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Cross-biome antibiotic resistance decays after millions of years
of soil development
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Soils harbor the most diverse naturally evolved antibiotic resistance genes (ARGs) on Earth, with implications for human health and
ecosystem functioning. How ARGs evolve as soils develop over centuries, to millennia (i.e., pedogenesis), remains poorly
understood, which introduces uncertainty in predictions of the dynamics of ARGs under changing environmental conditions. Here
we investigated changes in the soil resistome by analyzing 16 globally distributed soil chronosequences, from centuries to
millennia, spanning a wide range of ecosystem types and substrate age ranges. We show that ARG abundance and diversity decline
only after millions of years of soil development as observed in very old chronosequences. Moreover, our data show increases in soil
organic carbon content and microbial biomass as soil develops that were negatively correlated with the abundance and diversity of
soil ARGs. This work reveals natural dynamics of soil ARGs during pedogenesis and suggests that such ecological patterns are
predictable, which together advances our understanding of the environmental drivers of ARGs in terrestrial environments.
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Soils harbour ancient evolutionary origins of antibiotic resistance
and have been proposed as dominant reservoirs for antibiotic
resistance genes (ARGs) and antibiotic resistant bacteria (ARB) [1, 2].
Bacteria can develop antibiotic resistance through acquisition of
ARGs via mutation or horizontal gene transfer under natural
selection, which is a common strategy used by bacteria to withstand
the negative effects of antibiotics [3, 4]. Several soil-dwelling
bacteria, such as Streptomyces, produce antibiotics that confer an
evolutionary advantage to outcompete other soil microorganisms
for resources and that must be suppressed by the presence of
antibiotic resistance mechanisms [5]. There are still major unknowns
related to long-term dynamics of soil antibiotic resistance and we
lack a conceptual understanding for how and why antibiotic
resistance changes during soil formation (pedogenesis). Improving
understanding of how soil ARGs evolve as soil develops, from
centuries to millennia, informs important ecological mechanisms,
such as microbial competition, which can influence global terrestrial
biodiversity and ecosystem services.
Soil chronosequences and associated space-for-time substitu-

tions have been proposed as a model-system to investigate long-
term dynamics in soil elements, plant succession, and ecosystem
processes [6–9]. As soil develops from hundreds of thousands to
millions of years, vegetation develops and organic carbon
accumulates. These build-up conditions support a larger number
of microorganisms and a higher load capacity of microbial
biomass [10]. Using this system model, we proposed that younger
soils are likely to support higher abundances of ARGs than older
soils because microbial competition for resources is expected
to be more significant when resources are low. The majority of

antibiotic resistance mechanisms are associated with a fitness cost
that is typically observed as a reduced bacterial growth rate [11].
We predict that, as soil develops and resource availability
increases, microbial competition will be relieved and, therefore,
the need for ARGs may be reduced.
To test this hypothesis, we conducted a global field survey

including 435 composite soil samples from 87 global locations in
16 soil chronosequences. These soil chronosequences included soils
ranging in age from hundreds to thousands and millions of years
(Fig. S1 and Table S1), and encompassed a wide range of ecosystem
types (grasslands, shrublands, forests, and croplands), chronose-
quence origins (volcanic, sedimentary, sand dunes, and glaciers),
and climatic conditions (tropical, temperate, continental, polar, and
arid). We examined changes in the soil resistome during soil
formation across global biomes and identified factors regulating soil
antibiotic resistance, which is a microbial trait associated with
competition. We used high throughput quantitative PCR (HT-qPCR)
[12] to characterize the diversity (Shannon index) and abundance of
285 ARGs encoding resistance to all major known antibiotics that
are commonly used in human, animal, and agriculture settings
(Table S2). Although this PCR-based method is limited by primer
design and selection, and it is possible that novel ARGs will be
missed with this approach, this method was validated previously
[13, 14] and is more comprehensive than conventional qPCR that
targets relatively few ARGs. Soil bacterial and fungal abundances
were estimated by phospholipid fatty acid analysis and soil nutrient
availability and stoichiometry were assessed (see Supplementary
Methods). Using this approach, we produced high quality data for
93% of all soil samples (i.e., 403 out of 435 samples).
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Pedogenesis-related changes in soil bacteria, fungi, and protist
biodiversity are relatively well documented [15, 16]. However,
changes to the soil resistome, as ecosystems grow older, are less
well understood. Our analyses show that young (i.e., thousands
of years; five sites) and intermediate (i.e., hundreds of thousands
of years; four sites) chronosequences support contrasting
patterns in resistome development. In general, over 50% of the
chronosequences support increases and decreases in the
abundance and diversity of ARGs in young and intermediate
chronosequences, respectively (Fig. 1A). A previous study
focused on relatively young soils and found that changes in soil
ARGs followed a unimodal pattern, with an increasing trend at
early stages (i.e., 0–8 years), and with no significant change at
later stages (i.e., 17–50 years) [17]. However, our study includes a
very different temporal scale. In young chronosequences,
increases in the abundance and diversity of ARGs might be
associated with increasing competition for soil resources in
ecosystems with poorly developed soils. However, in very old
chronosequences (i.e., after millions of years of soil development;
seven sites), we found a negative relationship between
the abundance and diversity of ARGs with chronosequence
stage in most soil chronosequences (Fig. 1A). Similar results
were found when working with the most abundant type of ARGs

(i.e., aminoglycoside, β-lactams, and multidrug; Figs. S2 and S3).
The ordinary least-squares (OLS) model further shows that both
abundance (p= 0.002) and diversity (p= 0.005) of ARGs were
significantly negatively correlated with soil age, when consider-
ing all soil chronosequences (Fig. 1B). In addition, a similar
pattern was observed for the composition (NMDS1) of ARGs and
soil age (p= 0.002) (Fig. S4).
Our results indicate that soil age can have a pivotal role in

shaping the resistome during pedogenesis. To better understand
how soil age drives the soil resistome, we used structural equation
modeling to generate a system-level and global understanding
of the associations between soil age and the diversity and
abundance of ARGs (Fig. 2A). The optimized model suggests that
the increases in soil total organic carbon (TOC) and microbial
biomass have negative and significant direct associations with
both the diversity and abundance of soil ARGs. The OLS model
further shows a significant positive relationship between soil TOC
and microbial biomass. Previous research demonstrates that soil
nutrient availability, including TOC, is a major determinant of
microbial growth and community composition [18, 19]. Our results
further suggest that the content of soil TOC and microbial biomass
is the most significant controller of the soil antibiotic resistance
during soil development (Figs. 2B and S5). Our data indicate that
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Fig. 1 Changes in ARG abundance and diversity during pedogenesis. A The relationships between chronosequence stage and soil ARG
abundance and diversity across 16 globally distributed soil chronosequences. B The relationships between soil age and ARG abundance and
diversity across all soil chronosequences. The chronosequence stage means a set of soil sites that share similar attributes; higher numbers are
older stages.
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as resources become more abundant in soils after millions of years
of ecosystem development, microbial competition decreases,
reducing the need for a large production of ARGs and, therefore,
the abundance and diversity of ARGs in soil.
In summary, our findings show that the abundance and

diversity of soil ARGs decays during pedogenesis at a global
scale. Our results further indicate that changes in soil TOC and
microbial mass are the most significant predictors of soil
resistome. These outputs provide new insights into the natural
history of the soil resistome during pedogenesis and are essential
to forecast the evolution and dissemination of antibiotic resistance
under the changing environment and to manage existing and
future antibiotic resources.
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Fig. 2 Drivers of the abundance and diversity of ARGs during pedogenesis. A Structural equation model showing the direct and indirect
effects of changes in soil properties on the abundance and richness of ARGs. χ2= 1.83 (p= 0.40), Degrees of freedom (df)= 2, Root mean square
error of approximation (RMSEA)= 0.00. Goodness-of-fit index (GFI)= 0.998. *p < 0.05, **p < 0.01, ***p < 0.001. R2 denotes the proportion of variance
explained. B Relationships between the abundance and diversity of soil ARGs, total organic carbon, and microbial biomass.
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