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Many ecosystems have been shown to retain a memory of past conditions, which in turn affects how they respond to future stimuli.
In microbial ecosystems, community disturbance has been associated with lasting impacts on microbiome structure. However,
whether microbial communities alter their response to repeated stimulus remains incompletely understood. Using the human gut
microbiome as a model, we show that bacterial communities retain an “ecological memory” of past carbohydrate exposures.
Memory of the prebiotic inulin was encoded within a day of supplementation among a cohort of human study participants. Using
in vitro gut microbial models, we demonstrated that the strength of ecological memory scales with nutrient dose and persists for
days. We found evidence that memory is seeded by transcriptional changes among primary degraders of inulin within hours of
nutrient exposure, and that subsequent changes in the activity and abundance of these taxa are sufficient to enhance overall
community nutrient metabolism. We also observed that ecological memory of one carbohydrate species impacts microbiome
response to other carbohydrates, and that an individual’s habitual exposure to dietary fiber was associated with their gut
microbiome’s efficiency at digesting inulin. Together, these findings suggest that the human gut microbiome’s metabolic potential
reflects dietary exposures over preceding days and changes within hours of exposure to a novel nutrient. The dynamics of this
ecological memory also highlight the potential for intra-individual microbiome variation to affect the design and interpretation of
interventions involving the gut microbiome.
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Ecological memory describes a broad range of phenomena in
which past disturbances experienced by an ecosystem influence
community responses in the present [1]. Such responses may
reflect prior abiotic experiences (e.g. past rain or fires shaping
reproduction strategies in plants) or biotic ones (e.g. species
extinction altering competitive phenotypes among extant organ-
isms) [2]. Knowing that ecosystems retain memory has helped
shape frameworks for reintroducing locally extinct species and
promoting species diversity in settings like hardwood forests [2, 3].
Ecological memory may also amplify the severity of ecosystem
damage caused by climate change [4].
Despite the power of ecological memory to understand and

manage ecological dynamics, our knowledge of how this concept
applies to microbial ecosystems remains sparse. Within individual
microbial species, evidence exists for memory-like processes.
Among bacterial monocultures, past environmental conditions
like nutrient availability affect metabolic potential [5–7], or the
ability to utilize a substrate of interest. Yet, at the microbial
community level, our understanding of how past environmental
conditions affect future ecosystem function is limited. Lasting
changes in the abundance of taxa result from disturbances like oil
spills [8, 9], antibiotic administration [10], dietary oscillations [11],

and infection [12]. In the human gut microbiome, it has been
demonstrated that infection [13] and obesogenic diet exposure
[14] induce a memory that affects the ecological outcome of
subsequent perturbations. Still, it is not yet known what
independent role microbes play in this memory (i.e. in the
absence of host factors), nor the mechanism and properties of this
memory. Furthermore, the fastest time scales on which microbial
communities form ecological memory remain undefined. Due to
the reproductive rates of bacteria, ecological memory may form in
microbial ecosystems orders of magnitude faster than in commu-
nities of plants and animals as with prior observations of
ecological succession in microbial ecosystems [12]. Understanding
how and on what time scales memory forms should therefore
provide fundamental insights into the ecological processes
governing microbial community composition and metabolism.

RESULTS
Nutrient metabolism in the human gut provides an opportunity to
test for ecological memory in a microbial community setting.
Nutrient availability plays a crucial role in determining the form of
cooperative and competitive interactions in the gut [15], and host
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intake of nutrients varies on a daily basis [16]. We thus reasoned
that if the metabolic potential of the human gut microbiome
reflects recent nutritional availability, newly introduced nutrients
would be incompletely metabolized and require multiple expo-
sures to be fully utilized by intestinal bacteria. To test this
hypothesis, we analyzed samples from 40 participants enrolled in
a randomized placebo-controlled study. Individuals in the
prebiotic group consumed 18 g/day of inulin (Fig. S1A–D), a
nutrient that can be metabolized by the gut microbiome [17], but
which is typically consumed by individuals at low amounts (1–4 g/
day) [18]. These participants were not subject to any dietary
restrictions for this study, and diet was monitored throughout the
study by an initial Diet History Questionnaire III (DHQ3) and two
Automated Self-Administered 24-Hour Dietary Assessments
(ASA24).
We measured metabolic potential before and after inulin

exposure using an ex vivo assay of the capacity for the fecal
microbiome to degrade carbohydrates over the course of 24 h
[19]. We observed a significant increase in inulin degradation after
participants in the prebiotic group consumed inulin for one day
(p= 0.028, mixed-effects GLM; Figs. 1A, S2A). An improvement in

average metabolic potential between Week 1 to Week 2 was
observed for 17/19 (90%) of participants in the prebiotic group
(Fig. S2A). We did not identify any specific taxa in this dietary
intervention cohort significantly altered by treatment (Benjamini-
Hochberg adjusted p > 0.05, ALDEx2 GLM; Fig. S3A–C), an
outcome we consider likely due to different microbial species
sharing the same functional role across individuals [20] as well as
the short-term nature of our intervention. These findings suggest
that within 24 h of a nutrient shift, the human gut microbiome
alters its metabolic potential to favor metabolism of the added
nutrient. Importantly, since this was a free-eating cohort, our
findings demonstrate the practical capability of supplemental
fiber to induce measurable metabolic changes in vivo within the
context of typical day-to-day dietary variation.
To examine how inulin exposure altered the metabolic potential

of the human gut microbiome, we considered three primary facets
of ecological memory: lag, duration, and strength [1]. Lag refers to
the amount of time after a disturbance before the event is
translated into a differential response to future stimuli. To measure
memory lag with greater resolution and control than possible
among humans in vivo, we employed an “artificial gut” model of

Fig. 1 Ecological memory of prior nutrient exposure is encoded within 24 h. A Inulin/FOS concentrations after incubation of slurried stool
samples with inulin for 24 h ex vivo. (p= 0.028 and 0.019, mixed-effects GLM; n= 21 participants in placebo group, 19 in prebiotic group.)
B Minimum pH reached over the 24 h following each inulin dose. Continuous pH trace for Vessel 1 shown. (Mixed-effects linear model with
“no dose” as intercept; n= 7 vessels.) C Concentration of inulin remaining in each artificial gut vessel 6 h after dosing. (Mixed-effects linear
model with dose 1 as intercept; n= 7 artificial gut vessels.) D Concentration of inulin remaining in each vessel after 6 h by time since previous
dose. (Mixed-effects linear model with 1st dose as intercept; n= 7, 2, 2, and 7 vessels, respectively. Setting the model intercept to 1 day shows
a significant difference, p= 0.048, between 1 and 3 days.) E Average final inulin concentration (of triplicate batch cultures) after 6 h incubation
on inulin, preceded by pre-treatment with an inulin dose of varying concentration. Log2 regression line plotted. (n= 7 conditions.) A–D Mean
and standard error plotted. *p < 0.05, **p < 0.01, ***p < 0.001.
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the distal colon seeded with a fecal microbiome sample from a
healthy human donor (Fig. S1E, F) [21]. To measure lag, we dosed
each artificial gut vessel with a single 2 g dose of inulin each day
(calculated initial concentration= 5mg/mL). We measured differ-
ential responses to inulin supplementation by direct measurement
of inulin concentration at −2 h and +6 h from each dose, as well
as by continuous monitoring of pH, which decreases as inulin is
metabolized [22] and impacts the overall ecology of the gut
microbiome [23]. These measurements revealed that by the
second day of inulin treatment, gut microbial metabolism was
altered, as ecosystem pH reached a significantly lower minimum
value on the second and subsequent days of dosing compared to
the first (p < 0.001, mixed-effects linear model, Fig. 1B). Likewise,
significantly less inulin remained in vessels at +6 h on the second
and third days of dosing (p < 0.001, mixed-effects linear model,
Fig. 1C). While nearly the entire initial concentration of inulin
remained at +6 h from dose 1, the full amount had been either
metabolized or washed out (by the continuous flow of spent
media out and fresh media in) of the vessel at +22 h (Fig. S2B).
Together, these findings suggest the gut microbiome can encode
memory to a nutritional stimulus within a day of exposure.
We next investigated the duration and strength of microbiome

memory. We added a second dosing week to our artificial gut
model in which we varied the length between doses (Fig. S1E).
Extending this period to two days between doses reduced, but did
not entirely negate, the enhanced pH response (Fig. S1C).
Microbiome potential to degrade inulin persisted even longer
and remained enhanced when doses were separated by three
days (p < 0.001, mixed-effects linear model; Fig. 1D), although the
response at 3 days was less than that at 1 day (p= 0.048; mixed-
effects linear model with 1 day as intercept). We then set up a
high-throughput in vitro anaerobic batch culture system to
measure how the strength of microbiome memory varies
following a wide range of inulin exposures [24]. We observed a
negative dose-dependence between concentration of inulin pre-
treatment and subsequent metabolic memory (Spearman correla-
tion p < 0.001; Fig. 1E, S2D). Notably, maximal inulin breakdown
efficiency and acidification were reached below our original dose,
which suggested that the gut microbiome’s ability to be primed
for inulin metabolism could be saturated.
Having observed changes in community-level metabolism, we

employed a multi-omics approach to determine the extent to
which repeated nutrient exposure impacted community composi-
tion and function. While none of the 103 taxa analyzed by 16 S
rRNA gene amplicon sequencing were found to have changed in
abundance following the first inulin exposure (dose 1 h 6), forty-
nine (48%) had altered abundance following the second exposure
(95% credible interval excluding zero, Bayesian multinomial
logistic-normal model; Figs. 2A, S4C). Similarly, RNA sequencing
revealed that across the global transcriptome (i.e. the collective
transcriptome of the whole community), only two gene groups
were differentially expressed after the first inulin dose; following
the second dose, 18 genes were differentially expressed (p < 0.05,
ALDEx2 GLM with Benjamini-Hochberg correction; Fig. 2B). The
two rapidly upregulated gene groups (K01212, levanase
[EC:3.2.1.65]; and K01238, SUN family beta-glucosidase [EC:3.2.1.-
]) both encode glycoside hydrolases. Analyzing transcriptional
changes within taxa, we found that the upregulation of these
genes came from three Bacteroides taxa: B. caccae, B. ovatus, and B.
uniformis (Fig. 2C), including previously studied inulin utilization
loci within these taxa [25, 26]. Furthermore, the initial set of
differentially expressed transcripts was significantly enriched for
carbohydrate metabolism and transport functions (COG category
“G”; p= 0.020, chi-squared test; Fig. S5D). Following dose 2, there
was a 2.6-fold change in the number of genes with expression
changes (p < 0.05, ALDEx2 GLM with Benjamini-Hochberg correc-
tion), and an additional 19 taxa (a 50% increase) had at least one
such transcript (Fig. S3B).

Metabolomic analyses further confirmed widespread alterations
to microbial biochemical activity and environment following
repeated nutrient exposure. Total short-chain fatty-acid (SCFA)
content was not significantly altered after the initial inulin dose,
but was significantly increased after the second (p < 0.001, mixed-
effects linear model; Fig. 2D), a trend which was driven by
increases in acetate and butyrate (Fig. S6A). Since SCFA
production is a major driver of acidification in the gut [27], these
observations may explain the observed lag in pH decrease
(Figs. 1B, S2C). Untargeted metabolomics revealed a 15.5-fold
increase (2–31) in the number of metabolites whose levels
changed after the second dose of inulin relative to the first
(p < 0.05, mixed-effects linear model; Figs. 2E, S6B). Notably, the
set of metabolites that increased after the second dose included
fructose breakdown intermediates and five amino acids (p < 0.05,
mixed-effect linear model; Figs. 2E, S6B), which suggests a shift
from proteolytic metabolism towards a more saccharolytic state
[28, 29]. More broadly, our multi-omic analyses point to
significantly greater changes in microbiome composition and
activity as being associated with repeated nutrient exposure.
We investigated the specific ecological shifts that could amplify

microbiome responses to a second inulin dose. We did not
observe evidence that extracellular secretions induced memory, as
inulin metabolism among inulin-naïve cultures could not be
enhanced by adding conditioned media from inulin-treated
cultures (Fig. S7A). We also did not find that changes to overall
cell density in culture were related to inulin metabolic rates
(Fig. S7B-C). We therefore hypothesized that nutrient-induced
changes in transcription and abundance, which have been well
documented in individual taxa [5–7, 30], drove the observed
ecological memory. Indeed, we were able to positively associate
community taxonomic changes with microbiome memory to
inulin exposure. Our 16S rRNA gene amplicon sequence analysis
of artificial gut communities in the two hours prior to the second
inulin exposure revealed that 19 out of 103 analyzed amplicon
sequence variants (ASVs) were significantly altered in abundance
(95% credible interval excluding zero, Bayesian multinomial
logistic-normal model; Fig. S4) relative to two hours prior to the
first dose. These ASVs included Bacteroides caccae, a known
primary degrader of inulin (Virtual Metabolic Human [VMH]) [31],
as well as Bacteroides sp. and Bifidobacterium sp., two genera that
contain inulin-degrading species, and taxa such as Lachnospir-
aceae NK4A136 group previously shown to be associated with
intestinal SCFA levels [32] (Figs. 2A, S4C). To test whether
increased relative abundance of a single primary degrader could
confer enhanced metabolic potential, we added an inulin-naïve B.
caccae isolate derived from our artificial gut community (since we
had observed both transcriptional and abundance changes in this
taxon) to inulin-naïve stool-derived mixed community cultures. B.
caccae spike-in was sufficient to enhance inulin metabolism
(Fig. S7D), supporting the hypothesis that changes in the
abundance of primary degraders may be sufficient to drive
memory in microbial communities.
Given the known role of polysaccharide utilization loci (PULs)

[33] in carbohydrate sensing among individual gut microbes [34]
and in the context of cooperative and competitive interactions in
the gut microbiome [25, 26], we also expected to observe changes
among select microbes after initial exposure to inulin in our
artificial gut. Indeed, in our metatranscriptomics results, we found
activation/repression of PULs in twelve Bacteroides taxa in the
hours preceding the second inulin dose (Figs. 3A, S8). In order to
circumvent the influence of compositional changes on our
interpretation of the metatranscriptome, we ran an individual
ALDEx2 GLM for each taxon; thus, these differences reflected
changes in the expression of genes within a given genome and
not simply changes in bacterial taxonomic abundance. The PULs
identified included genes encoding inulin-degradative glycoside
hydrolase family 32 (GH32) enzymes, which were also upregulated
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in the global transcriptome after a second inulin dose (Fig. 2B, C),
as well as transcriptionally linked SusC/SusD homologs, which
work together to bind and import oligosaccharides [34] (Figs. 3A,
S8). Given, however, that these PULs were activated even earlier,
at dose 1 h 6 (Figs. 2C, 3A, S8), we suspected that transcriptional
changes played a role in enabling growth on the new substrate. In
support of this hypothesis, we found that even after controlling for
starting cell density, inulin pre-treatment enhanced the ability of

B. caccae to grow on inulin (Fig. S7E, F). We therefore suspect that
patterns of transcriptional change observed when monocultures
of bacteria leave lag phase during diauxic shifts [30] are likely to
also occur among Bacteroides species in a mixed species setting.
We also identified upregulated sets of syntenic genes outside of

Bacteroides, identifying several putative carbohydrate-associated
loci (p < 0.05, ALDEx2 GLM with Benjamini–Hochberg correction;
Fig. S9) in taxa that degrade products of inulin hydrolysis (glucose,
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fructose, sucrose, or short-chain fructo-oligosaccharides [scFOS])
[31]. Seven Bacteroides and two Clostridium species had loci with
at least one gene still significantly upregulated two hours prior to
the second prebiotic dose (Figs. S8 and 9). Three of these
Bacteroides taxa maintained activation of genes encoding inulin-
degrading enzymes, and B. caccae also continued to upregulate a
fructokinase gene (p < 0.05, ALDEx2 GLM with Benjamini-
Hochberg correction; Figs. S8, S5E). This transcriptional activity,
coupled with enhanced degradation of inulin (Fig. 1C), may have
enabled additional taxa to upregulate genes involved in pathways
downstream of inulin processing [35] (Figs. 2B, S5E) and increase
SCFA production (Figs. 2D, S6A). Our metagenomic and metabo-
lomic data suggest that sustained expression of GH32 enzymes,
along with increased relative abundance of the taxa that produce
them (Fig. 2A), prime microbial communities for a more wide-
spread metabolic response to inulin upon re-exposure (Fig. S5E).
Given that expression of a particular PUL or growth of a certain

taxon may be activated by multiple substrates [25], we reasoned
that ecological memory of inulin may trigger, or be triggered by,
ecological memory of related carbohydrate compounds. We found
evidence for this model in our human dietary intervention study.
Participants’ total baseline dietary fiber intake, as estimated by
Diet History Questionnaire III (DHQ3), was negatively correlated
with fecal inulin/FOS content in donor stool one day after the start
of treatment in the prebiotic group (p= 0.023, Spearman
correlation) but not the placebo group (p= 0.40, Spearman
correlation; Fig. 4A). Thus, participants who habitually consumed
a high rate of dietary fiber initially tended to excrete less
undigested inulin than individuals with low habitual fiber
consumption. Furthermore, a positive correlation was found
between the change in fecal inulin/FOS content from treatment
day 1 to treatment day 4 in the prebiotic group only (p= 0.024,
Spearman correlation; Fig. 4B). Baseline fecal inulin/FOS concen-
trations did not differ between groups (Fig. S2E), and therefore
does not explain these differences. This correlation suggests that
low habitual fiber consumers stand to receive the greatest benefit
in metabolic potential from supplementation, consistent with
prior findings from our lab [36].
We tested the cross-reactivity of ecological memory to inulin

degradation using in vitro batch cultures with the same inoculum
used for the artificial gut experiments. We treated human gut
microbiome cultures with the constituent components of inulin
(fructose, glucose, sucrose, and FOS/inulin of various chain
lengths). This treatment indeed enhanced subsequent inulin
metabolism to varying degrees (p < 0.05, linear model; Fig. S10A,
B). The magnitude of this effect was correlated with component
chain length (p= 0.0499, Spearman correlation; Fig. 4C). To test
ecological memory responses to non-fructan polysaccharides, we
fermented batch cultures with dextrin, galacto-oligosaccharides
(GOS), inulin, or control, performing every combination of pre-
treatment and second treatment (16 combinations total). We
found evidence of prebiotic memory within both dextrin and GOS
based on final culture pH (p < 0.05, t-test; Fig. 4D). We additionally

found that exposure to GOS or dextrin resulted in partial,
significant increases in inulin degradation capacity (p < 0.01, linear
model; Fig. 4E) and significant decreases in culture pH relative to
control following inulin treatment (p < 0.001, linear model; Fig. 4F).
Community analysis of microbiome cultures revealed that while
no taxa were significantly correlated with the amount of inulin
remaining in culture (Benjamini–Hochberg corrected ALDEx2
Spearman correlation p > 0.05, Fig. S10C), we did identify taxa
that significantly correlated with pH (Fig. S10D). In both analyses,
the top correlated taxon was Erysipelatoclostridium ramosum,
which was correlated with subsequent inulin response in terms of
pH (p= 0. 0.0036, Benjamini-Hochberg corrected ALDEx2 Spear-
man correlation; Fig. S10E, F), and significantly increased in
abundance by pre-treatment with each of the three prebiotics
tested (p < 0.001, Benjamini-Hochberg corrected ALDEx2 GLM;
Fig. S10G). E. ramosum is a known degrader of scFOS, as well as
the component mono- and di-saccharides of GOS and dextrin,
respectively [31], which suggests that cross-reactivity may be
driven by increased abundance of generalist taxa. These findings
support a model where ecological memory within a microbial
community can exhibit cross-reactive properties in which altering
the abundance of a nutrient-degrading microbial species ulti-
mately impacts the rates at which related nutrients will subse-
quently be metabolized. Furthermore, which taxa encode
ecological memory is likely dependent both on the specific
nutrient and which primary degraders are present in the starting
community.

DISCUSSION
In concert, our findings demonstrate the existence of ecological
memory of past nutrient exposure in the human gut microbiome.
Previous microbiome studies have also shown that past dis-
turbances to the gut microbiome induce memory involving host
processes (e.g. host metabolite production in response to
infection [13], host weight gain [14]). However, it had not been
previously shown that nutrient memory occurs as a community-
level emergent property. Here, we elucidate fundamental
processes underlying ecological memory in microbial commu-
nities. In particular, while microbiome metabolism is often
measured by SCFA production or transcriptional analysis, we
directly measured inulin breakdown over time (Fig. 1A, C, D),
enabling us to assess both the immediate action of inulin
degraders as well as the effects of broader cross-feeding
interactions on the metabolome (Figs. 2D, E, S6). Our results
support a working model in which transcriptional changes among
primary prebiotic degraders after nutrient exposure allow levels of
these degraders to expand; following expansion, the elevated
abundance of primary degraders is sufficient to encode nutrient
memory (Figs. 2A–C, S7D–F). We hypothesize these shifts among
primary degraders initiate a cascade of nutrient sensing events
driven by cross-feeding interactions that leads to further changes
in community composition (Figs. 2A, S4C) nutrient breakdown (i.e.

Fig. 2 Compositional, transcriptomic, and metabolic changes reflect nutritional memory in artificial guts. A Examples of taxa found to be
significantly altered in abundance with inulin treatment by 16S rRNA gene amplicon sequencing (of 59 total differentially abundant taxa
shown in Fig. S4), selected to highlight the different outcomes observed. B. caccae (ASV 13) and Lachnospiraceae NK4A136 group sp. (ASV 37)
increased by the dose 2 h −2 (positive β2, β3, and β4), Bacteroides sp. (ASV 22) increased by dose 2 h +6 (positive β3 and β4), Hungatella sp. (ASV
24) and Erysipelatoclostridium ramosum (ASV 36) increased transiently for the second and subsequent doses (positive β3 only), and
Lachnoclostridium sp. (ASV 10) decreased after the second dose (negative β3 and β4). Dashed lines represent times of inulin dosing.
(Multinomial logistic-normal model; n= 6 vessels.) B Heatmap of KEGG gene functions found to be differentially expressed by time point in
the global transcriptome. Color scale denotes ALDEx2 effect size estimate relative to baseline (ALDEx2 GLM significance from baseline shown;
n= 5 vessels.) C Gene transcripts significantly differentially expressed in the within-taxon analysis and mapping to KEGG categories increased
at the earliest time point in panel (B). D Total SCFA concentration in artificial gut vessels over time. (Mixed-effects linear model with dose 1 h
−2 (day 1.42 on x-axis) as intercept; n= 7 vessels.) E Change in concentration of select metabolites relative to baseline. Top row: fructose
metabolism intermediates. Bottom row: amino acids. (Mixed-effects linear model significance from baseline shown; n= 6 vessels.) A, C–E Dot
colors are used to distinguish individual artificial gut vessels. Mean and standard error plotted. *p < 0.05, **p < 0.01, ***p < 0.001.

J. Letourneau et al.

2483

The ISME Journal (2022) 16:2479 – 2490



increased saccharolytic and reduced proteolytic fermentation;
Figs. 2E, S5E, S6B), and metabolite production (e.g. SCFA
production; Figs. 2D, S6A).
Previously, metagenomic studies have inferred functional

changes on the order of days or weeks based on changes in
genes detected, often limited by sampling frequency [37, 38].
Changes in expression of metabolism-related genes have been
shown by metatranscriptomic analysis in participants during a five
day dietary intervention [39]. Our findings suggest ecological
memory can be encoded even more rapidly, on sub-daily time

scales for the human gut microbiome (Fig. 2B, C), consistent with
past findings showing that fecal SCFA content varies by the time
of day samples are taken, which suggested the possibility of sub-
daily functional shifts [40]. This response time is consistent with
how quickly individual microbes are known to undergo diauxic
shifts, which also occur on the order of hours [41]. Importantly,
these time scales are relevant to human nutrition, as we showed
that low-fiber consuming individuals excreted more inulin on the
day after their first dose, but that just one day was sufficient time
to improve the metabolic potential of the microbiome of

Fig. 3 Bacteroides PUL activation precedes broader transcriptional and compositional changes in artificial guts. A Activation and
repression of select PULs in Bacteroides by time point. (ALDEx2 GLM; n= 5 artificial gut vessels). Gene text color depicts functional categories
from PULDB, notably SusC/SusD systems and glycoside hydrolase family 32 (GH32) enzymes (GH glycoside hydrolase family, HTCS hybrid two-
component system, MFS major facilitator superfamily transporter, unk unknown). Not all distances between genes to scale. B Corrected p
values by time point for all genes analyzed within taxa by ALDEx2 GLM. Taxa clustered along x-axis by output of phylogenetic tree clustering.
At Dose 1 h +6, we detected 420 differentially expressed genes among 38 taxa (17 of which were Bacteroides), from a post-filtering set of
62,181 genes in 178 taxa (37 Bacteroides). At Dose 2 h −2, there were 355 genes from 44 taxa (23 Bacteroides). At Dose 2 h +6, there were 1082
genes from 57 taxa (25 Bacteroides). *p < 0.05, **p < 0.01, ***p < 0.001.
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participants (Figs. 1A, 4A, B). These findings demonstrate that
intrinsic ecological processes of microbial communities may
exhibit memory, and suggest a potential for such fundamental
processes to underlie downstream host outcomes.
Selective pressures for rapid microbial metabolic change may

exist in environments like the mammalian gut, where commu-
nity members replicate on short time scales and nutrient
availability varies in both stochastic and rhythmic manners
within a single day [42]. Such adaptation may also benefit hosts
by providing them with an adaptive microbial response to
dietary shifts [40]. Yet, given the benefits to rapid metabolic
plasticity, it is perhaps surprising that we also observe evidence
that after a nutrient is withdrawn, ecological memory persists for
days and therefore likely across multiple generations of bacteria.
Bacterial communities or their members may benefit from “bet
hedging” strategies that balance the odds that a withdrawn
nutrient is reintroduced [30]. It is also possible that once the
transcriptional, compositional, and metabolomic landscape of a
microbial community has been altered, restoring to an original
starting state will encounter delay [43]. Understanding these
temporal dynamics can aid in the rational design of prebiotic
treatments by highlighting the importance of recent nutritional
exposures and the frequency of treatment dosage.
Our finding of ecological memory in human gut microbial

systems also suggests avenues for the rational design of
treatments that alter how the gut microbiome harvests energy
[44] or metabolizes drugs [45, 46]. To date, individualized
therapies have accounted for inter-individual variation in
microbiome composition and function, which have been linked
to fixed population differences in both overall diversity and
specific taxonomic differences [47, 48]. Yet, if the metabolic
potential of the gut microbiome is plastic, observed microbiome
heterogeneity may also reflect recent intra-individual variation
in behavior or lifestyle. Indeed, it was recently shown that

antibiotic administration drives changes in metabolic potential
to degrade dietary fiber [49]. Conversely, given our observations
on prebiotic cross-reactivity (Figs. 4, S10), it is possible that
prebiotic administration may be used to broadly alter a gut
microbiome’s metabolic state prior to an unrelated intervention
in order to enhance positive effects or reduce undesired ones.
Rationally designed therapies may therefore benefit from
monitoring changes to, and even manipulating, microbiome
metabolic potential over time [50]. For example, our work
suggests that microbiome-targeting nutritional interventions
have the most potential to impact the microbial metabolism of
individuals who are normally deficient in that nutrient’s intake
(Fig. 4A, B). Moreover, our finding that microbiome memory
does not persist indefinitely suggests that such interventions will
require repeated administration to sustain their microbial
ecological impact.

MATERIALS AND METHODS
Carbohydrate sources
The following sources of fructan prebiotics were used in this study:
Synergy1 inulin (Orafti), inulin from dahlia tubers (Sigma), fructo-
oligosaccharides from chicory (Sigma), inulin (NOW), and inulin FOS
(Jarrow) (Fig. S11). Orafti Synergy1 inulin was used for the human study as
a food-safe ingredient that could be added to the snack bars, Sigma inulin
from dahlia tubers was used for in vitro work including the artificial gut run
as a relatively pure long-chain inulin. Jarrow inulin FOS was used for its
greater solubility in select in vitro experiments (Figs. 4D, E, S7B, C, E,
S10C–G), where it was necessary to measure absorbance and/or ensure
that pre-treatment inulin could be removed (via supernatant) prior to the
treatment phase.
The following sources of non-fructan prebiotics were used: dextrin

(Benefiber) and galacto-oligosaccharides (Bimuno). The following simple
sugars were also used: dextrose (Amresco), fructose (Amresco), and sucrose
(Sigma).

Fig. 4 Ecological memory is cross-reactive. A, B Correlation between participant baseline dietary fiber (DHQ3) intake and fecal inulin/FOS
content on treatment day 1 (A) or the change in fecal inulin/FOS from treatment day 1 to treatment day 4 (B). (n= 21 participants in placebo
group, 16 in prebiotic group.) C Correlation between average degree of polymerization (DP) of pre-treatment inulin or constituent sugar and
average final inulin concentration (of triplicate cultures; n= 6 conditions). D Final pH after 6 h fermentation on dextrin, GOS, or inulin, with
and without pre-treatment of the same prebiotic. (t-test; n= 3 batch cultures.) Final inulin/FOS concentration (E) and pH (F) after 6 h
fermentation on inulin, after pre-treatment with different prebiotics. (Linear models with control as intercept; n= 3 batch cultures.) Mean and
standard error plotted. *p < 0.05, **p < 0.01, ***p < 0.001.
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Participant recruitment and sample collection
Human participant data presented in this paper is a secondary, post hoc
analysis of a cohort recruited primarily to test a link between the gut
microbiome and aspects of cognition and behavior. The original study
protocol was approved by the Duke Health Institutional Review Board (IRB)
at Duke University under protocol number Pro00093322, and registered on
ClinicalTrials.gov, with the identified number NCT04055246. We recruited
40 healthy subjects by use of flyers on Duke University campus as well as
electronic postings on DukeList (a university-internal classifieds website), a
lab website, and ClinicalTrials.gov. All patients provided written informed
consent via an electronic consent form (eConsent) prior to participation in
the study protocol.
All participants were between the ages of 18 and 35, weighed at least

110 pounds (50 kg), and had a body mass index (BMI) between 17.0 and
27.5. Furthermore, individuals were excluded from participation if they:
had a diagnosis of psychiatric or neurological disorder, were currently on
steroid medications, had used recreational drugs within the past month,
consumed at least 2 alcoholic beverages per day on average, had dietary
restrictions of milk or dairy products, had food allergies to wheat/gluten/
nuts/soy, or were currently pregnant or breastfeeding. A secondary screen
further excluded individuals who scored greater than 9 on a modified
Patient Health Questionnaire-9 (PHQ-9, a depression severity question-
naire), had a colonoscopy or oral antibiotics within the past month, or had
a history or current diagnosis of any of the following: irritable bowel
syndrome, inflammatory bowel disease, type 2 diabetes, chronic kidney
disease with decreased kidney function, intestinal obstruction, or
untreated colorectal cancer.
Participants were 60% female (24/40) and 40% male (16/40).

Participants were 57.5% white (23/40), 40% Asian (16/40), 2.5% Black
(1/40), 2.5% Native American (1/40), 2.5% Native Hawaiian or Other
Pacific Islander (1/40), and 12.5% Hispanic or Latino (5/40). Average age
at time of enrollment was 25.6 ± 4.9 years (mean ± stdev). Most
participants (67.5%; 27/40) were omnivores, 17.5% were vegetarian (7/
40), 12.5% ate everything except red meat (5/40), 2.5% did not respond
to this question (1/40), and none were vegan. Average weight was
147.9 ± 21.6 lb and average BMI was 23.2 ± 2.2.
Participants provided stool samples twice weekly on Tuesday and Friday

over a 3-week study period (Fig. S1A). Samples were self-collected using
polypropylene scoop-cap tubes (Globe Scientific), and participants were
instructed to keep samples in personal freezers until ready to transport to
lab using a provided insulated container and ice pack. Once arrived,
samples were kept at −20 °C for up to a week and then moved to −80 °C
until further processing. If a participant was unable to produce a sample on
the requested day, they were instructed to provide the next available
sample (on Wednesday or Thursday in place of a Tuesday sample, or on
Saturday or Sunday in place of a Friday sample). For statistical analysis
purposes, we treated any such samples as Tuesday or Friday samples, since
they still represented the first possible measurement after 1 or 4 days,
respectively, of consuming the snack bars.
On the second study week, participants consumed treatment bars

(Fig. S1B) twice daily for five days (Monday through Friday) containing
either 9 g/bar inulin (prebiotic group, n= 19) or 9 g/bar maltodextrin
(placebo group, n= 21) (Fig. S1D). Participants were blinded to which
group they were in (Fig. S1C). The bars were manufactured by the Natick
Soldier Research Development and Engineering Center (NSRDEC) in
Natick, MA, USA, based on a modified formula of the First Strike bar
manufactured at NSRDEC. This formulation does include fructose, the
constituent monosaccharide of inulin (Fig. S1D). Due to the absorption
of fructose by the upper GI tract, gut microbes, particularly colonic
microbes, are not exposed to significant levels of free fructose from diet;
inulin, however, is recalcitrant to breakdown and absorption by human
enzymes and does serve as a nutrient source for colonic gut microbes
in vivo [51].
Participants were not asked to restrict their diet for the study, and

instead were instructed to continue their typical diet. All participants
completed three dietary surveys. The Diet History Questionnaire III (DHQ3)
was administered prior to the Baseline and assessed participants’ eating
habits over the past month. The Automated Self-Administered 24-h Dietary
Assessment Tool (ASA24-2018) was administered twice, once during the
baseline week and once during the treatment week.
In some instances, a participant did not provide a stool sample on the

day requested or not enough sample was present for all analyses, and
one participant did not complete the DHQ3. Thus, n is not always 19 for
the placebo group and 21 for the prebiotic group; otherwise, no samples
were intentionally excluded from analysis.

Measurement of metabolic potential in stool samples
To measure the capacity of microbial communities to degrade prebiotic
substrate, we used a previously described stool fermentation assay [19].
Briefly, stool samples were weighed out in an anaerobic chamber and
combined with pre-reduced phosphate-buffered saline (PBS) at 10%
weight/volume in polyethylene filter bags with 0.33-mm pore size (Whirl-
Pak B01385). Samples were then homogenized (aerobically) using a
stomacher (Seward Stomacher 80 MicroBiomaster) set to medium for 60 s.
Total time exposed to oxygen did not exceed 10min.
Either 1 mL of either PBS (control) or 1% (10mg/mL) solution of Orafti

Synergy1 inulin was added to 24-well plate wells. Then, 1 mL of stool slurry
was aliquoted into each well (final concentration of inulin 5mg/mL). Plates
were sealed with adhesive foil seals and incubated anaerobically for 24 h at
37 °C. Aliquots were taken from each well and saved at −80 °C.

Artificial gut culturing and sampling
Artificial guts were run according to a previously established protocol [21].
An eight-vessel continuous flow artificial gut system (Multifors 2, Infors) was
used to culture gut microbes seeded from human stool samples. One of the
vessels (vessel 5) was not inoculated for this run due to a component that
was found to be non-functioning prior to inoculation. Replicate artificial gut
vessels were uniformly inoculated with a starting community derived from
a single healthy stool donor so that our analyses could assume
measurement variation was due to technical sources of noise [21]. Since
these vessels maintain stool-derived cultures, we consider them as models
of the distal colon [52]. Vessels were sterilized and prepared with 300mL of
fresh modified Gifu Anaerobic Medium (mGAM) [53]. Nitrogen was sparged
into the vessels at 1 L/min to maintain positive pressure and create an
anaerobic environment [54]. Vessels were inoculated using culture aliquots
saved at −80 °C from a previous artificial gut run (original fecal samples
obtained from a healthy volunteer who provided written informed consent
per Duke Health IRB Pro00049498). From each of 12 frozen aliquots, 1.5mL
was added to 5mL mGAM media and incubated for 6 h at 37 °C in an
anaerobic chamber (Coy). Five milliliters of these cultures were then
transferred to media bottles containing 100mL mGAM and incubated
overnight (17 h) at 37 °C. After this final incubation, cultures were combined
aseptically in a biosafety cabinet and loaded into syringes, with two 50mL
aliquots inoculated into each vessel via a septum in the vessel lid, for a final
working volume of 400mL. The media feed was started 24 h after
inoculation at a constant rate of 400mL per day (a rough approximation of
24 h average passage time in the human GI tract). Dosing began on
day 14 after inoculation; the length of this “burn-in” period is based on prior
studies suggesting that it takes approximately 2 weeks for the community
composition to stabilize [55].
The pH of each vessel was monitored and controlled by the IRIS software

(v6, Infors), and pH was measured continuously with Hamilton EasyFerm
Plus PHI ARC 225 probes. The pH probes were calibrated with a two-point
calibration with standardized pH buffers at 4.00 ± 0.1 and 10.00 ± 0.1
(BDH). Vessel pH was maintained within the ranges of 6.8 ± 0.1 during the
burn-in phase and 6.2 ± 0.7 thereafter (to enable us to observe
fermentation-induced pH shifts) using a 1 N HCl solution and a 1 N
H3PO4 solution. Prior to dosing, pH was stable at around 6.9. Vessels were
maintained at 37 °C via the Infors’s onboard temperature control system.
Vessels were continuously stirred at 100 rpm using magnetic impeller stir
shafts.
Prior to sampling, sampling lines were cleared with a 0.2 μm filter-tipped

syringe and wiped clean with 70% ethanol. Sampling consisted of the
collection of 7 mL of active artificial gut culture via sterile syringe and then
immediate storage in labeled cryovials at −80 °C. Dosing was done by
combining 16 g inulin with 80mL PBS in a biosafety cabinet, and
administering 10mL of the mixture to each vessel by needle-equipped
syringe through a septum at the top of the vessel.
Samples from all seven inoculated vessels were analyzed for inulin

content, pH, and SCFA content, as described below. Due to an issue with
media flow on the final day of treatment (day 11; Fig. S1E), samples from
this day were not analyzed for inulin content, and instead, samples from all
7 vessels on day 8 were used to test the effect of 3 days between doses
(Fig. 1D). Due to analytical pipeline throughput limitations, we prioritized
samples from six of the vessels for metatranscriptomic sequencing and
untargeted metabolomics. Additionally, DNA/RNA sequencing data from
one of the artificial guts (vessel 3) was excluded from statistical analyses
involving the origins of ecological memory, due to this replicate exhibiting
evidence for a further delayed memory effect (outlier point at dose 2 in
Fig. 1B, C).
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Small-batch bacterial culturing
To perform controlled in vitro experiments in a more high-throughput way
than the artificial gut allowed, we carried out small-batch anaerobic culture
experiments based on previously established protocols [24]. Cultures were
started from a 1mL frozen aliquot from a previous artificial gut run added
to 4 mL mGAM, which was grown anaerobically for 6–8 h at 37 °C in a
14mL polystyrene round-bottom tube. This 5 mL culture was then added
to 45mL mGAM and grown overnight (16–18 h) at 37 °C. Following this
overnight culture, culture tubes each containing 3mL mGAM were
inoculated with 1mL overnight culture for a total volume of 4mL.
Cultures were pre-treated by adding 200 μL of carbohydrate at 100mg/mL
(except for the dose-response experiment), for a final concentration of
4.8 mg/mL. After 24 h incubation, cells were spun down 10min at 3000 × g
and resuspended in fresh mGAM along with 200 μL of inulin at 100mg/mL.
Samples were collected after a final 6 h incubation. Inulin concentration
was analyzed by HPAEC-PAD as described below and endpoint pH was
measured by Accument AR-15 pH meter (Fisher Scientific).
Conditioned media was generated by growing stool-derived microbiota

cultures on mGAM overnight and filter-sterilizing the resultant culture. The
B. caccae isolate used was previously isolated from the community used for
the artificial gut experiment. For the spike-in experiment (Fig. S7D),
cultures were grown overnight, then diluted 1:10 and grown for 6 h with or
without inulin. OD600 was measured, and diluted with fresh mGAM to a
combined calculated OD600 of 1.0 in each 4mL culture, with B. caccae and
whole community cultures mixed at 10/90 or 50/50% by OD600.
For the growth curve experiment (Fig. S7E, F), cultures were pre-treated

for 9 h on (inulin-naïve) conditioned mGAM supplemented with 4.8 mg/mL
glucose or inulin/FOS (Jarrow) at which point OD600 was measured and
cultures were diluted to a calculated OD600 of 0.5 into 200 μL conditioned
mGAM plus 10 μL of 100mg/mL glucose of inulin (final concentration of
4.8 mg/mL) in a 96-well plate. Absorbance was measured by SPECTROstar
Nano Microplate Reader (BMG Labtech) in the anaerobic chamber, with 48
readings taken at 30min intervals, with the plate shaken before each
reading (OD600). A growth curve was fit using the growthcurver package
in R (Fig. S7F).

Quantification of inulin
Analysis of inulin content was performed by high-performance anion-
exchange chromatography with pulsed amperometric detection (HPAEC-
PAD). Briefly, 200 µL of each sample (in randomized order) was added to
800 µL of deionized (DI) water, ACS reagent grade, 18 MΩ-cm resistivity.
Samples were then centrifuged at 14,000 × g for 5 min at 4 °C. The
resulting supernatant was transferred to a 0.22 µm spin filter column and
centrifuged at 14,000 × g for 5 min at 4 °C. The filtrate was analyzed on a
Dionex ICS-6000 HPIC system equipped with a Dionex AS-AP autosampler
and a pulsed electrochemical detector consisting of an amperometric flow-
through cell and a silver/silver chloride reference electrode. The
electrochemical detector provided the following waveform: E1=+ 0.1 V
(t1= 0.00–0.40 s), integration from 0.20 to 0.40 s, E2=−2.0 V
(t2= 0.41–0.42 s), E3=+ 0.6 V (t3= 0.43 s), E4=−0.1 V (t4= 0.44–0.50 s).
Separation was carried out on a CarboPac PA200 analytical column

equipped with a CarboPac PA200 guard column at 30 °C. The autosampler
was kept at 4 °C to prevent degradation of carbohydrates. A gradient
elution was performed using the following eluents: 100mM NaOH (eluent
A) and 1M NaOAc, 100mM NaOH (eluent B). The eluents were kept
blanketed under nitrogen at 6 psi to prevent the formation of carbonate. A
flow rate of 0.5 mL/min was used and the linear gradient was set up as
follows: 98% eluent A and 2% eluent B from −5 to 15min, ramping to 50%
eluent A and 50% eluent B at 70min, then ramping back to the original
parameters at 70.1 min and remaining that way until the run was ended at
75min.
The data were acquired and processed using Thermo Scientific Dionex

Chromeleon Chormatography Data System software, using inulin (inulin
from dahlia tubers, Sigma), glucose (Amresco), fructose (Amresco), sucrose
(Sigma), 1-kestose (≥98%, Sigma), and nystose (≥98%, Sigma) standards to
identify peaks. Resulting data was processed in R by transforming peak
areas to concentrations based on the inulin standard for peaks with degree
of polymerization (DP) > 10, and based on an average coefficient derived
from kestose and nystose standards for DP3–10. Peak values for negative
control samples containing no inulin were subtracted from bacterial
culture samples. Negative controls were unavailable for stool samples due
to the unique nature of each sample. Since Sigma dahlia inulin contained
almost exclusively long-chain inulin (DP 11+; Fig. S11B), we analyzed only
this fraction for experiments using this inulin source. Otherwise, (i.e. for

Orafti Synergy1 inulin and Jarrow inulin FOS), we included all inulin/FOS of
DP3+ in our analysis.

16S rRNA gene amplicon sequencing
For all samples, 16S rRNA gene amplicon sequencing was performed using
custom barcoded primers targeting the V4 region of the gene according to
previously published protocols [19, 21, 56, 57]. Samples were randomized
and DNA extractions were performed using the Qiagen DNeasy PowerSoil
DNA extraction kit (ID 12888-100). Sequencing runs were standardized to
10 nM and sequenced using a MiniSeq (Illumina) with paired end 150 bp
reads. DADA2 was used to identify and quantify amplicon sequence
variants (ASVs) in our dataset, using version 138 of the Silva database [58].
We retained only samples with more than 5000 read counts to remove
outlying samples that may have been subject to library preparation or
sequencing artifacts [21], and to only retain taxa that appeared more than
three times in at least ten percent of samples.

Metatranscriptomics
RNA was extracted from samples using Quick-RNA Fungal/Bacterial
Miniprep Kit (Zymo Research R2014) according to the manufacturer’s
instructions. Samples were then shipped to Novogene (Sacramento, CA)
for further processing. mRNA was enriched using the Ribo-Zero Gold rRNA
Removal Kit, Epidemiology (Illumina) and 300 bp reads were sequenced on
a HiSeq (Illumina).
Analysis of sequencing reads was carried out using a pipeline adapted

from previous metagenomic work [12, 39]. Briefly, reads were matched
using the Bowtie 2 sequence alignment program to a reference survey
from version 3.5 of the Integrated Microbial Genomes system [59]. We used
the system’s annotations to the COG, [60] KEGG [61], and EC [62] databases
for functional analyses. For single-species level analyses, reads that
mapped to more than 1 reference genome were discarded. For global
analyses, however, reads that mapped to multiple reference genomes
were still counted.
We detected RNA from 1394 taxa initially; this was reduced to 343 after

retaining only taxa that appeared more than three times in at least 10% of
samples. The same filter was applied to genes within taxa; only genes that
appeared more than three times in at least 10% of samples were retained.
Finally, we could only perform our analysis (ALDEx2 GLM and PERMA-
NOVA) on taxa that had at least two genes present (non-zero) in every
sample. This filter brought the final number of taxa analyzed down to 178.

Metabolomic profiling
SCFAs were quantified by GC as previously described [19]. Briefly, samples
were acidified by adding 50 μL 6 N HCl to lower the pH below 3. The
mixture was vortexed and then centrifuged at 14,000 × g for 5 min at 4 °C.
750 μL of this supernatant was passed through a 0.22 μm spin column
filter. The resulting filtrate was then transferred to a glass autosampler vial
(VWR, part 66009-882). Filtrates were analyzed on an Agilent 7890b gas
chromatograph equipped with a flame ionization detector and an Agilent
HP-FFAP free fatty-acid column (25m x 0.2 mm [inner diameter] × 0.3 μm
film). A volume of 0.5 μL of the filtrate was injected into a sampling port
heated to 220 °C and equipped with a split injection liner. The column
temperature was maintained at 120 °C for 1 min, ramped to 170 °C at a rate
of 10 °C/min, and then maintained at 170 °C for 1 min. The helium carrier
gas was run at a constant flow rate of 1 mL/min, giving an average velocity
of 35 cm/s. After each sample, we ran a 1-min postrun at 220 °C and a
carrier gas flow rate of 1 mL/min to clear any residual sample. All
C2:C5short-chain fatty acids were identified and quantified in each sample
by comparing to an eight-point standard curve.
Additional metabolites were quantified by untargeted GC/MS similar to

previously described work [63] with some differences noted below. As
above, samples were pre-processed by vortexing, centrifuging at 14,000 ×
g for 5 min at 4 °C, and passing 750 μL of this supernatant through a
0.22 μm spin column filter. Proteins were then precipitated by adding
750 μL methanol (containing 6.25mg/L C14:0-D27 myristic acid as retention
time standard) to 100 μL of each sample in a glass vial. After additional
vortexing and centrifugation, 700 μL of each supernatant was transferred
into a fresh glass vial for 4–6 h of drying on a SpeedVac. Next, 100 μL
toluene was added for a final step of azeotropic drying for 30min, and the
dried samples were stored at −80 °C for later derivatization. Subsequent
steps included addition of 25 μL methoxyamine HCl with incubation at
50 °C for 30min (for methoximation of reactive carbonyl groups) followed
by addition of 75 μL N-methyl-N- (trimethylsilyl) trifluroacetamide (MSTFA,
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Cerilliant M-132) and similar incubation for trimethylsilyl replacement of
exchangeable protons. Supernatants were transferred to GC vials and
analyzed on a 7890B GC-5977B ei-MS (Agilent Corp., Santa Clara, CA). We
detected 547 metabolite features that were present in at least 10% of
samples, from which 206 were annotated using our GC/MS spectral library
[63, 64] for use in subsequent statistical analysis (the remaining 341
included 280 unannotated, and 61 that either had uncertain annotation or
were suspected contaminants). Levels for each metabolite were given as
log-2 integrated peak area. For the purposes of statistical testing, we set
the values of sample-metabolites that were missing, assumed below the
limit of detection, to a pseudocount based on the minimum value
observed for that particular feature.

Linear model design
Except where otherwise noted, statistics were performed using linear
models implemented with the lme4 package in R and the lmerTest
package to generate p values. For data with repeated measures from the
same individual/vessel (human participants, artificial gut), a mixed-effects
model was used by including a random intercept term (1 | ID) in the model
formula within the lmer() function; otherwise (for in vitro cross-reactivity
experiments, for which measurements were taken from distinct cultures)
the lm() function was used. For the fecal metabolic potential experiment,
the data were found to be non-normal by using the descdist() function in
the fitdistrplus package; in this case, we therefore used a generalized
mixed-effects linear model with a Gamma distribution, implemented with
the following call:

fit <� glmerðconcentration � group � time

þ 1 IDjð Þ;data ¼ hpaec:data; family ¼ Gammaðlink ¼ }log}ÞÞ

For metatranscriptomic data, analysis was done using an ALDEx2
generalized linear model using the aldex.glm() function [65] with vessel
and time as factors. For the within-taxa analysis, an individual GLM was
constructed for each taxon in order to account for changes in the total
amount of RNA contributed by a given taxon (i.e. to avoid seeing apparent
changes in a transcript just because the relative compositional abundance
of that taxon changed). In effect, transcript reads were treated as relative
abundances within each taxon. Multiple comparisons correction was
performed by the Benjamini–Hochberg method. To validate this approach,
we re-analyzed four key transcripts of interest from B. caccae found to be
upregulated in response to inulin (Figs 2C, 3A), by calculating the ratio of
transcript reads to reads of four housekeeping genes: dnaJ (BC01081), gyrB
(BC03484), recA (BC02059), and rpoB (BC00195) [66]. Mixed-effects GLMs
were generally consistent with our original findings. Particularly, in the case
of BC02731, analyses with all four housekeeping genes indicated sustained
upregulation at each of the three post-intervention time points, consistent
with our original method (Fig. S12).
The 16 S rRNA gene amplicon sequence data from the artificial gut

required a more complex model to account for the multivariate and
compositional nature of the data as well as the high density of repeated
measures samples. We designed an autoregressive Bayesian multinomial
logistic-normal model using a “pibble” model of the following form in the
fido R package [67]:

CLR ¼ AR v; tð Þ þ β0Δt þ β1A1 þ β2M1 þ β3A2:5 þ β4M2:4 þ ϵ

where CLR is the centered log-ratio transform of the data, AR(v,t) is the first
order autoregressive AR(1) portion of this model in which each time point
is related to all other time points within the same vessel according to a
decaying factor, β variables are effect parameters to be calculated by the
model, Δt is the change in time from the previous time point in that vessel
(to account for consistent drift), A1 represents samples taken on afternoon
1 (dose 1 h +6), M1 samples taken on morning 1 (dose 2 h −2), A2:5
represents samples taken on afternoons 2–5, M2:4 represents samples
taken on mornings 2–4 (no morning sample was collected after dose 5),
and ∈ is the model intercept.
The autoregressive portion of the model was designed by creating a

variable for each sample and setting the prior covariance of samples taken
from the same vessel to 0.8Δt/8, where Δt is the number of hours elapsed
between the samples. Samples taken from different vessels had a
covariance of 0, and all samples had a covariance of 1 with themselves.
The values of the four experimental variables (A and M) supplied in the
covariate matrix were all binary, set to 1 only for samples taken at the
relevant time point(s) and 0 for all other samples. The prior covariance of
these variables was set to 0 with each other and 1 with themselves.

Essentially, the variables were designed in order distinguish the effects at
+6 h and +22 h, and to uniquely distinguish the effects on day 1, since we
had previously identified unique metabolic activity (or a lack thereof) on
this day (Fig. 1B). The model was robust to changes in the priors.
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