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Metabolic genes on conjugative plasmids are highly prevalent
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Conjugative plasmids often encode antibiotic resistance genes that provide selective advantages to their bacterial hosts during
antibiotic treatment. Previous studies have predominantly considered these established genes as the primary benefit of antibiotic-
mediated plasmid dissemination. However, many genes involved in cellular metabolic processes may also protect against antibiotic
treatment and provide selective advantages. Despite the diversity of such metabolic genes and their potential ecological impact,
their plasmid-borne prevalence, co-occurrence with canonical antibiotic resistance genes, and phenotypic effects remain widely
understudied. To address this gap, we focused on Escherichia coli, which can often act as a pathogen, and is known to spread
antibiotic resistance genes via conjugation. We characterized the presence of metabolic genes on 1,775 transferrable plasmids and
compared their distribution to that of known antibiotic resistance genes. We found high abundance of genes involved in cellular
metabolism and stress response. Several of these genes demonstrated statistically significant associations or disassociations with
known antibiotic resistance genes at the strain level, indicating that each gene type may impact the spread of the other across
hosts. Indeed, in vitro characterization of 13 statistically relevant metabolic genes confirmed that their phenotypic impact on
antibiotic susceptibility was largely consistent with in situ relationships. These results emphasize the ecological importance of
metabolic genes on conjugal plasmids, and that selection dynamics of E. coli pathogens arises as a complex consequence of both
canonical mechanisms and their interactions with metabolic pathways.
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INTRODUCTION
Horizontal gene transfer (HGT), specifically plasmid conjugation, plays
a major role in microbial ecology and evolution as a dominant way
that bacteria can rapidly adapt to their environment. Plasmids are
often prevalent in microbial populations and can be transferred
between both closely and distantly related phylogenetic groups,
providing diverse species access to a common pool of genes [1, 2].
Transferrable plasmids can encode an assorted array of advantageous
functions, including protection from antibiotic and xenobiotic
compounds, metabolic capabilities such as nutrient utilization, and
production of virulence factors, amongst others [3, 4]. Of these,
antibiotic resistance genes have gained the most attention [1, 2].
Indeed, plasmid conjugation is considered to be the primary mode
for the dissemination of antibiotic resistance to nearly all available
antibiotics [5], including aminoglycosides, β-lactams, carbapenems,
glycopeptides, tetracyclines, trimethoprims, sulphonamides, and
quinolones [6, 7]. These antibiotic resistance genes typically encode
for proteins that employ one of three main mechanisms to protect
the cell from antibiotic treatment: enzymatic inactivation of the
antibiotic (e.g., extended spectrum β-lactamase (ESBL) enzymes or
acetyltransferases), reduction in intracellular antibiotic concentrations

via altered transport dynamics (e.g., tetA efflux pump), or modifica-
tion/protection of the primary antibiotic target to reduce antibiotic
binding (e.g., sul1 or qnr genes) [8, 9].
Antibiotic resistance genes can be associated with common

plasmid and/or host-level features, and uncovering these relation-
ships has provided key insights into their dissemination patterns/
tendencies. At the strain level, individual antibiotic resistance
genes are linked with specific pathogenic clones, molecularly
classified by their sequence type (ST). For example, Escherichia coli
ST131 commonly express ESBL enzymes, and carbapenem
resistant E. coli (CREC) is often associated with ST167, ST617,
ST410, and ST38 lineages [10–12]. Analogously, at the plasmid
level, certain incompatibility (Inc) groups have emerged as
epidemic amongst Enterobacteriaceae [13, 14] due to their
association with specific antibiotic resistance genes. For example,
aminoglycoside resistance genes (e.g., aac(6′)-Ib-cr) are more
prevalent on IncA/C plasmids [15], whereas the β-lactamase gene
blaCTX-M-15 has been predominantly found on IncF plasmids [15].
Establishing these trends underlying antibiotic resistance gene
prevalence has improved our overall understanding of how
resistance spreads through bacterial populations.
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In addition to antibiotic resistance genes, conjugative plasmids
encode a multitude of diverse functions, including many genes
implicated in cellular metabolism. These latter genes are often
involved in biosynthetic pathways and/or degradative processes,
and can mitigate the energetic demands of stress response
[16, 17]. Although these genes are often not the focus of studies
focused on conjugative plasmids, several independent works have
demonstrated that changing expression levels of genes involved
in diverse metabolic and stress processes (henceforth referred to
as metabolic genes) can alter antibiotic susceptiblity [18–21].
Moreover, recent work showed that mutations in genes involved
in core metabolic processes are clinically prevalent, and over-
expressing these genes conferred antibiotic resistance to one or
multiple antibiotics, highlighting an underappreciated class of
antibiotic resistance mechanisms [20]. Thus, in addition to their
primary metabolic function, these findings suggest that metabolic
genes on transferrable (e.g., conjugative and/or mobile) plasmids
may also protect against antibiotic treatment [19, 21, 22]. How-
ever, these secondary implications of metabolic genes are
relatively understudied on transferrable elements [23]. Often,
plasmids encoding metabolic capabilities are classified as “cata-
bolic”, distinct from resistance plasmids [16, 17]. Overall, the
prevalence of these metabolic genes on transferrable plasmids,
their relative co-occurrence with canonical antibiotic resistance
genes, and their impact on susceptibility phenotypes remain
unknown.
To begin addressing this gap, we characterized the prevalence of

metabolic genes on transferrable plasmids carried by the repre-
sentative pathogen E. coli, which is notorious for the plasmid-
mediated spread of antibiotic resistance. Moreover, we investigated

relationships between metabolic gene prevalence and associated
plasmid- and strain-level features, alongwith their co-occurrence (or
lack thereof) with canonical antibiotic resistance genes. Finally, our
experiments demonstrated that expression of select plasmid-
encoded metabolic genes can protect against antibiotic treatment,
corresponding to in silico co-occurrence patterns. These results
show that the mobile metabolome of E. coli may contribute to
antibiotic resistance prevalence and highlight the increasing
complexity underlying observed antibiotic resistance dissemination
patterns.

RESULTS
E. coli strains and plasmids dataset overview
To investigate the prevalence, range, and correlation of metabolic
genes with other strain- and plasmid-level characteristics, we
curated a collection of publicly available plasmids associated with
a known host (i.e., genome). Specifically, we first retrieved all
complete E. coli genomes from the NCBI FTP server that contained
at least one plasmid sequence (n= 823). To ensure this dataset
was representative of natural E. coli isolates, we also included
additional strains based on a systematic literature search
(n= 1016 total, see Materials and Methods, Table S1). Collectively,
a slight majority of this collated dataset (51.4%) was dominated by
STs 131, 11, 73, and 95 (Fig. 1A), consistent with trends identified
in our literature search, and contained 2235 closed or nearly
completed plasmids (see “Materials and Methods”, Table S2). We
used MOB-suite to predict plasmid transferability based on the
presence of one or more of the following indicators: oriT
sequence, DNA relaxase, type IV coupling protein, or type IV

Fig. 1 Summary of plasmid dataset and features. A ST prevalence in the final dataset. Following a systematic literature search, the dataset
consisted of n= 823 genomes, wherein 51.4% were made up from the top 4 prevalent STs. B Plasmid mobility percentage by ST. Top:
Percentage of plasmids with either conjugative, mobilizable, or non-mobilizable plasmids. Bottom: Number of plasmids per strain categorized
by prevalent and non-prevalent ST’s to facilitate interpretation. C Plasmid metadata. Multi-panel heatmap consisting of every conjugative and
mobilizable plasmid in our final dataset (n= 1775, y-axis). From left to right: (i) heatmap indicating ST, where yellow represents non-prevalent
and other colors represent prevalent STs; (ii) heatmap indicating plasmid transferability, where black indicates conjugative and gray indicates
mobilizable, (iii) bar graph where the x-axis is the number of genes encoded on each plasmid; (iv) bar graph where the x-axis is the plasmid
length; (v) heatmap where black indicates the incompatibility group for that plasmid. Plasmids are ordered from greatest to least number of
encoded genes (top to bottom).
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secretion system [24]. A large majority of plasmids were
transferable (i.e., either conjugative (47.1%, n= 1052) or mobiliz-
able (32.3%, n= 723), Fig. 1B, top, and Fig. 1Cii). Moreover, strains
from each ST in our dataset carried fewer than three plasmids on
average (Fig. 1B, bottom). This final set of plasmids included 17
incompatibility groups across both clinical and environmental
sources, ranged in length from 1538 base pairs to 369,298 base
pairs, and contained as few as 1 to as many as 408 genes
(n= 1775, Fig. 1C, Table S3).

Plasmid-encoded antibiotic resistance and metabolic genes
characterization
We next sought to elucidate the prevalence of both metabolic and
canonical antibiotic resistance genes (i.e., those whose primary
function is to resist antibiotics by the traditional mechanisms
described above, henceforth referred to as antibiotic resistance
genes) on these plasmids. Gene annotation revealed 164,697
distinct coding sequences corresponding to 45,962 known genes.
35.1% (n= 16,132) of these contained KEGG orthology [20] tags
that enabled functional categorization. Specifically, 5.4%
(n= 2460) of known genes were classified as involved in
metabolic processes. Likewise, 9.8% of known genes (n= 4483)
were classified as encoding antibiotic resistance.
Initially, annotations suggested that antibiotic resistance genes

(n= 4483) comprised a greater proportion of this collective
mobile gene pool, as compared to metabolic genes (n= 2460)
(Fig. 2A). However, the absolute numbers of unique genes were
closer in abundance across classes (191 and 144 unique antibiotic
resistance and metabolic genes, respectively). In both cases, these
redundancies were primarily driven by repeated occurrences of
the same gene on multiple plasmids, rather than multiple copies
of the same gene on the same plasmid. Furthermore, grouping
gene variants (e.g., blaCTX-11 with blaCTX-15) reversed this initial
relationship altogether: there were more unique grouped meta-
bolic genes (142) than grouped antibiotic resistance genes (84)
(Fig. 2A). Finally, although antibiotic resistance genes generally
occurred with higher abundances per plasmid (Fig. 2B), metabolic
genes occurred on a greater proportion of all plasmids than did
antibiotic resistance genes (845 (47.6 %) compared to 752 (42.4%),
Fig. 2C). This broader distribution of metabolic genes across
plasmids was maintained, and appeared more pronounced, within
prevalent sequence types: 59.0% and 37.0% of these plasmids
encode metabolic and antibiotic resistance genes, respectively
(Fig. 2D). Collectively, these genes encoded a diversity of
functions. Among the antibiotic resistance genes, aminoglycoside,
multi-class (e.g., efflux pumps), and sulfonamide resistance were
most common (Fig. 2E, right). Among the metabolic genes, the
most prevalent categories included carbohydrate and amino acid
metabolism (Fig. 2E, left).
The percentage of both metabolic and antibiotic resistance

genes varied by Inc group (Fig. S2A). In general, and consistent
with strain-level trends (Fig. S2B), antibiotic resistance genes
comprised notably higher proportions of total gene counts across
all Inc groups. We removed “IncQ” from our analysis since these
plasmids in total had <5 metabolic genes, and “unknown”, to
facilitate interpretation. Of those Inc groups remaining, both
metabolic and antibiotic resistance genes were predominately
associated with plasmids belonging to IncFI and IncFII (Fig. S2C,
p < 0.05), potentially suggesting an evolutionary advantage of
carrying both on these plasmid types. Although there were more
antibiotic resistance genes overall, metabolic genes appeared to
be more widely distributed and with higher diversity.

Significant co-occurrence of antibiotic resistance and
metabolic genes
We next looked for statistically significant associations and
disassociations between the two gene types, determined by co-
location on the same plasmid. To do so, we first ran a random

forest out-of-bag predictor model to first understand which
general classes across gene types were significantly (dis)asso-
ciated with each other (Fig. S3A). Based on these results, we
removed “peptide resistance” and “other amino acid metabolism”
as these did not exhibit significant relationships with any other
category. We used the remaining categories to identify antibiotic
resistance and metabolic gene pairs whose co-location on the
same plasmid was statistically significant. Specifically, 57 meta-
bolic genes were significantly associated, and 6 metabolic genes
were significantly disassociated, with at least one antibiotic
resistance gene (Fig. 3A, see Table S4A–C). These associations
were primarily found on IncF (I and II), IncA/C, and IncN plasmids,
but varied depending on the specific pair (Fig. S3B, Table S4D).

Metabolic genes may restrict the spread of antibiotic
resistance genes
Significant disassociations imply specific gene pairs are unlikely to
be found on the same plasmid. However, these genes may still co-
occur within the same host (i.e., across multiple plasmids), thereby
adding complexity to these statistical conclusions. Thus, to better
understand gene associations at the strain level, we focused on the
three metabolic genes (katG, lpxM, and yfbR) that were among the
most commonly implicated with antibiotic resistance genes.
Specifically, yfbR, which is involved in nucleotide salvage activity
[25], exhibited the greatest number of statistical co-occurrences (29
antibiotic resistance genes belonging to nine drug classes) (Fig. 3A).
In comparison, lpxM, which is involved in glycan biosynthesis [26],
was disassociated with 25 antibiotic resistance genes covering nine
distinct drug classes. Likewise, katG, which counteracts oxidative-
stress [27], exhibited disassociative relationships with 21 antibiotic
resistance genes belonging to eight drug classes (Fig. 3A,
Table S4A–C). Since the oxidative stress response is inextricably
linked to bacterial maintenance metabolism [28], we generally
categorize katG as a metabolic gene for the purposes of this
analysis. We used blaNDM (all variants) as a representative antibiotic
resistance gene, since this gene showed statistical relations with all
three of these metabolic genes, and confers resistance to one of the
most commonly used antibiotic classes (e.g., β-lactams).
Statistical analysis of gene (dis)associations for yfbR, katG and

lpxM at the genome level was consistent with plasmid-level co-
occurrences. That is, strains carrying yfbR were significantly likely
to also carry blaNDM, and vice versa for katG and lpxM (Fisher’s
exact test, p < 2.5 × 10−3 in all cases). These relationships appeared
to correlate with evolutionary trends: phylogenetic analysis of
representative clinical isolates revealed that genomes containing
katG and lpxM often occurred within clustered lineages and/or
distinct clades that were largely separate from those containing
blaNDM and yfbR (Fig. 3B; Fig. S3C). Importantly, gene co-
occurrences did not depend on evolutionary history. Statistical
(dis)associations were maintained even when correcting for
phylogenic effects (p < 0.05 in all cases, Table S4E) [29], indicating
the presence/absence of these genes across sufficiently diverse
clades. Moreover, these trends were maintained at the level of
intracellular mobility: most yfbR (85%) and blaNDM (90%) genes in
our dataset were found on or near other plasmid-encoded mobile
elements (transposons or insertion sequences), compared to only
~1% of lpxM and katG (Table S5). Combined, these findings
suggest a potential selective advantage or disadvantage for
plasmids that simultaneously carry particular metabolic genes and
antibiotic resistance accessory genes. For example, over-
expression of katG was previously found to reduce ampicillin-
mediated killing of E. coli [30] and has been tied to isoniazid
resistance in Mycobacterium tuberculosis [31, 32]. That katG was
significantly independent of numerous antibiotic resistance genes
(n= 21; Fig. 3A), including blaNDM, suggests that katG alone may
provide a sufficient ecological advantage. Harboring additional
resistance mechanisms in this case may be unnecessary and/or
prohibitively burdensome.
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To investigate the ecological advantages of carrying (dis)
associated metabolic genes in the presence or absence of antibiotic
resistance genes, we introduced each of katG, lpxM, and yfbR alone,
or co-transcribed with blaNDM-1, onto individual medium copy
plasmids under the control of an IPTG-inducible promoter. These

plasmids, along with blaNDM-1 alone and an empty plasmid
backbone as positive and negative controls, respectively, were
transformed into E. coli. We refer to the resulting strains as katG,
lpxM, yfbR, katG-blaNDM, lpxM-blaNDM, yfbR-blaNDM, blaNDM,
and ctrl for simplicity (Table S6). We confirmed IPTG induction by

Fig. 2 Characterization of antibiotic resistant and metabolic genes. A Relative abundance of gene type. Percentage of antibiotic resistance
genes (Abx) compared to metabolic genes (Met). Percentages are calculated from the total of the corresponding bar. “Total” corresponds to all
annotated antibiotic resistance and metabolic genes, “Unique” corresponds to all unique gene variants, and “Grouped” refers to those from the
“Unique” category further grouped by nucleotide variants (e.g., different variants of the same gene are grouped together). B Average gene type
per plasmid. Histogram distributions show the number of genes (antibiotic resistance or metabolism) per total number of genes on each plasmid.
Blue indicates frequency of metabolic genes per plasmid (top) and red indicates frequency of antibiotic resistance genes per plasmid (bottom).
Black dashed line indicates the average number of gene type per plasmid for comparison. C Proportion of gene types on plasmids. Left and right
panels show stacked horizontal bar graphs where the x-axis is the percentage of genes on each plasmid. Blue indicates antibiotic resistance
genes, red indicates metabolic genes, and black indicates all other gene types. Plasmids are sorted top to bottom by antibiotic resistance (left) or
metabolic (right) gene abundance. Any plasmid with neither an antibiotic resistance nor metabolic gene was removed for visibility. D Proportion
of gene types by ST. Stacked bar graphs show percentage of plasmids with the corresponding number of genes belonging to antibiotic resistance
ormetabolic gene types. Plasmids are divided into the four categories of encoding 0, 1, 2, or 3+metabolic genes (shades of red from light to dark)
and antibiotic resistance genes (shades of blue from light to dark). Data for prevalent STs (131, 11, 73, 95) and other STs are shown separately (left
and right panels, respectively). E Percentage of metabolic and antibiotic resistance functions. Red indicates genes belonging to metabolic
categories as determined by KEGG (left) and blue indicates known antibiotic classes (right).
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measuring the minimum inhibitory concentrations (MIC) of blaNDM
to carbenicillin (Fig. S4). We then carried out pairwise competition
experiments between IPTG-induced katG and katG-blaNDM, lpxM
and lpxM-blaNDM, and yfbR and yfbR-blaNDM, and quantified
relative fitness of the single gene compared to its co-expressed

version. Consistent with our phylogenetic analysis, both katG and
lpxM outcompeted their -blaNDM co-expressing counterparts,
whereas yfbR alone had no fitness advantage, and in some cases
was outcompeted by yfbR-blaNDM (Fig. S5A–C). This finding held
true in multiple media types and background strains (Fig. S5D, E).
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Overall, these results illustrate that observed genetic (dis)associa-
tions may be driven by the resultant ecological fitness.

Disassociated metabolic genes protect against antibiotic
treatment
Given the prevalence of metabolic genes on conjugative plasmids,
that expression of metabolic genes can impact antibiotic
resistance phenotypes [20], and that expression of these genes
alone can confer a fitness advantage (e.g., Fig. S5), we wondered
to what extent the expression of katG, lpxM, and yfbR might
impact antibiotic susceptibility in the absence of canonical
antibiotic resistance genes. To determine changes in antibiotic
susceptibility, we first measured IC50 values, which captures both
growth inhibition and overall survival, in response to the
representative β-lactam carbenicillin. katG exhibited a significantly
higher carbenicillin IC50 compared to ctrl (~3.5-fold increase or
more), regardless of whether IC50 was quantified using the
maximum growth rate (Fig. 4A, top), steady state densities at 20
(Fig. 4A, bottom), 14, 16, or 24 hours (Fig. S6A), over the entire
time course (Fig. 4B), or with/without mineral oil (Fig. 4C top row,
Fig. S6B). Similar to katG, lpxM exhibited improved growth under
carbenicillin treatment compared to ctrl, whereas yfbR was more
sensitive. To test whether these results were specific to
carbenicillin, we next measured susceptibility to ceftriaxone,
which belongs to the closely related cephalosporin antibiotic
class. Consistent with carbenicillin, katG exhibited increased
resistance to ceftriaxone compared to ctrl (Fig. 4C, second row).
Although dose responses did not show a clear change in
susceptibility for lpxM, both lpxM and katG exhibited small
increases in their MIC (Fig. S7A), suggesting that both could confer
modest resistance, which we confirmed with colony forming units
(CFU) (Fig. S7B). In contrast, yfbR did not confer a susceptibility
advantage under ceftriaxone treatment (Fig. 4C). Expanding these
results to eight drugs representing the most commonly used
antibiotic classes confirmed small shifts in sensitivity. However, for
a majority, both katG and lpxM demonstrated higher steady-state
densities in subinhibitory concentrations. In contrast, yfbR did not
benefit from any selective advantage in the presence of these
antibiotics (Fig. 4C).
Combined, these results suggest that harboring multiple

resistance pathways (i.e., via both gene types) may, in some
cases, be evolutionarily disadvantageous: katG and lpxM (which
often exhibited improved fitness under antibiotic treatment) were
primarily disassociated with antibiotic resistance genes, whereas
yfbR often conferred negligible advantage and was associated with
antibiotic resistance genes. To confirm whether these absolute
fitness effects translated into relative fitness (dis)advantages
overall, we conducted pairwise competition experiments between
katG, lpxM, and yfbR, each against ctrl. Indeed, katG and lpxM
outcompeted ctrl, in both the absence (Fig. 5A, left, p < 0.05) and
presence of sub-inhibitory carbenicillin (Fig. 5A, right, p < 0.05),
confirming their relative fitness advantage. On the other hand,
yfbR did not grow significantly better than ctrl in either case
(p > 0.1). Although katG and lpxM are functionally unrelated, and
therefore likely rely on distinct mechanisms to impart antibiotic
protection, this observation suggests some initial intuition: while

growth rates and killing rates are often directly correlated, their
relationship can be disrupted when metabolism becomes more
efficient (i.e., more growth from the same/lower energy expendi-
ture) [33]. Thus, since katG and lpxM exhibited both relative and
absolute fitness advantages, even in the absence of drug
treatment, this suggests that protection from carbenicillin may
arise due to improved growth with negligible changes in
metabolic activity, ultimately minimizing antibiotic-mediated kill-
ing rates. Indeed, time-kill curves revealed that both katG and
lpxM were killed more slowly and survived to a greater extent
than ctrl, whereas yfbR survival was indistinguishable from ctrl
(Fig. 5B). Moreover, individual growth curves confirmed higher
growth rates for katG and lpxM in minimal (Fig. 5C) and rich
(Fig. S8A) media, and no significant changes in oxygen consump-
tion rate (OCR) (Fig. S8B). In contrast, yfbR exhibited no change in
growth rate (Figs. 5C and S8A) accompanied by a reduction in OCR
(Fig. S8B). Together, this is consistent with previous findings
highlighting that increased metabolic efficiency can protect cells
from antibiotic treatment [33].
Our results suggested that strains expressing disassociated

genes exhibited higher growth and reduced killing in the
presence of antibiotics. In contrast, growth and antibiotic
susceptibility of strains expressing associated genes was no
different than the control strain. To examine the generality of
these findings, we investigated an additional five associated (fabG,
arcA, mmuM, argF, and ahr) and five disassociated (agp, aroH, pld,
fdtC, and eptC) genes from our pairwise gene analysis (Fig. 3A; see
Table S6C for gene descriptions). Although eptC was not one of
the six initial disassociated genes identified, a secondary analysis
examining metabolic gene associations with antibiotic classes
rather than specific resistance genes, revealed significant disas-
sociations between this gene and β-lactam antibiotics
(p= 2.3 × 10−13), and thus was included for completeness.
Consistent with our expectations, all seven disassociated genes
exhibited higher growth rates (Fig. S8D), and reduced killing
(Fig. 5D, E, Table S13), than ctrl, whereas associated genes’ growth
rates (Fig. S8C, Table S13) and killing remained largely unchanged
compared to ctrl (Fig. 5D, E). Collectively, this paradox of faster
growth and improved survival runs counter to established dogma
that, all else being equal, faster growing cells are preferentially
killed by antibiotics due to their elevated metabolic activity.
Indeed, katG, IpxM, and other metabolic genes disassociated from
antibiotic resistance genes may confer observed advantages via
metabolic dysregulation that enables faster growth while escaping
drug-mediated killing.

DISCUSSION
Studies have primarily focused on characterizing genes encoding
canonical resistance mechanisms and their ability to spread on
plasmids via HGT. Our knowledge of analogous metabolism-
related genes involved in antibiotic resistance, and their extent,
diversity, and spread has been limited. Here, we leveraged an
extensive collection of publicly available genomes to characterize
metabolic genes found on transferrable E. coli plasmids. We found
that metabolic genes occurred, in most cases, with comparable

Fig. 3 Co-occurrence of metabolic and antibiotic resistance genes. AMetabolic gene associations and disassociations with resistance genes.
The 57 metabolic genes with statistical relationships to antibiotic resistance genes are ranked in descending order based on the number of
associated (gray) and/or disassociated (black) resistance genes (p < 0.05). To the right, a heatmap in line with each gene indicates the
correspondig KEGG metabolism class: green is carbohydrate metabolism, red is energy metabolism, purple is lipid metabolism, pink is
nucleotide metabolism, orange is amino acid metabolism, and brown is glycan biosynthesis. B Phylogenetic tree of strains carrying plasmid-
encoded blaNDM, katG, lpxM and/or yfbR. This tree includes genomes with at least one of the four plasmid-encoded genes, and was filtered for
those with a known location, isolation source, isolation date, and clinical origin. The scale bar represents 0.005 nucleotide substitutions per
site of the entire aligned core genome. ST corresponding to each tree branch is shown to the left of the gene presence heatmap. Gene
presence or absence is indicated by black or white, respectively.
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frequency compared to antibiotic resistance genes, but their
relative prevalence varied by genomic context (e.g., ST, etc.).
Analogous to categorizations established for antibiotic resistance
genes, certain metabolic functions were significantly correlated
with common incompatibility groups (e.g., IncF). Moreover, their
plasmid-level associations varied by ST. Our analysis was limited to
plasmid-level associations. These findings can be readily
expanded to examine genomic-level associations, although

careful consideration should be taken to define core and
accessory gene groups given likely redundancies in metabolic
functions and pathways.
Specific metabolic genes exhibited significant associative and/

or dissociative relationships with known antibiotic resistance
genes. Experiments illustrated that carrying certain metabolic
genes may confer selective advantages in the presence of one,
and in some cases several, antibiotics. In other words, antibiotic

Fig. 4 Metabolic genes protect against antibiotic treatment. A Carbenicillin dose responses. Dose responses of the ctrl (gray) and katG
(green) strains were measured using either growth rates (top, y-axis), or optical density after 20 h (bottom, y-axis), in the presence of varying
concentrations of carbenicillin: 50, 15.81, 5.0, 1.58, 0.50, 0.158, 0.05, and 0 μg/mL (x-axis). IC50’s were determined by fitting growth rate
estimates or OD600 measurements as described in Materials and Methods. Data points represent the mean of at least four biological replicates,
and error bars represent the standard deviations. B Representative temporal dynamics. Representative timecourses are shown for all three
metabolic strains and ctrl treated with 1.58 μg/mL carbenicillin. Shaded error bars represent the 95% confidence interval of three technical
replicates. X-axis is time in hours, and y-axis is log-transformed OD600. The colors gray, green, purple, and orange, correspond to ctrl, katG,
lpxM, and yfbR, respectively. C Density-based dose responses. Density after 20 h for ctrl (gray), katG (green), lpxM (purple), and yfbR (orange)
was determined for at least six biological replicates per strain for each antibiotic: carbenicillin (Carb), ceftriaxone (Ctx), amoxacillin/clavulanic
acid (Amox/clav), chloramphenicol (Cm), ciprofloxacin (Cipro), ertapenem (Ert), gentamicin (Gent), and streptomycin (Strep), respectively. Error
bars represent the standard error, across all replicates. The x-axis is antibiotic concentrations in μg/mL and y-axis is OD600. Black lines between
curves indicate data points where the metabolic gene was statistically greater than the control strain (p < 0.05, right-tailed t test).
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resistance phenotypes may arise as potential secondary effects of
acquired metabolic functionality. Specifically, expressing yfbR
tended to confer little to no resistance compared to the control
strain, whereas expressing katG and lpxM demonstrated a notable
survival advantage at lower antibiotic concentrations for many
antibiotic classes, and higher concentrations of carbenicillin and
ceftriaxone. These phenotypic results are consistent with our
bioinformatic analysis, wherein katG and lpxM, but not yfbR, were
often found in the absence of antibiotic resistance genes.
We note that environmental factors likely play a role in altered

susceptibility conferred by metabolic variants. For example, strains
carrying lpxM exhibited a 2-fold higher ceftriaxone MIC in LB
media, compared to the control strain. However, no shifted dose
response was apparent in minimal medium. Indeed, the ecological
and evolutionary fates of conjugative plasmids are likely
dependent on antibiotic conditions, nutrient availability, and
resource consumption characteristics, amongst other factors.
Environmental conditions were held constant throughout the
present study. Exploring the impact of these factors represent a
key future layer of complexity.
Although we observed conserved growth/metabolic trends, we

expect unique mechanisms to explain the susceptibility pheno-
types for each disassociated gene. For example, highly expressed

katG likely reduces antibiotic lethality by mitigating toxic
metabolic dysregulation following bactericidal drug treatment. In
contrast, the role of lpxM in outer wall and membrane metabolism
suggests more drug-specific and/or transport pathways. Moreover,
mechanisms underlying these co-occurrences, or lack thereof, are
likely more complex than intracellular relationships alone. For
example, functions that provide communal benefits (e.g., β-
lactamase genes) may extend to inter-species interactions in
mixed populations. However, in all cases, future research is
necessary to elucidate the molecular details of each, as well as
why certain genes work better in conjunction with antibiotic
resistance genes, than others.
Regardless of the gene-specific mechanisms, our results

establish an initial ecological explanation for the observed
evolutionary (dis)associations: that metabolic-antibiotic resis-
tance gene combinations can be either advantageous or
detrimental highlights the co-occurrence of these gene types
have nuanced effects on overall fitness. Indeed, classic antibiotic
resistance genes undoubtedly confer significantly greater protec-
tion to lethal drug treatment than metabolic genes (e.g., blaNDM-
1 compared to katG). However, that the combination of these two
gene types may be sufficiently detrimental to constrain both
genes’ evolutionary dissemination patterns (e.g., Fig. 3B) suggests

Fig. 5 Mechanistic intuition and generality. A Relative fitness for (dis)associated genes. Competition experiments between ctrl-cmR (strain
19 denoted S19 in Table S6B) and ctrl-kanR (S2), katG (S4), lpxM (S5), or yfbR (S6) in the absence (left) or presence (right) of 0.75x IC50 (0.93 μg/
mL) carbenicillin (see Table S12 for details). Relative fitness was calculated as the fold change in log cell density ratio over 24 h where M is the
kanR version of each strain and W is the cmR version of each strain as described in “Methods”. Averages are shown for three independent
biological replicates. p values are calculated based on the significant difference from neutral fitness (i.e., 1) using one-way t tests. cmR and
kanR refer to chloramphenicol and kanamycin resistance, respectively. B Time-kill kinetics for representative genes. Ctrl, katG, lpxM, and yfbR
survival over time is measured in the presence of 3x IC50 (3.75 mg/mL) carbenicillin. Survival percentage is calculated by normalizing the CFU
at every time point by the CFU at time= 0 and multiplying by 100. Error bars are standard deviation of at least three individual biological
replicates. C Growth rates in minimal media of (dis)associated genes. Box plots consist of at least three independent biological replicates.
D Time-kill kinetics for all 13 genes. Survival over time is measured for ctrl (gray), six associated (blue: yfbR, agp, fabG, arcA,mmuM, and ahr) and
six dissociated (red: katG, lpxM, aroH, pld, fdtC, and eptC) genes in the presence of 3x IC50 (3.75 mg/mL) carbenicillin after 1 (left) and 2 (middle)
hours of treatment, or 4x IC50 (5 mg/mL) carbenicillin after 1 (right) hour of treatment. Percent survival is calculated by normalizing the CFU at
every time point by the CFU at time= 0 and multiplying by 100. Error bars show standard deviation of at least three individual biological
replicates. See Table S14 for statistics. E Disassociated genes protect against carbenicillin treatment. Data from the middle panel of (D) was
pooled together for each unique relationship type. Strains expressing disassociated genes have statistically greater survival than associated
genes (two-tailed t test). One, two and three asterisks indicate p < 0.05, 0.01, and 0.001, respectively, and “ns” is not significant, where
applicable. All p values from panels with multiple t tests were Bonferroni corrected.
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that even plasmids without canonical resistance genes may play a
greater role than previously thought in the spread of antibiotic
resistance. Such insights have long-term implications in both
better predicting antibiotic resistance evolution, as well as
alternative antimicrobial approaches that leverage ecological
dynamics [34].
Overall, our results suggest that observed plasmid-mediated

antibiotic resistance may arise as a function of metabolic variants
as well as canonical resistance mechanisms. These results suggest
that antibiotic treatment may lead to simultaneous and/or
synergistic selection for both canonical and metabolic resistance
mechanisms. A broader functional characterization of these
metabolic genes, both in isolation and in conjunction with
antibiotic resistance pathways, is critical to better understand
how metabolic adaptation can lead to, potentiate, or in some
cases, inhibit antibiotic resistance dissemination. Our findings
focused on E. coli. However, plasmid-mediated resistance spread is
important in other bacterial species, including clinically rele-
vant Enterobacteriaceae such as Klebsiella pneumoniae, and poten-
tial environmental contributors such as Pseudomonas spp. In
addition to their clinical relevance, these future investigations
could demonstrate the broad applicability of metabolic genes
found in this study and suggest potential novel antibiotic targets
to prevent antibiotic resistance dissemination.

MATERIALS AND METHODS
Retrieval of E. coli plasmid sequences
All E. coli sequences were downloaded from the NCBI FTP server in May
2020. To establish an initial collection of plasmids, only complete genomes
with an associated plasmid were retained. All genomes were verified for
belonging to the species E. coli using kmerfinder (https://cge.cbs.dtu.dk/
services/KmerFinder/). Sequence type (ST) was determined via multi-locus
sequence typing (MLST) based on the 7-gene Achtman scheme using
pubMLST (https:/github.com/tseemann/mlst). Only genomes with exact
matches were assigned for each ST and used for subsequent analysis. To
ensure our sequences were sufficiently representative of E. coli pathogens
expected in nature, a systematic literature search (see description below
and Fig. S1) was conducted to establish an expected distribution of STs
(Table S1). This information was used to update our initial collection to
match the top 4 most prevalent STs (131, 11, 73, and 95). Specifically, to
identify supplementary plasmid sequences, genome accession IDs were
chosen from EnteroBase based on the following criteria: the strain was
matched to the correct ST and had a high-quality genome sequence
(based on N50 > 20,000 and the number of contigs <250). Of those that
met our criteria, genomes were randomly chosen until our desired
distributions were achieved. These genome sequences were downloaded
from GenBank and plasmids were assembled using plasmidSPAdes [35]
(n= 1044). Assembled plasmids with an identifiable incompatibility group
and at least 95% percent identity to any plasmid on NCBI via BLAST were
then added to our initial plasmid collection. Finally, genomes were filtered
to remove those without a known high quality phylotype (n= 1016),
establishing a plasmid-level dataset consisting of 2235 (1984 complete and
251 assembled) unique plasmids, and 1775 unique transferrable plasmids
(excluding non-mobilizable plasmids). The complete list of all plasmids can
be found in Table S2.

Systematic literature search
A comprehensive literature review was conducted to establish a
representative distribution of E. coli ST’s expected in nature (Fig. S1). In
particular, a search using the databases PubMed and EMBASE was
performed to retrieve primary literature using the following key search
terms: “Escherichia coli”, “sequence type”, “population structure”, and
“antibiotic resistance”. Search terms were limited to publications in the
English language from January 1st, 2008, through present (as of July 2020).
The inclusion criteria for articles were as follows: sequence type
frequencies were described, and total number of isolates reported. Articles
were also required to include at least 10 isolates. Articles were excluded if
there was no clear information on isolate source or collection. Total sample
number and frequency of each sequence type mentioned were recorded
(Table S1). Data was also collected on isolate source (e.g., human patients,
animal, or environmental sources).

Plasmid annotation
Plasmids were annotated using Prokka [36], which provided KEGG [37]
gene identification tags, along with GenBank, and manually curated to
verify consensus and mismatching genes. To verify the presence of
antibiotic resistance genes, plasmids were additionally annotated using
the CARD database (https://card.mcmaster.ca/), AMRfinder [38] and
ResFinder [39] tools. A consensus from at least two sources, or the results
from ResFinder otherwise, was used to update the existing annotations.
Incompatibility groups were determined using PlasmidFinder [40], and
plasmid mobility was determined based on established mobility typing
schemes using MOB-typer [24]. Genes from each plasmid were then
combined with plasmid-level metadata using a custom MATLAB pipeline
that integrated KEGG classification categories and resistance gene counts
per plasmid. The resulting merged dataset contains gene-level information
per unique plasmid as well as important plasmid-specific metadata
(Table S3). Gene associations with mobile elements were determined using
MobileElementFinder. All gene types were determined to be associated
with a mobile genetic element if they were found within 30 kb of the
mobile element sequence [41]. Results were compiled based on identifying
mobile elements with 100% percent identity and coverage (Table S5).

Phylogenetic analysis
To generate the clinical genome phylogeny, all non-clinical genomes
were removed, along with any strain that did not carry a transferrable
plasmid (Fig. S3C). To generate a representative phylogeny, the same
subset of genomes was further filtered to remove those with unknown
collection dates or locations (Fig. 3B). In all cases, core genomes were
aligned using Roary [42], and phylogenetic relationships were inferred
using RAxML [43]. Trees were visualized and annotated in R using the
ggtree [44–46] library.

Creation of over-expressed metabolic and antibiotic
resistance genes
Genomic DNA was extracted from E. coli strain MG1655 using a ZR Fungal/
Bacteria DNA Miniprep kit (Zymo Research, Irvine, CA) kit following
manufacturer’s directions. All primers can be found in Table S6A. Genes
katG, lpxM, aroH, arcA, mumM, apg, agrF, ahr, fabG, eptC and yfbR were
amplified from genomic DNA. Genes pld and ftdC were synthesized as
GeneBlocks (IDT DNA, Coralville, IA) and were then amplified. bla-NDM-1
was amplified from the plasmid pGDP1 NDM-1 (Addgene, Watertown, MA),
which was extracted using a Zyppy Plasmid Miniprep kit following
manufacturer’s directions. We used Q5 High-Fidelity DNA Polymerase (New
England BioLabs, Ipswich, MA) for all PCR reactions using the following
cycling protocol: 95 °C for 5 min, followed by 30 cycles of 95 °C (30 s), 61 °C
(30 s) and 72 °C (3 min) followed by 5min at 72 °C. All amplicons were gel
purified using NucleoSpin Gel and PCR clean up kit (Takara Bio, Mountain
View, CA). When cloning yfbR, lpxM, arcA, mumM, ahr, ftdC, pld, eptC and
katG amplicons, both amplicons and plasmid pPROLAR were cut with Kpn1
and HindIII (New England Biolabs). When cloning bla-NDM-1, aroH, and
fabG both the amplicon and pPROLAR were cut with EcoR1 and HindIII
(New England Biolabs). When cloning agp and agrF, both the amplicon and
pPROLAR were cut with Kpn1 and Xba1 (New England Biolabs). Cut
amplicons were purified using a QIAquick PCR purification kit (Qiagen,
Germantown MD) following manufacturer’s recommendations. Ligation
occurred overnight at 16 oC using T4 DNA ligase (New England Biolabs).
Competent E. coli DH5αPRO cells were prepared and transformed using a
Mix & Go! E. coli Transformation Kit following the manufacturer’s
recommendations. Transformants were selected overnight on LB agar
containing 50 μg/mL kanamycin. Sequences were verified using Sanger
sequencing. To create blaNDM-1-gene fusions (blaNDM-lpxM, blaNDM-
katG, blaNDM-yfbR), we extracted pPROLAR containing blaNDM-1 from
sequence verified DH5αPRO bacteria. katG, lpxM, and yfbR amplicons were
produced following the protocol described above using fusion primers
listed in Table S6A. Note that the forward primer of each primer pair
contained the same ribosomal binding sequence as that driving bla-NDM-1
to ensure comparable translation rates. Both blaNDM-1+ pPROLAR and
the resulting amplicons were cut with HindIII. To reduce recircularization of
the plasmid, blaNDM-1+ pPROLAR was treated with Quick CIP (New
England Biolabs). Purification of plasmid and cut amplicons were
completed using a QIAquick PCR purification kit. Ligation, transformation
and selective plating occurred as described above. The orientation of
metabolic genes relative to blaNDM-1 was initially verified using restriction
digest, and subsequently confirmed using Sanger sequencing. To create
chloramphenicol resistant versions of blaNDM-lpxM, and blaNDM-yfbR, the
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kanamycin resistance marker was replaced with the chloramphenicol
resistance marker from pPROTET using AatII and Spe1. Relevant bands
were gel excised and purified as described above. To create chloramphe-
nicol resistant blaNDM-katG, the chloramphenicol resistance marker was
first cloned into pPROLAR containing blaNDM. katG was then cut from the
plasmid contained in the katG strain and inserted using HindIII. CIP was
used as described above to prevent recircularization of cut plasmids.
Transformants were selected overnight on LB agar containing 25 μg/mL
chloramphenicol. We confirmed the presence of all genes using PCR.

General bacterial growth conditions
In all cases, the strain DH5αPro was transformed with the plasmid of
interest (Table S6B). Strains were streaked onto Luria-Bertani (LB) (BD Difco,
catalog #DF0446-07-5) agar plates containing the appropriate antibiotic
(50 μg/mL for kanamycin, 30 μg/mL for chloramphenicol, and 50 μg/mL for
rifampicin). For every experiment, individual colonies were picked and
inoculated into 2mL LB broth and grown for exactly 16 h at 37 °C with
250 rpm agitation, along with a LB-only negative control. Cultures were
used the following day only if the negative control was clear.

Measuring the MIC
All strains were grown as previously described. After 16 h, cells were
diluted 1:1000 in LB media with 1mM IPTG and 50 μg/mL kanamycin, and
placed at 25 °C for one hour to initiate gene expression. Diluted cells were
then aliquoted into wells of a 96 well plate. Antibiotics were added to the
leftmost well to achieve the highest concentration of the respective
antibiotic (256 and 16 for carbenicillin and ceftriaxone, respectively), and
serially diluted two-fold from column 2 until column 11. Sterile water was
added to column 12 instead of antibiotic as a growth control, and the total
final volume in each well was kept at 100 μL. Plates were then sealed with
a paper film (BioExcell, catalog # 41061023), covered with the plastic lid,
and incubated in a shaking 37 °C incubator for 20 h at 250 rpm. Following
incubation, cell growth was measured by optical density (OD) in an
absorbance Tecan MPLEX plate reader at 600 nm. For each condition, at
least two technical replicates were averaged to determine one biological
replicate value. The MIC was determined by identifying the first
concentration of the antibiotic that resulted in an OD600 value which did
not statistically differ (p < 0.05) from the cell-free LB control (~0.05 OD600),
using a student’s t test. All experiments were conducted with at least three
independent biological replicates. To confirm IPTG induction, the MIC as
described above using blaNDM with, and without, 1 mM IPTG in the
growth media (Fig. S4A, Table S8). After establishing that IPTG significantly
increased the MIC of blaNDM compared to the IPTG-free control, shifts in
MIC were determined by comparing each strain’s MIC to ctrl, in the
presence of IPTG (Fig. S4B, Fig. S7, Table S9).

Quantifying 20-h sensitivity for all antibiotics
Analysis of carbenicillin time course curves with carbenicillin revealed
that changes in antibiotic sensitivity according to the IC50 values were
equivalent depending on whether IC50 was quantified using the growth
rates of the entire time courses, or the final density at 14, 16, 20, and
24 h (Fig. S6A, Fig. 4A bottom). Thus, to streamline analysis and increase
experimental throughput, antibiotic susceptibility for the remaining 7
antibiotics was quantified using 20 h OD600 measurements instead of
growth rates. In particular, experiments were set up analogously as
described above, except plates were sealed with a paper seal and
incubated in a shaking 37 °C incubator for 20 h at 250 rpm, instead of
covering wells with mineral oil (Fig. S6B, Fig. 4C top row). We note that
inter-day variability in susceptibility responses were occasionally
observed (Table S10), likely due to environmental fluctuations. Although
a minority of replicates did not exhibit shifted carbenicillin sensitivity,
sufficient replicates ensured this heterogeneity did not affect the trends
described.

Confirming OD shifts using colony forming units (CFU)
To verify that changes in MIC as determined by OD600 were indeed due to
differences in cell number rather than morphology, cell debris, or other
OD600 artifacts, we quantified CFUs under conditions that exhibited a clear
shift in MIC in response to ceftriaxone. Specifically, the MIC of katG was
determined to be 0.125 μg/mL, while ctrl had no observable growth at this
concentration (and instead showed an MIC of 0.0625 μg/mL). To confirm
the growth of katG at higher antibiotic concentrations was real, the colony
forming units (CFU) of both strains at 0.125 μg/mL ceftriaxone was

obtained following a standard MIC experiment. After 20 h of incubation,
cells were serially diluted, and spot plated using 10 μL in 3 technical
replicates on LB agar containing 50 μg/mL kanamycin. CFUs were averaged
for all technical replicates and conducted for two biological replicates for
each strain (Fig. S7B, Table S11).

Quantifying growth rates and IC50 values
All strains were grown as previously described. After 16 h, each clone was
resuspended and diluted 1:1000 in the appropriate media. In the text,
“minimal” media refers to M9 minimal media with casamino acids, 0.4%
glucose (M9CA medium broth catalog with 1mM thiamine (cat #J864-
100G). 40% glucose solution (cat #G2020), referred herein as M9CAG), and
“rich” refers to standard LB media. In all cases, media was supplemented
with 50 μg/mL kanamycin and 1mM IPTG. Clones were then aliquoted into
wells of a 96-well microtiter plate to achieve a total volume of 200 μL per
well. In the case of IC50 measurements, log serial dilutions were prepared
for each antibiotic and aliquoted to achieve the desired final concentra-
tions (Table S7). Wells were covered in 50 μL mineral oil and growth was
measured by absorbance in a Tecan MPLEX plate reader at 600 nm in 15-
minute intervals for up to 24 h. To analyze the time courses, growth curves
were first background subtracted and log-transformed in all cases. The
maximum growth rate μm was calculated using the modified logistic
equation [47]:

N ¼ A

aþ e
4μm
A λ�tð Þþ2

h i

for all experiments measured in minimal media, referred to as “Logistic
method”. For experiments in rich media, growth rates were determined by
obtaining the maximum derivative within the longest region associated
with linear growth. This region of the growth curve was identified using
k-means clustering with 3 groups to separate lag, log, and residual growth/
stationary phases, as described previously [48]. This separate method,
referred to as the “slope method”, was used for growth in rich media since,
upon inspection, the multi-phase growth that is characteristic of LB media
reduced the quality of logistic fits in many cases. Regardless, both methods
resulted in trends that were qualitatively and statistically consistent for rich
media data (Fig. S8A left compared to right). Therefore, growth rates for all
genes (Fig. S8D) were measured in rich media and quantified using the
slope method. To calculate the IC50 values, growth rates (μm) were
determined at each antibiotic concentration, and fit using the following
equation:

μm ¼ μICn
50

An þ ICn
50

as previously described [48, 49]. All subsequent experiments that utilized
carbenicillin concentrations were based on IC50 values from the control
strain (Fig. 4A bottom, gray line) of 1.24 μg/mL.

Pairwise competition experiments
The selected strains were grown overnight as previously described. In all
cases, overnight cultures were resuspended in either LB or M9CAG media
with 1 mM IPTG and appropriate antibiotic, and placed in 25 °C for one
hour to initiate gene expression. Cells were then diluted 1:10,000, and
200 μL was added to wells in a microtiter plate surrounded by Milli-Q
water. For competitions with carbenicillin, 0.93 μg/mL (75% IC50) was
added directly to the well. The plate was then sealed with a paper film,
covered with a plastic lid and incubated at 37 °C for 24 h with agitation at
250 rpm. Both at time= 0, and after 24 h, CFU was taken by serially diluting
the cultures and plating 20 μL from appropriate dilutions onto agar plates
in technical replicates of six. Plates were then grown for 16 h at 37 °C.
Dilutions were chosen based on achieving between 10–70 colonies.
Relative fitness (W) was quantified as described previously [50, 51],
according to the following equation: W= log(M0/M24)/log(W0/W24), where
0 or 24 indicates the CFU at the corresponding time point, and M and W
(“mutant” and “wild-type” respectively by convention) designate the two
competing strains, as defined in Table S12. In all cases, the single-gene
variant was designated as M. To differentiate strains from one another, we
used two methods. First, we utilized identical DH5αPro hosts carrying
plasmid variants containing either kanamycin resistance (kanR) or
chloramphenicol resistance (cmR) genes. In these cases, 24 h competitions
were conducted in the absence of any antibiotic selection, and M and W
were each determined by CFU obtained from kanamycin or
chloramphenicol-containing agar plates, respectively. We verified that
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plasmid loss was negligible over the 24-hour period in the absence of any
selection for both strains (Fig. S5A p > 0.1, 2-tailed student t test), and that
direct competition resulted in no statistical difference from 1 (Fig. S5B,
p > 0.1, 2-tailed student t test). For the second method, all kanR plasmids
were used, and instead changed the hosts such that DH5αPro cells were in
competition with DH5αPro containing a spontaneous rifampicin-resistant
mutant (rifR). Any rifR strain was quantified on rifampicin-containing plates,
and the second strain was quantified by rifampicin CFU minus CFU
obtained on blank plates. We established that rifR exhibited no fitness
defects by (1) growth rates between the wild-type (WT) strain (W) and rifR
(M) (Fig. S5D), and (2) directly competing the two control strains (Fig. S5E).
In both cases, results were statistically indistinguishable (p > 0.1, two-tailed
student t test). KanR/cmR and WT/rifR experiments were each conducted
in LB or M9CAG, respectively. In all cases, experiments were repeated with
at least three independent biological replicates.

Time-kill measurements in the presence of carbenicillin
All strains were grown as previously described. Time-kill experiments
entailed hourly measurements of CFU in presence of carbenicillin at either
3.75 μg/mL (3x IC50) or 5 μg/mL (4x IC50) over a span of 2 or 3 h, including
time 0. Specifically, overnight cultures were first diluted 1:100 into LB
media containing 1 mM IPTG and 50 μg/mL kanamycin and sub-cultured
for two hours in a 37 °C incubator with shaking at 250 rpm. Following this,
cell density was adjusted as necessary to achieve a starting OD600 of ~0.15
in all cases. Adjusted subcultures were then aliquoted into a 96-well plate
and the appropriate carbenicillin treatments were added directly to the
well. Plates were sealed with a paper film and placed in a 37 °C incubator
with shaking at 250 rpm. Initial collection for time=0 was acquired before
carbenicillin treatment. Thereafter, 10 μL of culture was removed from the
well every hour, 10-fold serial dilutions were performed and 10 μL was
plated on blank LB agar with three technical replicates at each time point.
Colonies were counted after plates were grown for 16 h in a 37 °C
incubator to determine CFU. This procedure utilized 14 strains of DH5αPro
transformed with kanR plasmids of interest – ctrl, katG, lpxM, yfbR, aroH,
pld, fdtC, agp, eptC, arcA, argF, mmuM, ahr, and fabG. CFUs were averaged
for all technical replicates, and experiments were conducted with at least
three independent biological replicates.

Oxygen consumption rate
Oxygen consumption rates (OCR) were obtained with the Resipher device
from Lucid Scientific. The selected strains were grown overnight as
previously described. Overnight cultures were resuspended in M9CAG
media with 1mM IPTG and 50 μg/mL kanamycin, and placed in 25 °C for
one hour to initiate gene expression. Following this, cells were diluted 10x
into M9CAG media containing kanamycin and IPTG, and 100 μL was
aliquoted per well into a 96-well microtiter plate according to the
manufacturer’s instructions. Plates were placed at 30 °C to minimize
growth, and oxygen concentration (μM) was measured immediately
thereafter. 24 wells were measured consisting of 6 technical replicates for
each strain. Given the clear well-well variability (Fig. S8B, C), data shown are
for one biological replicate. However, qualitative trends were consistently
reproduced in multiple independent experiments.

Statistics
In all cases where t tests and ANOVA’s were used, data was first verified to
be normally distributed using Kolmogorov test for normality. Otherwise,
Mann-Whitney U-tests were conducted. For panels with multiple tests,
Bonferroni correction was used to adjust the p values. To determine
whether any metabolic category was significantly dependent on
incompatibility groups, we implemented logistic regressions in MATLAB
with the function fitglm. Random forest classification was used to
establish the relative importance of prevalent metabolic genes and gene
categories predicting the presence of antibiotic resistance genes. Chi-
square tests were conducted to determine significant co-occurrence of
individual antibiotic resistant and metabolism genes. Dissociative
relationships were distinguished by the odds ratios from the chi-square
tests. To investigate whether the strong associations and disassociations
were driven by evolutionary constraints, or simply artifacts of a common
ancestor, we re-ran our statistical analysis using Coinfinder [29] to take in
our gene presence-absence data, along with the genome phylogeny, and
compute the Bonferroni-corrected statistical likelihood of coincidence
(either associations or dissociations), thereby accounting for evolutionary
relatedness.

DATA AVAILABILITY
All sequencing data is publicly available according to the accession IDS listed in
Supplementary Tables S2-3. All experimental raw data is available in the
supplementary materials. Any other materials will be made available upon request.
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