int J Syst Evol Microbiol. 2005;55:2263–8.

    Article  CAS  Google Scholar 

  44. Leclerque A, Kleespies RGA. Rickettsiella bacterium from the hard tick, Ixodes woodi: molecular taxonomy combining multilocus sequence typing (MLST) with significance testing. PLoS One. 2012;7:e38062. https://doi.org/10.1371/journal.pone.0038062.

  45. Quatrini R, Johnson DB. Acidithiobacillus ferrooxidans. Trends Microbiol. 2019;27:282–3.

    Article  CAS  Google Scholar 

  46. Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the ammonia‐oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.

    Article  CAS  Google Scholar 

  47. Chen CY, Chen PC, Weng FC, Shaw GT, Wang D. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change. PLoS One. 2017;12:e0181427. https://doi.org/10.1371/journal.pone.0181427.

  48. Garcia R, Müller R. The family Myxococcaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin: Springer; 2014. p. 191–212.

  49. Garcia R, Müller R. Simulacricoccus ruber gen. nov., sp. nov., a microaerotolerant, non-fruiting, myxospore-forming soil myxobacterium and emended description of the family Myxococcaceae. Int J Syst Evol Microbiol. 2018;68:3101–10.

    Article  CAS  Google Scholar 

  50. Iino T. The family Ignavibacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: other major lineages of bacteria and the archaea. New York, NY: Springer Science + Business Media; 2014. p. 701–3.

  51. Petrie L, North NN, Dollhopf SL, Balkwill DL, Kostka JE. Enumeration and characterization of iron (III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium (VI). Appl Environ Microbiol. 2003;69:7467–79.

    Article  CAS  Google Scholar 

  52. Fincker M, Huber JA, Orphan VJ, Rappé MS, Teske A, Spormann AM. Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environ Microbiol. 2020;22:3188–204.

    Article  CAS  Google Scholar 

  53. Chen YJ, Leung PM, Wood JL, Bay SK, Hugenholtz P, Kessler AJ, et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021;15:2986–3004.

    Article  CAS  Google Scholar 

  54. Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, et al. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. ISME J. 2021;15:3159–80.

    Article  CAS  Google Scholar 

  55. Kim M, Wilpiszeski RL, Wells M, Wymore AM, Gionfriddo CM, Brooks SC, et al. Metagenome-assembled genome sequences of novel prokaryotic species from the mercury-contaminated East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Microbiol Resour Announc. 2021;10:e00153–21. https://doi.org/10.1128/MRA.00153-21.

  56. Santos‐Júnior CD, Logares R, Henrique‐Silva F. Microbial population genomes from the Amazon River reveal possible modulation of the organic matter degradation process in tropical freshwaters. Mol Ecol. 2022;31:206–19.

    Article  Google Scholar 

  57. Yamada T, Sekiguchi Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘subphylum I’ with natural and biotechnological relevance. Microbes Environ. 2009;24:205–16.

    Article  Google Scholar 

  58. Sheik CS, Reese BK, Twing KI, Sylvan JB, Grim SL, Schrenk MO, et al. Identification and removal of contaminant sequences from ribosomal gene databases: lessons from the census of deep life. Front Microbiol. 2018;9:840. https://doi.org/10.3389/fmicb.2018.00840.

  59. Doughari HJ, Ndakidemi PA, Human IS, Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 2011;26:101–12.

    Article  Google Scholar 

  60. Han XY, Han FS, Segal J. Chromobacterium haemolyticum sp. nov., a strongly haemolytic species. Int J Syst Evol Microbiol. 2008;58:1398–403.

    Article  CAS  Google Scholar 

  61. Lau MC, Kieft TL, Kuloyo O, Linage-Alvarez B, Van Heerden E, Lindsay MR, et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc Natl Acad Sci USA. 2016;113:E7927–36.

    Article  CAS  Google Scholar 

  62. Momper L, Jungbluth SP, Lee MD, Amend JP. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME J. 2017;11:2319–33.

    Article  CAS  Google Scholar 

  63. Worzewski T, Jegen M, Kopp H, Brasse H, Taylor Castillo W. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat Geosci. 2011;4:108–11.

    Article  CAS  Google Scholar 

  64. Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E. Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology. 2004;32:201–4.

    Article  CAS  Google Scholar 

  65. Simpson DR. Aluminum phosphate variants of feldspar. Am Miner. 1977;62:351–5.

    CAS  Google Scholar 

  66. London DA, Cerny P, Loomis J, Pan JJ. Phosphorus in alkali feldspars of rare-element granitic pegmatites. Can Miner. 1990;28:771–86.

    CAS  Google Scholar 

  67. Petrillo C, Castaldi S, Lanzilli M, Selci M, Cordone A, Giovannelli D, et al. Genomic and physiological characterization of Bacilli isolated from salt-pans with plant growth promoting features. Front Microbiol. 2021;12:715678. https://doi.org/10.3389/fmicb.2021.715678.

  68. Ghiorse WC, Wilson JT. Microbial ecology of the terrestrial subsurface. Adv Appl Microbiol. 1988;33:107–72.

    Article  CAS  Google Scholar 

  69. Barker WW, Welch SA, Chu S, Banfield JF. Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Miner. 1998;83:1551–63.

    Article  CAS  Google Scholar 

  70. Bennett PC, Rogers JR, Choi WJ, Hiebert FK. Silicates, silicate weathering, and microbial ecology. Geomicrobiol J. 2001;18:3–19.

    Article  CAS  Google Scholar 

  71. Hügler M, Sievert SM. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Ann Rev Mar Sci. 2011;3:261–89.

    Article  Google Scholar 

  72. Markert S, Arndt C, Felbeck H, Becher D, Sievert SM, Hügler M, et al. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science. 2007;315:247–50.

    Article  CAS  Google Scholar 

  73. Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. J Exp Bot. 2012;63:2325–42.

    Article  CAS  Google Scholar 

  74. Stevens TO, McKinley JP. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science. 1995;270:450–5.

    Article  CAS  Google Scholar 

  75. Barker WW, Welch SA, Banfield JF. Biogeochemical weathering of silicate minerals. Rev Miner Geochem. 1997;35:391–428.

    CAS  Google Scholar 

  76. Frank YA, Kadnikov VV, Lukina AP, Banks D, Beletsky AV, Mardanov AV, et al. Characterization and genome analysis of the first facultatively alkaliphilic Thermodesulfovibrio isolated from the deep terrestrial subsurface. Front Microbiol. 2016;7:2000. https://doi.org/10.3389/fmicb.2016.02000.

  77. Woycheese KM, Meyer-Dombard DA, Cardace D, Argayosa AM, Arcilla CA. Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines). Front Microbiol. 2015;6:1–12.

    Article  Google Scholar 

  78. Brazelton WJ, Morrill PL, Szponar N, Schrenk MO. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl Environ Microbiol. 2013;79:3906–16.

    Article  CAS  Google Scholar 

  79. Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, et al. Desulfotomaculum and Methanobacterium spp. dominate a 4-to 5-kilometer-deep fault. Appl Environ Microbiol. 2005;71:8773–83.

    Article  CAS  Google Scholar 

  80. Schwarzenbach EM, Gill BC, Gazel E, Madrigal P. Sulfur and carbon geochemistry of the Santa Elena peridotites: comparing oceanic and continental processes during peridotite alteration. Lithos. 2016;252:92–108.

    Article  Google Scholar 

  81. Sánchez‐Murillo R, Gazel E, Schwarzenbach EM, Crespo‐Medina M, Schrenk MO, Boll J, et al. Geochemical evidence for active tropical serpentinization in the Santa Elena Ophiolite, Costa Rica: an analog of a humid early Earth? Geochem Geophys Geosyst. 2014;15:1783–800.

    Article  Google Scholar 

  82. Crespo-Medina M, Twing KI, Sánchez-Murillo R, Brazelton WJ, McCollom TM, Schrenk MO. Methane dynamics in a tropical serpentinizing environment: the Santa Elena Ophiolite, Costa Rica. Front Microbiol. 2017;8:916. https://doi.org/10.3389/fmicb.2017.00916.

  83. DeShon HR, Schwartz SY. Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica. Geophys Res Lett. 2004;31. https://doi.org/10.1029/2004GL021179.

  84. Delmelle P, Stix J. Volcanic gases. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J, editors. Encyclopedia of volcanoes. New York, NY: Elsevier; 2000. p 803–15.

  85. Kharaka YK, Mariner RH. Geothermal systems. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J, editors. Encyclopedia of volcanoes. New York, NY: Elsevier; 2000. p. 817–34.

  86. Badger MR, Bek EJ. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot. 2008;59:1525–41.

    Article  CAS  Google Scholar 

  87. West-Roberts JA, Carnevali PB, Scholmerich MC, Al-Shayeb B, Thomas A, Sharrar AM, et al. The Chloroflexi supergroup is metabolically diverse and representatives have novel genes for non-photosynthesis based CO2 fixation. bioRxiv [Preprint]. 2021. Available from: https://doi.org/10.1101/2020.05.14.094862.

  88. Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems. 2018;3:1–12.

    Article  Google Scholar 

  89. Colman DR, Lindsay MR, Boyd ES. Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat Commun. 2019;10:1–3.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Biology Meets Subduction Project, funded by the Alfred P. Sloan Foundation and the Deep Carbon Observatory (G-2016-7206) to PHB, JMdM, DG, and KGL, with DNA sequencing from the Census of Deep Life. Additional support came from NSF FRES (Award# 21211637) to PHB, JMdM and KGL. U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomic Science Program (DE-SC0020369 to KGL) and FONDECYT Grant 11191138 (ANID Chile) and COPAS COASTAL ANID FB210021 to GLJ. DG, AC, and MS were partially supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program Grant Agreement No. 948972—COEVOLVE—ERC-2020-STG.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and funding acquisition were performed by PHB, JMdM, DG and KGL. Investigations and data acquisition were performed by TJR, KGL, DG, JB, GLJ, MOS, JAF, JMdM, CR, PHB, MY, MS, and AC. TJR performed data analysis, visualization, and drafted the paper with edits and feedback of from KGL, DG, JB, GLJ, MOS, JAF, JMdM, CR, PHB, MY, MS, and AC.

Corresponding author

Correspondence to Karen G. Lloyd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rogers, T.J., Buongiorno, J., Jessen, G.L. et al. Chemolithoautotroph distributions across the subsurface of a convergent margin. ISME J 17, 140–150 (2023). https://doi.org/10.1038/s41396-022-01331-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-022-01331-7

Search

Quick links