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Bamboo rats (Rhizomys pruinosus) are among the few mammals that lives on a bamboo-based diet which is mainly composed of
lignocellulose. However, the mechanisms of adaptation of their gut microbiome and metabolic systems in the degradation of
lignocellulose are largely unknown. Here, we conducted a multi-omics analysis on bamboo rats to investigate the interaction
between their gut microbiomes and metabolic systems in the pre- and post-weaning periods, and observed significant
relationships between dietary types, gut microbiome, serum metabolome and host gene expression. For comparison, published gut
microbial data from the famous bamboo-eating giant panda (Ailuropoda melanoleuca) were also used for analysis. We found that
the adaptation of the gut microbiome of the bamboo rat to a lignocellulose diet is related to a member switch in the order
Bacteroidales from family Bacteroidaceae to family Muribaculaceae, while for the famous bamboo-eating giant panda, several
aerobes and facultative anaerobes increase after weaning. The conversion of bacteria with an increased relative abundance in
bamboo rats after weaning enriched diverse carbohydrate-active enzymes (CAZymes) associated with lignocellulose degradation
and functionally enhanced the biosynthesis of amino acids and B vitamins. Meanwhile, the circulating concentration of short-chain
fatty acids (SCFAs) derived metabolites and the metabolic capacity of linoleic acid in the host were significantly elevated. Our
findings suggest that fatty acid metabolism, including linoleic acid and SCFAs, are the main energy sources for bamboo rats in
response to the low-nutrient bamboo diet.
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INTRODUCTION
Lignocellulose, as the most abundant biomass component on
earth, composed of cellulose, hemicellulose and lignin, is
hydrophobic and difficult to enzymatically degrade [1]. Bamboo
is a low-nutrition food with about 70–80% of its composition
being lignocellulosic components [2, 3]. In general, mammals lack
enzymes that breakdown complex lignocellulosic carbohydrates
[4, 5], and heavily rely on the complementary action of the
lignocellulose-degrading enzyme repertoire of their microbial
symbionts [6, 7]. Bamboo rats and giant pandas are two famous
specificity bamboo-eating animals and the understanding of their
adaptations and mechanisms for digesting lignocellulose-based
diet evokes enormous interest.
The giant panda retains a typical carnivore digestive system and

the adaptation of their gut microbiome to a specialized bamboo
diet has been widely studied [2, 8–11]. Several studies have
documented, through metagenomic analyses, the ability of the
gut microbiome of giant pandas to digest cellulose and
hemicellulose [12–15]. It has been reported that the abundance
of microbial genes in the gut of giant pandas contributing to
lignocellulose degradation is lower than that of ruminants and

other herbivores [16, 17], and is affected by diet, habitat
environment (captive or wild) and seasonal factors (e.g., climate
and food availability) [3, 13, 18, 19]. Gut microbial composition
differs between captive and wild giant panda populations, and the
gut microbes of wild giant pandas seem to be more capable of
lignocellulose digestion [13, 20, 21]. In contrast, only a limited
number of studies have focused on the bamboo rats. Research has
shown that an endoglucanase with cellulase activity was identified
from a bacterium strain in the gut of the bamboo rat [22], and rich
CAZy families have been detected in the cecum microbiome that
might contribute to the degradation of bamboo fibers [23].
Few studies have systematically characterized the lignocellulose

utilization from an integrated view of both the host and gut
microbiome, with most mainly focusing on the microbiome
originating from stool. Stool and gut samples present different
microbial communities in both membership and diversity, and the
proportions of aerobic genera are elevated in stool samples [24].
The fact that most microbes involved in lignocellulose degrada-
tion are anaerobic [25], generates the need for metagenomic
analyses of gut instead of stool samples. Furthermore, a single
metagenomic analysis does not completely reveal the gene
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products of the gut microbes and their impact on host health [26].
This necessitates multi-omics techniques that enable the efficient
characterization of dynamic changes and functional activities of
both the gut microbiome and the host [27, 28].
Bamboo rats serve as an excellent model to study the utilization

of lignocellulose due to their specialized bamboo-eating dietary
characteristics. Here, we explored the degradation of recalcitrant
lignocellulosic materials by complementary and synergistic
cooperation between the host and their gut microbiome. We
performed a study, which involved stages from the unweaned
period to the specific bamboo-eating period in bamboo rats, and
integrated multi-omics measurements including microbiomes
from several gut segments, serum metabolome, and the host
transcriptome to identify lignocellulose digestion mechanisms. In
addition, similarities and differences in the gut microbiome
response to dietary switches in bamboo rats and giant pandas
were compared.

RESULTS
Comparative profiling of gut microbial patterns in bamboo
rats and giant pandas
We grouped samples according to the dietary stage of the
bamboo rats and giant pandas (Fig. 1a, b; Tables S1 and S2) and
compared their gut microbial compositions and associated
functional profiles. Clusters of gut microbiome were observed to
be closer in the unweaned giant pandas and bamboo rats based
on Bray–Curtis dissimilarities at the OTU level, whereas huge
differences were evident after these animals started consuming
bamboo-based diets (Fig. 1c). Linear discriminant analysis (LDA)

effect size (LEfSe) was employed to assess the microbiome
attributes that differed significantly by dietary status. Our analysis
revealed that the family Bacteroidaceae and genus Bacteroides
were enriched in the milk diet stage of both the bamboo rat and
the giant panda (Kruskall–Wallis test, p < 0.05, LDA > 3.5) (Fig. S1a,
b; Table S3). After switching to the lignocellulosic diet, microbial
families including Muribaculaceae, Lachnospiraceae, Ruminococca-
ceae, and Desulfovibrionaceae were enriched in the gut of the
bamboo rats, whereas the phylum Proteobacteria, and the families
Streptococcaceae and Clostridiaceae were observed to be sig-
nificantly elevated in the gut of the giant pandas (Fig. S1a, b;
Table S3). Notably, the gut microbiomes of captive and wild
pandas were quite different at the OTU, CAZyme, KO, and COG
levels (PERMANOVA, p < 0.05) (Fig. 1c, d, Fig S1c, d), and the
microbial compositions and CAZy family profiles of wild pandas
appeared closer to those of the weaned bamboo rats (Fig. 1c, d).

Adaptation of the gut microbiome to dietary switch in
bamboo rats
The within-sample diversities based at the OTU and gene levels
were calculated for the duodenum, cecum, and colon of the
bamboo rats. In general, OTU and gene diversities of the gut
microbiome in the S2 stage were higher than in the S1 stage
(Fig. 2a and Table S4). The OTU diversity in the hindgut was lower
than that of the foregut, but gene diversity in the hindgut was
higher than that of the foregut (Fig. 2a and Table S4). PCoA plot
based on Bray–Curtis dissimilarities showed that their gut
microbiomes separated into three distinct clusters (PERMANOVA,
R2= 0.06, p < 0.05) (Fig. 2b). Moreover, non-metric multidimen-
sional scaling (NMDS) analysis of the genes (PERMANOVA,

Fig. 1 Comparison of the gut microbial patterns in bamboo rats and giant pandas. a Multi-omics study design for bamboo rats. The study
yielded host and microbial data from the liver, blood, intestinal tissue, intestinal content, and stools of bamboo rats with different ages.
Animal and sample counts are shown. b Metadata of samples from two representative bamboo-eating animals. Data for bamboo rats were
generated in this study and data for giant panda were accessed from public databases (see “Materials and Methods”). Principal coordinates
analysis (PCoA) plots based on Bray–Curtis dissimilarity at (c), OTU level and (d), CAZy family level. Triangles represent bamboo rats and circles
represent giant pandas. Each color corresponds to a different dietary stage. Ellipses are at the 70% confidence level.
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R2= 0.08, p < 0.05), CAZymes (PERMANOVA, R2= 0.08, p < 0.05),
KOs (PERMANOVA, R2= 0.12, p < 0.05), and COGs (PERMANOVA,
R2= 0.17, p < 0.05) also showed clearly different clusters between
the S1 and S2 stage samples (Fig. S2). Our findings indicate that
substantial changes in gut microbial composition and function
occur after diet conversion.
Next, co-occurrence networks were established to estimate

microbial co-existence in the different dietary stages. According to
the topology of these networks, Desulfovibrionaceae-centered
microbial communities in the S1 stage were noted to be replaced
by a stronger inner-connected microbial community containing
Lachnospiraceae, Ruminococcaceae, and Muribaculaceae in the

S2 stage (Fig. 2c). In addition, the order Bacteroidales was found to
be predominant in both the stages. Notably, Bacteroidaceae, which
were dominant in the S1 stage (average relative abundance:
31.6%), were largely replaced by uncultured Muribaculaceae in the
S2 stage (average relative abundance: 38.2%) (Fig. 2d). This
bacterial switch in the order Bacteroidales was significantly
affected by dietary types (MaAsLin2, FDR p < 0.05) (Fig. 2e).
Synergistic actions of multiple CAZy families are necessary for

bacteria to perform lignocellulose degradation. Changes in the
relative abundance of CAZy families that were significantly
affected by multiple factors, including intestinal segment, age,
and dietary type are displayed in Fig. 3a and Table S5 (MaAsLin2,

Fig. 2 Differences in the gut microbiome of bamboo rats before and after their diet switch. a Boxplots show microbial α diversity (Shannon
index) at the OTU and gene levels at different ages. Samples from different intestinal segments are marked in different colors. b PCoA plot
based on Bray–Curtis dissimilarities at the OTU level. Ages are distinguished by color, and the samples from different intestine segments are
distinguished by shape. Ellipses are at the 80% confidence level. c Co-occurrence networks based on the OTU level. Gut microbiome in the
two dietary stages were analyzed separately. Each node represents one OTU, and each edge represents a strong (Spearman |r| > 0.6) and
significant correlation (FDR p < 0.01) between the two nodes. The size of each node is proportional to the degree of the OTUs. Total sum
scaling normalized topological metrics of the networks are shown as radar chart. d Bar chart shows the average relative abundance of the
predominant microbes in the S1 and S2 stages. The bacterial order Bacteroidales has a shift between the S1 and S2 stages. e Boxplot shows
the bacterial order Bacteroidales related to the dietary types detected by MaAsLin2 based on the OTU level. All the samples in the S1, S2 and
adult stage were used in this analysis.

K. Xiao et al.

1982

The ISME Journal (2022) 16:1980 – 1992



FDR p < 0.05). Overall, the relative abundance of CAZymes in the
hindgut (colon and cecum) was higher than in the foregut and
produced two different patterns consistent with dietary stage
(Fig. 3a). We then focused on the CAZymes which were up-
regulated in the S2 stage. These enzymes mainly originate from
Muribaculaceae, Lachnospiraceae, Clostridiaceae, and Bacteroida-
ceae, which indicated the rich carbohydrate enzymatic functions
of these microbes. Among these microbes, Muribaculum gordon-
carteris, Lachnospiraceae bacterium GAM79, Roseburia intestinalis,
Duncaniella dubosii, and Flintibacter sp were five representative
species with high abundance (Fig. 3b). According to the structure
of lignocellulose, we identified CAZymes involved in all steps of

lignocellulose degradation in the gut microbiome of the bamboo
rats (Fig. 3c), and these enzymes were significantly elevated in the
S2 stage (MaAsLin2, FDR p < 0.05) (Table S5). For example, some
peroxidases and laccases, including AA4 and AA10, required for
lignin degradation and release of cellulose and hemicellulose,
were increased in the S2 stage (Fig. 3a and c). Some redox
enzymes and carbohydrate esterases including CE2, CE3, CE4, CE6,
and CE12, necessary for lignocellulose degradation were also
enriched in the S2 stage (Fig. 3a and c). Moreover, the endo-
glucanases (i.e., GH5, GH9, GH10, GH53, GH81, GH85), endo-
hemicellulases (i.e., GH53, GH98), exo-hemicellulase (i.e., GH39)
and β-glucosidases (i.e., GH128), which contribute to cellulose and

Fig. 3 CAZymes profile adapted to lignocellulose utilization. a Heatmap of the CAZymes profile. CAZymes associated with dietary type, age
and intestinal segment detected by MaAsLin2 are shown. CAZy families with up-regulated abundance in the S2 stage are marked. Relative
abundance of each CAZy family is colored according to the row z-score. b Sankey diagram depicting the distribution of the top 20 bacterial
species associated with bamboo-based diet ranked by CAZymes abundance. CAZymes are colored according to CAZy classes and bacteria are
colored according to microbial families. Height of the rectangles indicates the relative abundance of the CAZymes (left) and species (right).
c Model for lignocellulose degradation in the gut of bamboo rat (modified from Bredon et al [6]). CAZy families enriched in the S2 stage with
corresponding enzymatic functions are listed.
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hemicellulose degradation, were noted to be enriched in the
S2 stage (Fig. 3a and c).
In addition, we also found functional changes in vitamin and

amino acid synthesis in the gut microbiome of bamboo rats that
accompanied the food conversion. Biosynthesis of vitamin B
family (VB1, VB2, B3, VB7, and B9) and amino acids (including
arginine, BCAAs and AAAs) were enhanced, while retinol and
vitamin B6 metabolism were decreased in the S2 stage (Wilcoxon
rank sum test, p < 0.05) (Fig. S3).

Serum metabolite patterns at the different dietary stages
A total of 2530 metabolites (1431 and 1099 metabolites for
positive and negative polarity mode, respectively) were detected
as blood circulating metabolites from the 24 bamboo rats. Partial
least-squares discriminant analysis (PLS-DA) was used to reduce
the dimensionality of the high-dimensional metabolome data. The
score plot showed a clear separation between each group (Fig. 4a).
Accordingly, we compared the differences in metabolites between
the groups in the two dietary stages (Fig. 4b). Overall, 91 shared
differential metabolites (SDMs), including 52 for positive mode
and 39 for negative mode, were identified between the two
dietary stages (VIP > 1.0, FC > 2.0 or FC < 0.5, p value < 0.05)
(Fig. 4b).
We then assessed the correlations between these SDMs and the

dietary patterns to explore potential biomarkers at the different
stages. In this study, the SDMs conformed to correlation analysis
(Spearman r > 0.7, FDR p < 0.05), and ROC curve estimation (AUC >
0.9) were selected as the potential biomarkers for the specific
dietary stages (Table S6). Metabolites that were potential drug
components or hormones were excluded. Finally, 27 and 12
potential biomarkers were identified in the S1 and S2 stages
(Fig. 4c). For example, 12(13)-DiHOME, the terminal product of
linoleic acid metabolism, was observed to robustly correlate with
bamboo-based diet (Spearman r= 0.87, FDR p < 0.0001). We
classified these metabolites according to their database annotation
status (KEGG, HMDB, and LIPID MAPS database) and the attributes
of their metabolic derivatives. Specifically, some bile acid derived
metabolites (glycocholic acid, 1β-hydroxycholic acid, sulfoglyco-
lithocholic acid, and taurohyocholic acid), and amino acid derived
metabolites [roseotoxin S, DL-α-aminocaprylic acid, saccharopine,
α-glutamyl-4-hydroxyproline, and ε-(γ-glutamyl)-lysine)], were
abundant in the S1 stage (Fig. 4c, d). On the other hand, some
glucose derived molecules such as p-cresol glucuronide, 5′-O-β-D-
glucosylpyridoxine, 17-β-estradiol-3-glucuronide, and estriol 16-
glucuronide were significantly elevated in the S2 stage (VIP > 1.0,
FC > 2.0 or FC < 0.5, p value < 0.05) (Fig. 4c and e).

Increased fatty acid metabolism during the lignocellulosic diet
period
In order to further explore the mechanisms of host response to
diet switch, we attained transcriptomes from 36 samples from 3
tissues (liver, duodenum and colon) across 4 ages (15d, 30d, 45d,
and 80d). These tissues are known to be critical for metabolic
performance and nutrition utilization. About 92.2% of transcripts
represented the available vertebrata conserved orthologs, which
indicates that the transcriptomes were well assembled and
relatively complete (Fig. S4). Differentially expressed genes
(DEGs) were identified in the liver, duodenum, and colon of
the bamboo rats across the 4 ages. KEGG pathway and GO
enrichment analyses were performed for the DEGs in each pair
groups (Figs. 5a, S5). Concretely, pathways related to carbohy-
drate digestion and absorption (hydrolase activity acting on
glycosyl bonds) were enriched in the duodenum in the S2 stage
(FDR p < 0.05) (Figs. 5a, S5). Moreover, nutrients absorbed
by the intestine at the two dietary stages were different. For
example, pathways related to the digestion and absorption of
proteins, minerals and fats were enriched in the S1 stage, while
pathways related to metabolism and absorption of vitamins and

carbohydrates were abundant in the S2 stage (FDR p < 0.05)
(Fig. 5a).
Diverse KEGG pathways such as linoleic acid metabolism,

arachidonic acid metabolism, retinol metabolism, and gluconeo-
genesis were enriched in the S2 stage (FDR p < 0.05) (Fig. 5a).
Linoleic acid metabolism was also observed to be the most
enriched KEGG pathway, based on serum metabolites, which
strongly correlates to the bamboo-based diet (Spearman r > 0.6)
(Fig. 5b). Arachidonic acid, a product of linoleic acid metabolism,
had an elevated level in the S2 stage (Fig. 5c). However, only
linoleic acid correlated strongly to bamboo-based diet (Spearman
r= 0.65) (Fig. 5c). In the liver, cytochrome P450 family members
CYP2C, CYP2J, CYP2E1, and CYP3A4 showed significant upregula-
tion in the S2 stage, which facilitate efficient conversion of linoleic
acid to the end product 12,13-DiHOME (Fig. 5d). Our results
revealed that the source and end products of linoleic acid
metabolism were significantly elevated in the S2 stage, which
might be associated with adaptation of the bamboo rats to
lignocellulosic diet.

The associations of gut microbiome and serum metabolome
We next explored the associations of gut microbiome and serum
metabolome in bamboo rats that might facilitate lignocellulose
utilization. We assessed the effect of duodenum, cecum and colon
microbiomes on the serum metabolome, using the Mantel test
(Fig. 6a). Overall, the microbiomes of the hindgut (cecum and
colon) were more tightly coupled with serum metabolome than
the foregut (duodenum) (Fig. 6a). For example, the correlations
between the duodenum CAZymes profile and serum metabolome
were weak with an extremely low effect size (Mantel test, r= 0.05,
p > 0.05; r= 0.04, p > 0.05 for positive and negative metabolome
modes, respectively), while only the colon microbiome, both in
taxonomy profile and function profile, was significantly associated
with serum metabolites (Mantel test, p < 0.05) (Fig. 6a). This
indicates that colon microbial metabolism and associated
products contributed most to the serum metabolome.
To identify co-variation between the gut microbes and serum

metabolites, we used an integrative approach to analyze the colon
microbiome (based on the OTU level) and serum metabolome
(Fig. 6b). Microbes closely related to host metabolites reflected
two categories; (a) the Muribaculaceae family, which was
predominant in the S2 stage, and (b) a group of co-occurring
microbes (i.e., families Lachnospiraceae and Ruminococcaceae)
with abundant metabolic functions (Fig. 6b). As expected, short-
chain fatty acid (SCFA)-derived metabolites, including butyl
acrylate and butanoate-derived molecules, displayed strong
significant positive correlation with the second group of co-
occurring microbes (ρ > 0.6). Biomarkers of bamboo-based diet
(Fig. 4c), namely 5-amino-6-(D-ribitylamino) uracil, margaric acid,
and p-cresol glucuronide, were positively correlated with Mur-
ibaculaceae (ρ > 0.6). Notably, some polyunsaturated fatty acids
(linoleic acid and arachidonic acid) had weak correlations with the
gut microbes (ρ < 0.6) indicating that they were mainly derived
from food and lacked a microbial origin.

DISCUSSION
Multi-omics covering stages from milk diet to bamboo diet
revealed that the bamboo rat is well adapted to lignocellulose-
based food. The cooperation between their gut microbiomes and
their own metabolic systems is displayed in Fig. 7.
The high-fiber bamboo diet after weaning increased the

diversity and richness of the gut microbiome in bamboo rats
(Fig. 2a), which is consistent with similar observations in humans
[29], mice [30], swine [31], and ruminants [32]. Moreover, the
level of serum 2-Hydroxyhippuric acid, a predictor of gut
microbiome α-diversity [33], was found to be increased in our
study (Fig. 4c). This signifies the powerful ability of fiber in shaping
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the gut microbiome. We found that the phyla Bacteroidetes and
Firmicutes were predominant in the gut of bamboo rats, which
have been reported to substantially contribute to the taxonomic
and metabolic variations in the gut microbiome of humans and

ruminants [34, 35]. Notably, we observed a major switch in the
order Bacteroidales from family Bacteroidaceae to family Muriba-
culaceae, after the consumption of bamboo-based food (Fig. 2d).
Recent studies have shown that Muribaculaceae are functionally

Fig. 4 Serum metabolome characteristics. a PLS-DA plots of metabolomic features at 4 ages. Positive mode and negative mode of the
untargeted metabolome are displayed separately. b Venn plots of the differential metabolite numbers between the paired groups. Differential
metabolites were calculated separately based on the positive and negative mode. Differential metabolites were defined if VIP > 1, FC > 2.0 or
FC < 0.5 and p value < 0.05. c Correlation between shared differential metabolites and dietary stage (left), and metabolite attributes are shown
(right). The attributes of the metabolites, including annotation information (HMDB, KEGG and LIPID MAPS database), metabolic information,
and source information have been provided. Scatter plots representing the relationship between (d), bile acid derived, (e), glucose derived
metabolites with animal ages.
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distinct from their neighboring families and are versatile
degraders of complex carbohydrates [36, 37]. We detected that
Muribaculum gordoncarteri, Duncaniella dubosii, Duncaniella sp. C9,
and Sodaliphilus pleomorphus, representing the Muribaculaceae
family, harbor diverse functional CAZymes involved in lignocellu-
lose degradation (Fig. 3b). Although the ruminant gut microbiome
can digest recalcitrant lignocellulose, the order Bacteroidales has
not been reported to be enriched with members from the
Muribaculaceae family [35], and seem to lack cellulosome to
degrade the complex plant polysaccharides [38]. Our findings
suggest that the mechanisms for lignocellulose degradation by
gut microbiome in ruminants and non-ruminants are different.
Our data revealed that the colon microbiome in bamboo rats

contributed the most to serum metabolome composition (Fig. 6a).
Lignin breakdown is the first step of lignocellulose degradation by
gut microbiome with concomitant release of cellulose and
hemicellulose [39]. The enrichment of Enterocloster bolteae and

other bacterial species, which harbor ligninolytic enzymes such as
AA4 and AA10 in the bamboo-eating period mainly contributed to
lignin breakdown in the bamboo rats (Fig. 3b, c). Multiple CAZy
families with oxidative, hydrolytic and non-hydrolytic activities
identified in Muribaculum gordoncarteri, Lachnospiraceae bacter-
ium GAM79, Roseburia intestinalis, Blautia producta, Duncaniella
dubosii, and Bacteroides thetaiotaomicron typically act on cellulose
and hemicellulose metabolism in the gut of post-weaning
bamboo rats (Fig. 3b, c). These findings indicate that the gut
microbiome of bamboo rats is functionally adapted to the
utilization of complex lignocelluloses. These bacterial members
formed a strong inner-connected microbial community with
richness in metabolic and fermentative functions (Fig. 2c). As a
result, the levels of acetate- and butyrate-derived metabolites in the
blood were significantly increased in the S2 stage (Figs. 4c and 6b).
Meanwhile, metagenomic analysis revealed that the biosynthesis of
vitamin B family (VB1, VB2, B3, VB7, and B9) and amino acids

Fig. 5 Host response to diet switch. a KEGG pathway enrichment in the duodenum, colon, and liver. Up-regulated pathways in the S1 stage
are shown on the left, and up-regulated pathways in the S2 stage are shown on the right. b KEGG pathway enrichment of metabolites with
significant and robust correlations in the bamboo-eating stage (Spearman coefficient r > 0.6, FDR p < 0.05). c Scatter plot representing the
relationship between linoleic acid (up), arachidonic acid (down) with animal ages. The correlations between metabolites and bamboo-eating
stage are shown as Spearman coefficients. d Schematic map of linoleic acid metabolic pathway in the liver. Up-regulated genes and
metabolites in the S2 stage are marked in red.
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(BCAAs, AAAs and arginine) was significantly enhanced (Fig. S3). The
level of 5-Amino-6-ribitylamino uracil, the intermediate in VB2
(riboflavin) biosynthesis, was correspondingly significantly elevated
in the blood (Fig. 4c). We noticed that the gut microbes provide a
variety of metabolites for the host, including volatile SCFAs, vitamins
and essential amino acids during lignocellulose utilization (Fig. 7).
The relative abundance of retinol and VB6 metabolism in the

gut microbiome was reduced (Fig. S3), while transcriptome
showed that the retinol metabolism pathway was significantly
enriched in the gut and liver of bamboo rats in the bamboo-eating
period (Fig. 5a). Previous studies reported that VB6 biosynthesis by
gut microbes appear to be negatively correlated with the relative
abundance of butyrate producers such as Blautia and Roseburia
[40, 41], which is consistent with our findings. In contrast,
bamboo-based food is rich in β-carotene [42], which can be
processed into retinoic acid by intestinal epithelial cells for further
metabolism or storage [43]. Retinol, available from the conversion
of carotene present in bamboos, might already meet the needs of
the bamboo rat host, thus, limiting the requirement for retinol
biosynthesis by gut microbiome.
The transcriptome and metabolome analyses revealed that the

host linoleic acid metabolism was significantly enhanced in the
S2 stage (Fig. 5). Although some bacterial genera like Propionibac-
terium, Lactobacillus, and Bifidobacterium have shown promising
abilities to produce conjugated linoleic acids [44, 45], the level of
linoleic acid in the serum of bamboo rats was found not to be
closely related with gut microbiome, but rather to robustly correlate

with specific bamboo dietary type (Spearman r= 0.65) (Fig. 5c). The
plants of the Poacea family, including bamboos, possess linoleic acid
or linoleic acid-derived compounds (i.e., linoleic-CoA, linoleic acid
ethyl ester and linoleoyl chloride) and margaric acid [46, 47]. This
could explain the elevated serum concentrations of linoleic acid and
margaric acid in bamboo rats during the bamboo-eating period.
Similar trends were observed in bamboo-eating giant pandas where
the concentrations of metabolites related to the linoleic acid
metabolism predominate in the serum [48]. The above indicates that
the intake and utilization of fatty acids like linoleic acid and margaric
acid might be one of the adaptive mechanisms of animals to
respond to low-nutrient bamboo food (Fig. 7).
It is generally believed that increased intake of linoleic acid is

associated with overweight and obesity in humans [49]. However,
the body fat rate of bamboo rat with enhanced linoleic acid
metabolism during the bamboo eating period is low [50]. The
serum metabolite 12,13-diHOME, a terminal product of linoleic
acid metabolism [51], was found to be significantly increased in
concentration in the S2 stage and identified as an important
biomarker of bamboo diet in our study (Fig. 4c). It has been
reported that the level of 12,13-diHOME is negatively correlated
with the body-mass index (BMI) and insulin sensitivity, which
could stimulate fat consumption and reduce blood triglyceride
levels [52]. We also noticed that Bacteroides thetaiotaomicron,
previously reported to reduce fat accumulation by altering the
levels of serum metabolites [53], was one of the main bacterial
species involved in lignocellulose utilization in the bamboo rats

Fig. 6 The relationship between gut microbiome and host serum metabolome. a Mantel test quantifying variance explained between gut
microbiome and serum metabolome. Taxonomy and CAZymes profiles of the gut microbiome from different intestinal segments were
compared with serum metabolome. Mantel statistic r is provided in the rectangular area in the plot. *p < 0.05; **p < 0.01; ***p < 0.001.
b Network plot shows the correlation between microbes based on OTU level and circulating metabolites. Microbiome are represented by
diamonds, and metabolites are represented by circles. Red line: similarity values ρ > 0.60; blue line: similarity values ρ <−0.60.
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(Fig. 3b). Moreover, in the bamboo-eating period, the circulating
concentrations of glucose-derived metabolites were significantly
elevated (Fig. 4e), which might be attributed to increased
gluconeogenesis in the liver (Fig. 5a). Therefore, bamboo rats,
which feed on high lignocellulose diet, might reduce lipid
accumulation by increasing lipolysis and induce gluconeogenesis
to maintain glucose levels in the blood. Our observations are
consistent with similar findings in ruminant sheep [54]. In addition,
volatile SCFAs (especially butyrate) produced by gut microbes,
provide 60–70% of the energy needed by the colon, muscle and
brain cells in the hosts [55, 56]. Overall, our data indicate that in
the process of feeding on low-nutrition bamboo diet, fatty acids
(i.e., linoleic acid and margaric acid) available from food and
volatile SCFAs produced by the gut microbes (i.e., butyrate,
acetate) could be the main energy sources in bamboo rats (Fig. 7).
We compared the gut microbiome adaptation and mechanisms

of lignocellulose degradation in bamboo rats and giant pandas, as
both are bamboo specialists. The phyla Bacteroides was enriched
in the gut of both bamboo rats and giant pandas before weaning;
however, aerobes and facultative anaerobes like Proteobacteria
and Streptococcaceae were found to be elevated in the gut of
giant pandas after weaning (Fig. S1), along with a decrease in the
diversity or richness of gut microbiome [10, 13]. Our analysis and
previous studies provide evidence that the gut microbes of giant
pandas, especially wild pandas, have the ability to metabolize
lignocellulose (Fig. 1c, d) [20, 21]. However, the digestion and
utilization rate of bamboo fiber in the gut of giant pandas is low
[57]. Research has shown that the source of energy for giant
pandas may be protein, hemicellulose, or intracellular nutrients
[2, 3, 58]; however, the role of fatty acids has been unexplored. In
response to the bamboo diet, the genes of giant panda involved
in the digestion and utilization of bamboo fatty acids experience
adaptive convergence [2], and linoleic acid related metabolites are
enriched in their serum [48]. Combined with the results achieved
in bamboo rats, we infer that the pattern of using fatty acids (i.e.,
linoleic acid and margaric acid) from food could be another major
source of energy for giant pandas.
In conclusion, we systematically explored the utilization of

lignocellulose in bamboo rats for the first time, using a multi-
omics approach with data from gut digesta, blood, and tissue

samples throughout their different dietary periods. Our study
reveals that the diversity of Bacteroidetes involved in the
utilization of lignocellulose in bamboo rats is different from
ruminants and giant pandas. We comprehensively characterized
the bacterial species and functional genes associated with
lignocellulose degradation in the intestine of bamboo rats, and
highlighted the importance of fatty acid metabolism (i.e., linoleic
acid from food and SCFAs from gut microbiome) on a low-nutrient
bamboo diet. Further assays such as the isolation of functional
bacteria and in vitro or in vivo tests are needed to draw causality
relationships. Our study not only provides novel insight into the
complex mechanisms for lignocellulose digestion in the non-
ruminant bamboo rats, but also provides data to support the
future bio-utilization of lignocellulose involving specific bacteria.

MATERIALS AND METHODS
Animals and specimen collection
All protocols and studies involving animals were conducted in accordance
with the guiding principles of the Animal Care and Use Committee of
South China Agriculture University (permit number 2021g007).
All bamboo rats were purchased from an artificial breeding farm in

Guangxi province, China. The captive breeding of this animal was legal
before the COVID-19 outbreak, while it is now banned. We defined the pre-
weaning period as being the S1 stage (age < 40d), while the post-weaning
period before adulthood was the S2 stage (Table S1). Sampling from
bamboo rats was conducted on March 28th–29th, 2019. Tissue, blood and
intestinal contents were sampled from 24 bamboo rats (6 animals each at
the ages of 15d, 30d, 45d, and 80d). For adult bamboo rats (age > 1 year),
we only collected fecal samples (Table S1).
Data from captive and wild giant pandas, which cover different dietary

periods, including 230 16S rRNA gene sequencing datasets (accession no.
PRJNA524253 and PRJNA358755) [10, 20] and 88 shotgun metagenomic
sequencing datasets (accession no. PRJEB24780, PRJCA000366, and
PRJNA356809) [3, 17, 20], were download from the Sequence Read
Archive (SRA) database (Table S2).

16S rRNA gene data analysis
Barcode and primer sequences were removed from the raw reads using
Cutadapt (v1.18) [59]. OTU clustering were performed by usearch (v11,
-cluster_otus) [60]. Non-redundant reads were compared with the reference
Gold database to remove chimera sequence (usearch, -uchime2_ref). The

Fig. 7 Putative cooperate mechanisms of bamboo rat and gut microbiome in response to the low-nutrient bamboo diet. In the bamboo-
eating stage, the dominant gut microbiota were switched from Bacteroidaceae to Muribaculaceae, which enriched diverse CAZymes associated
with lignocellulose degradation and increased the production of glucose, amino acids, B vitamins (VB1, VB2, VB3, VB7 and VB9), and SCFAs.
Meanwhile, circulating concentrations of some metabolites such as 12(13)-DiHOME, 2-Hydroxyhippuric acid and glucose derived metabolites
were elevated, and associated metabolic function were enhanced in liver. The metabolism of fatty acids (i.e., linoleic acid and margaric acid
from food) and volatile SCFAs (i.e., butyrate and acetate produced by the gut microbes) could be the main energy sources in bamboo rats.
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filter of sequences that were not assigned to bacteria, OTU estimation and
taxonomy annotation were achieved by alignment against the SILVA
database (v132) through the QIIME platform [61]. RDP classifier with 97%
sequence identity was used for taxonomic classification.
In the joint analysis of bamboo rats and giant pandas, total OTU counts

were rarefied to 5000 per sample due to the magnitude difference in raw
counts among the samples. In other cases, the dataset were rarefied to
same OTU counts according to sample with the lowest count tags.
Shannon indices were estimated for within-sample microbial diversity
analysis. Beta diversity was evaluated using principal coordinates analysis
(PCoA) based on Bray–Curtis dissimilarity values. Multivariable association
of microbial community features with metadata including dietary type, age
and intestinal segment were assessed using MaAsLin2 [62]. LEfSe was used
to identify and compare different bacterial communities between each
group [63].
Co-occurrence network analysis was performed for the S1 and S2 stages,

separately, with co-occurrence patterns between the microbes assessed by
calculating the correlations based on the cumulative sum scaling
normalized OTU tables. Spearman’s rank coefficients (r) between the OTUs
were calculated in a pairwise fashion, and significant and robust
correlations (FDR p < 0.01, |r| ≥ 0.6) were used to construct the networks
[64]. The R packages vegan, hmisc and igraph were used for network
statistical analyses [65, 66]. Network visualization was performed by Gephi
software with the layout algorithm of Fruchterman-Reingold [67].

De novo transcriptome analysis
Raw RNA-seq reads were trimmed to remove adapter sequences and
excluded low quality reads with a score cutoff < 30, using fastp (v0.19.7)
[68]. Sequences that mapped to microorganisms including bacteria,
viruses, archaea, and fungi were filtered. Due to the absence of a high-
quality genome for Rhizomys pruinosus, we generated a de novo assembly
of all the high-quality reads from the 36 samples using Trinity (v2.3.2), with
default parameter (except -min_kmer_cov= 2) [69]. Bowtie (v1.0.0) [70]
was used to map the reads from each sample. The bam format files were
delivered to Corset (v1.07) [71] to cluster and remove redundant
transcripts. Transcripts with maximum expression TMM> 1 were retained.
Open reading frames (ORFs) were predicted for all transcripts by
Transdecoder (v5.5.0) [72]. Transcripts with poorly supported protein-
coding evidence (ORF length < 50 amino acids) were discarded. Complete-
ness of the assembled transcripts was assessed by BUSCO (v3.0.2) based on
conserved euarchontoglires and vertebrate orthologs [73]. Transcriptome
annotation was performed on the predicted protein sequences using
Trinotate (v3.1.1) [74] with default parameters.
We used the R package DESeq2 (v1.30.1) [75] to obtain differentially

expressed genes (DEGs) by comparing gene expression values between
each group. Genes with a twofold (or greater) change and an adjusted p <
0.05 were considered as differentially expressed. KEGG and GO enrichment
analyses of the DEGs were performed using an online resource (http://
www.omicshare.com/) with default instructions.

Metagenomic assembly and gene profile construction
Clean reads were achieved by removing the adapter and low quality
sequences (quality score < 30) from the raw reads using fastp (v0.19.7) [68].
We constructed a nucleotide dataset containing the genomes of giant
panda (AilMel_1.0), hoary bamboo rat (RhiPru_v1_BIUU), rat (Rnor_6.0),
mouse (GRCm38.p6), Cavia procellus (Cavpor3.0), maize (RefGen_v4), and
our de novo assembled transcriptomes. The clean reads were filtered by
mapping reads to this merged nucleotide dataset using BWA-MEM (v
0.7.17) [76].
Megahit (v1.0.3) was used to assemble the high-quality reads [77]. To

improve the assembly result for less abundant species in the gut of
bamboo rats, the final metagenomic assembly results were combined
with the results of each sample assembly, and the results of the two
sample groups (S1 and S2) assemblies. Contigs larger than 500 bp were
predicted by Prodigal (v2.6.3) and the generated coding sequences with
length < 102 bp were discarded. The initial non-redundant gene sets
were clustered by CD-HIT-est (v4.7), with parameter “-c 0.95 -n 10 -G 0 -aS
0.9” [78]. The encoded protein sequences were aligned against the NCBI-
NR database (November 2018) on the basis of DIAMOND (v0.8.28.90,
diamond blastp -evalue 10 -max-target-seqs 250) by CARMA3 (carma
-classify-blast -type p -database p) [79, 80]. The genes classified as
“eukaryota” and “unknown” were excluded from the non-redundant gene
set, and the final gut microbial gene catalog of bamboo rat included 2.76
M genes.

Functional annotation of metagenomic assembled genes
For functional annotation, the protein sequences were aligned against the
KEGG (release 79) [81], eggNOG (v4.5) [82] and CAZy (available November
2018) [83] databases. KEGG and eggNOG annotations were aligned against
the corresponding databases using DIAMOND (v0.8.28.90), by taking the
best hit with the criteria of E value < 1e−5. Annotation of CAZymes families
was aligned against the CAZy database using the hmmscan tool of HMMER
(v3.2.1), by taking the best hit with the threshold of E value < 1e−18 and
coverage >0.35 [84].

Species annotation of the genes coding for CAZymes
The species origin of the genes coding for CAZymes was identified
according to the following pipeline [85]: similarity of the predicted
assembled gene segments to known species was estimated by alignment
against NCBI-NT (Jul 9, 2021), using BLASTn (v2.11.0, default parameters
except that -evalue 1e-10 -outfmt 6 -word_size 16); and result hits >90%
identity and >70% alignment coverage were used as the critical value for
species assignment. For the genes with multiple best-hits, the species
annotation with the highest frequency and the highest average similarity
was defined as the annotation of the gene.

Quantification of genes and construction of species and
function profiles
Sequenced-based abundance profiling was performed as previously
described [86]. For the calculation of relative gene abundance, the high-
quality reads from each sample were aligned against the gene catalog by
BWA-MEM with the criteria of alignment length ≥50 bp and identity >95%.
Copy number of each gene in one sample was defined as the quotient of
the number of mapped reads and the length of the gene. The species and
function profile were calculated by summing the relative abundance of
genes belonging to each category per sample. Overall differences in the
genes, CAZymes, KOs, and COGs were evaluated by NMDS or PCoA
analysis based on Bray–Curtis dissimilarity values, using the phyloseq and
vegan packages in R [66, 87].

Metabolomics data processing
Basic metabolomic data handing including statistical analysis, Pattern
Hunter analysis, biomarker analysis, and enrichment analysis were
performed with MetaboAnalyst (v5.0) [88]. To reduce baseline noise, the
features were excluded if their relative standard deviation were higher
than 25% in the QC samples or near-constant throughout all samples
detected by interquartile range. Data normalization was achieved by log
transformation and uv scaling (mean-centered and divided by the
standard deviation of each variable). For screening differential metabolites,
we considered the variable importance of projection (VIP) value of the first
principal component of the partial least-squares discriminant analysis (PLS-
DA), fold change (FC) and statistical significance of the variables calculated
by t-test. Differential metabolites were defined if VIP > 1, FC > 2.0 or FC <
0.5, and p value < 0.05. Correlation analysis based on Spearman correlation
coefficient (r) was performed against a given pattern consistent with the
dietary types (S1 or S2 stage). The metabolites with significant and robust
correlation (FDR p < 0.05, |r| ≥ 0.6) were used for KEGG enrichment analysis.
Classical univariate ROC (receiver operating characteristic) curve analysis
was performed to generate the ROC curve. The excellent predictive
performance was evaluated by calculating the area under the ROC curve
(AUC) > 0.9 [89].

Estimation of microbiome association with serum
metabolome
Mantel tests were used to quantify the covariation between different
measurement types [90]. Bray–Curtis dissimilarity matrices from the OTU
and CAZymes profiles, and the Euclidean distance matrix from the serum
metabolite profile were obtained based on the corresponding normalized
matrix. The paired matrices were then compared using the mantel function
implemented the R package vegan [66]. The effect size (mantel statistical r)
and significance (p value) of the Mantel test were used to quantify the
covariation between the microbial profiles of different intestinal segments
(duodenum, cecum, colon) and the serum metabolome.
R package mixOmics [91] was used to integrate and explore the

metabolome and microbial taxonomy profile. The different types of omics
datasets were processed and normalized before integration. Individual and
paired analysis with the sPLS-DA (sparse PLS-DA) model was executed to
test whether a set of OTUs or metabolites can distinguish the groups. To
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circumvent spurious associations, the optimum number of components
and variables was determined with 50 × 5-fold cross-validation. The
similarity values between pair of variables were calculated by the network
function. Variable pairs with a high similarity measure (|ρ| ≥ 0.6) are
considered as relevant and used for built networks. Networks displaying
correlations between the gut microbiome and serum metabolites were
generated using Cytoscape (v3.7.2) [92].

Statistical analysis
Bacterial features showing differential abundance between the different
dietary stages of bamboo rat and giant panda were identified using LEfSe
threshold criteria of LDA score > 3.5 and p value < 0.05. The significance in
the difference of community compositions between the groups was
analyzed with the permutational multivariate analysis of variances
(PERMANOVA) method based on 999 permutations. Wilcoxon rank sum
tests were performed to assess the differences in the alpha diversity and
functional profiles of the gut microbiomes. Pattern hunter analysis with a
threshold criterion of Spearman r > 0.6 and FDR p < 0.05 was used for
estimating the metabolites associated with dietary stages. Mantel test with
9999 random permutations were used to assess the contribution of the
microbiome of different parts of the gut to the serum metabolome, two
measurement types were considered correlated if the p value < 0.05, and
the absolute value of mantel statistical r indicates the degree of
covariation. The p values in the multiple comparisons were adjusted by
the Benjamini–Hochberg false discovery rate (FDR) method.

DATA AVAILABILITY
Shotgun metagenomic sequences and 16S rRNA gene amplicon sequences
generated in this study were deposited to the NCBI SRA database under the
BioProject accession no. PRJNA774076. The RNA sequencing data are available from
SRA BioProject PRJNA774077. The metabolomics data are available in the Metabo-
Lights data repository (www.ebi.ac.uk/metabolights) with accession no. MTBLS4161.
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