Abstract
Anaerobic carboxydotrophy is a widespread catabolic trait in bacteria, with two dominant pathways: hydrogenogenic and acetogenic. The marginal mode by direct oxidation to CO2 using an external e-acceptor has only a few examples. Use of sulfidic sediments from two types of hypersaline lakes in anaerobic enrichments with CO as an e-donor and elemental sulfur as an e-acceptor led to isolation of two pure cultures of anaerobic carboxydotrophs belonging to two genera of sulfur-reducing haloarchaea: Halanaeroarchaeum sp. HSR-CO from salt lakes and Halalkaliarchaeum sp. AArc-CO from soda lakes. Anaerobic growth of extremely halophilic archaea with CO was obligatory depended on the presence of elemental sulfur as the electron acceptor and yeast extract as the carbon source. CO served as a direct electron donor and H2 was not generated from CO when cells were incubated with or without sulfur. The genomes of the isolates encode a catalytic Ni,Fe-CODH subunit CooS (distantly related to bacterial homologs) and its Ni-incorporating chaperone CooC (related to methanogenic homologs) within a single genomic locus. Similar loci were also present in a genome of the type species of Halalkaliarchaeum closely related to AArc-CO, and the ability for anaerobic sulfur-dependent carboxydotrophy was confirmed for three different strains of this genus. Moreover, similar proteins are encoded in three of the four genomes of recently described carbohydrate-utilizing sulfur-reducing haloarchaea belonging to the genus Halapricum and in two yet undescribed haloarchaeal species. Overall, this work demonstrated for the first time the potential for anaerobic sulfur-dependent carboxydotrophy in extremely halophilic archaea.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Ragsdale SW. Life with carbon monoxide. Crit Rev Biochem Mol Biol. 2004;39:165–95.
Svetlitchnyi V, Peschel C, Acker G, Meyer O. Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol. 2001;183:5134–44.
Techtmann SM, Lebedinsky AV, Colman AS, Sokolova TG, Woyke T, Goodwin L, et al. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases. Front Microbiol. 2012;3:132.
Inoue M, Nakamoto I, Omae K, Oguro T, Ogata H, Yoshida T, et al. Structural and phylogenetic diversity of anaerobic carbon-monoxide dehydrogenases. Front Microbiol. 2020;9:3353.
Jeoung J-H, Martins BM, Dobbek H Carbon monoxide dehydrogenases. In: Hu Y (ed.), Metalloproteins: Methods and Protocols. Methods in Molecular Biology. 2019; 1876:37–54.
King GM, Weber CF. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol. 2007;5:107–18.
Robb FT, Techtmann SM Life on the fringe: microbial adaptation to growth on carbon monoxide. F1000Research. 2018:7. https://doi.org/10.12688/f1000research.16059.1.
King GM. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: Implications for microbial activity in Mars regolith. Proc Nat Ac Sci USA. 2015;112:4465–70.
Sokolova TG, Henstra AM, Sipma J, Parshina SN, Stams AJM, Lebedinsky AV. Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol Ecol. 2009;68:131–41.
Diender M, Stams AJM, Sousa DZ. Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol. 2015;6:1275.
Hoeft SE, Switzer Blum J, Stolz JF, Tabita FR, Witte B, King GM, et al. Alkalilimnicola ehrlichii sp. nov., a novel arsenite-oxidizing, haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol. 2007;57:504–12.
Sorokin DY, Kovaleva OL, Tourova TP, Kuenen JG, Muyzer G. Aerobic carboxydotrophy at extremely haloalkaline conditions in Alkalispirillum/Alkalilimnicola strains isolated from soda lakes. Microbiol (SGM). 2010;156:819–27.
Myers MR, King GM. Perchlorate-coupled carbon monoxide (co) oxidation: evidence for a plausible microbe-mediated reaction in Martian brines. Front Microbiol. 2017;8:2571.
Jensen A, Finster K. Isolation and characterization of Sulfurospirillum carboxydovorans sp. nov., a new microaerophilic carbon monoxide oxidizing epsilonproteobacterium. Antonie van Leeuwenhoek. 2005;87:339–53.
Parshina SN, Sipma J, Henstra AM, Stams AJM Carbon monoxide as an electron donor for the biological reduction of sulphate. Int J Microbiol. 2010;2010:319527.
Fukuyama Y, Omae K, Yoneda Y, Yoshida T, Sako Y. Insight into energy conservation via alternative carbon monoxide metabolism in Carboxydothermus pertinax revealed by comparative genome analysis. Appl Environ Microbiol. 2018;84:e00458–18.
Alves JI, Visser M, Arantes AL, Nijsse B, Plugge CM, Alves MM, et al. Effect of sulfate on carbon monoxide conversion by a thermophilic syngas-fermenting culture dominated by a Desulfofundulus species. Front Microbiol. 2020;11:588468.
Henstra AM, Dijkema C, Stams AJ. Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. Environ Microbiol. 2007;9:1836–41. 18
Kozhevnikova DA, Taranov EA, Lebedinsky AV, Bonch-Osmolovskaya EA, Sokolova TG. Hydrogenogenic and sulfidogenic growth of Thermococcus archaea on carbon monoxide and formate. Microbiol (Mosc, Engl Translation). 2016;85:400–10.
Oger P, Sokolova TG, Kozhevnikova DA, Chernyh NA, Bartlett DH, Bonch-Osmolovskaya EA, et al. Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain AM4, capable of organotrophic growth and growth at the expense of hydrogenogenic or sulfidogenic oxidation of carbon monoxide. J Bacteriol. 2011;193:7019–20.
Benvenuti M, Meneghello M, Guendon C, Jacq-Bailly A, Jeoung J-H, Dobbek H, et al. The two CO-dehydrogenases of Thermococcus sp. AM4. Biochim Biophys Acta. 2020;1861:148188.
Wu GJ, Schut FLP, Haja DK, Adams MWW. Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes. J Biol Chem. 2018;293:16687–96.
Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS. Alkalibaculum bacchi gen.nov., sp.nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol. 2010;60:2483–2489.
Liu K, Atiyeh HK, Tanner RS, Wilkins MR, Hahnke RL. Fermentative production of ethanol from syngas using moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresour Technol. 2012;104:336–41.
Khomyakova MA, Merkel AY, Petrova DA, Bonch-Osmolovskaya EA, Slobodkin AI. Alkalibaculum sporogenes sp. nov., isolated from a terrestrial mud volcano and emended description of the genus Alkalibaculum. Int J Syst Evol Microbiol. 2020;70:4914–4919.
Sorokin DY, Diender M, Merkel AY, Koenen M, Bale NJ, Pabst M, et al. Natranaerofaba carboxydovora gen. nov., sp. nov., an extremely haloalkaliphilic CO-utilizing acetogen from a hypersaline soda lake representing a novel deep phylogenetic lineage in the class “Natranaerobiia”. Environ Microbiol. 2021;23:3460–76.
Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN, Galinski EA, et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol. 2017;2:17081.
Sorokin DY, Kublanov IV, Gavrilov SN, Rojo D, Roman P, Golyshin PN, et al. Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME J. 2016;10:240–252.
Sorokin DY, Kublanov IV, Yakimov MM, Rijpstra WI, Sinninghe Damsté JS. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake. Int J Syst Evol Microbiol. 2016;66:2377–81.
Sorokin DY, Yakimov MM, Kublanov IV, Oren A Halanaeroarchaeum. In: Whitman WB (ed). Bergey’s Manual of Systematic of Bacteria and Archaea. John Wiley & Sons, Ltd. 2017; https://doi.org/10.1002/9781118960608.gbm01496.
Sorokin DY, Messina E, Smedile F, Roman P, Sinninghe Damsté JS, Ciordia S, et al. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats. ISME J. 2017;11:1245–60.
Sorokin DY, Yakimov MM Genus Halodesulfuriarchaeum. In: Whitman WB (ed.). Bergey’s Manual of Systematic of Bacteria and Archaea. John Wiley & Sons, Ltd. 2018. https://doi.org/10.1002/9781118960608.gbm01528. 32
Sorokin DY, Messina E, La Cono V, Ferrer M, Ciordia S, del Carmen Mena, et al. Sulfur respiration in a group of facultatively anaerobic natronoarchaea ubiquitous in hypersaline soda lakes. Front Microbiol. 2018;9:2359.
Sorokin DY, Yakimov MM, Messina E, Merkel AY, Bale NJ, Sinninghe Damsté JS. Natronolimnobius sulfurireducens sp. nov., and Halalkaliarchaeum desulfuricum gen. nov., sp. nov., the first sulfur-respiring alkaliphilic haloarchaea from hypersaline alkaline lakes. Int J Syst Evol Microbiol. 2019;69:2662–73.
Sorokin DY, Merkel AY, Messina E, Yakimov MM, Itoh T, Mesbah NM, et al. Reclassification of the genus Natronolimnobius: proposal of two new genera, Natronolimnohabitans gen. nov. to accommodate Natronolimnobius innermongolicus and Natrarchaeobaculum gen. nov. to accommodate Natronolimnobius aegyptiacus and Natronolimnobius sulfurireducens. Int J Syst Evol Microbiol. 2020;70:3399–405.
Sorokin DY, Merkel AY, Yakimov MM, Oren A. Halalkaliarchaeum. In: Whitman WB (ed.). Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd. 2020. https://doi.org/10.1002/9781118960608.gbm01943.
Sorokin DY, Messina E, Smedile F, La Cono V, Hallsworth JE, Yakimov MM. Carbohydrate-dependent sulfur respiration in halo(alkali)philic euryarchaea from hypersaline lakes. Environ Microbiol. 2021;23:3779–808. 37
Sorokin DY, Yakimov MM, Messina E, Merkel AY, Koenen M, Bale NJ, et al. Halapricum desulfuricans sp. nov., carbohydrate-utilizing sulfur-reducing haloarchaea from hypersaline lakes. Syst Appl Microbiol. 2021;44:126249.
Pfennig N, Lippert KD. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol. 1966;55:245–56.
Plugge CM. Anoxic media design, preparation, and considerations. Methods Enzymol. 2005;397:3–16.
Trüper HG, Schlegel HG. Sulfur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek. 1964;30:225–38.
Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA, Waite DW, et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol. 2021;6:946–59.
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol. 2020;37:1530–1534.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol. 2006;55:539–52.
Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for largescale multiple sequence alignments. Bioinformatics 2018;34:2490–2492.
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haesele A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2019;14:587–589.
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–1973.
Kamyshny A, Goifman A, Rizkov D, Lev O. Formation of carbonyl sulfide by the reaction of carbon monoxide and inorganic polysulfides. Environ Sci Technol. 2003;37:1865–72.
Zeer-Wanklyn CJ, Zamble DB. Microbial nickel: cellular uptake and delivery to enzyme centers. Curr Opin Chem Biol. 2017;37:80–88.
Alfano M, Pérard J, Carpentier P, Basset C, Zambelli B, Timm J, et al. The carbon monoxide dehydrogenase accessory protein CooJ is a histidine-rich multidomain dimer containing an unexpected Ni(II)-binding site. J Biol Chem. 2019;294:7601–14.
Rowinska-Zyrek M, Zakrzewska-Czerwinska J, Zawilak-Pawlik A, Kozlowski H. Ni2+ chemistry in pathogens - a possible target for eradication. Dalton Trans. 2014;43:8976–89.
Sorokin DY. Microbial utilization of glycine betaine in hypersaline soda lakes. Microbiol (Mosc). 2021;90:567–75.
Elling FJ, Becker KW, KönnekeM, Schröder JM, Kellermann MY, Thomm M, et al. Respiratory quinones in Archaea: phylogenetic distribution and application as biomarkers in the marine environment. Environ Microbiol. 2016;18:692–707.
Buckel W, Thauer RK. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+ (Rnf) as electron acceptors: a historical review. Front Microbiol. 2018;9:401.
Buckel W, Thauer RK. Flavin-based electron bifurcation, a new mechanism of biological energy coupling. Chem Rev. 2018;118:3862–86.
Tian L, Lo J, Shao X, Zheng T, Olson DG, Lynda LR. Ferredoxin:NAD oxidoreductase of Thermoanaerobacterium saccharolyticum and its role in ethanol formation. Appl Environ Microbiol. 2016;82:7134–41.
Friedrich T, Scheide D. The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane bound multisubunit hydrogenases. FEBS Lett. 2000;479:1–5.
Grimaldi S, Schoepp-Cothenet B, Ceccaldi P, Guigliarelli B, Magalon A. The prokaryotic Mo/W-bisPGD enzymes family: A catalytic workhorse in bioenergetic. Biochim Biophys Acta. 2016;1827:1048–85.
Duarte AG, Barbosa ACC, Ferreira D, Manteigas G, Domingos RM, Pereira IAC. Redox loops in anaerobic respiration - The role of the widespread NrfD protein family and associated dimeric redox module. Biochim Biophys Acta. 2021;1862:148416.
Ledbetter RN, Garcia Costas AM, Lubner CE, Mulder DW, Tokmina-Lukaszewska M, Artz JH, et al. The electron bifurcating FixABCX protein complex from Azotobacter vinelandii: generation of low-potential reducing equivalents for nitrogenase catalysis. Biochemistry. 2017;56:4177–4190. 60
Schut GJ, Mohamed-Raseek N, Tokmina-Lukaszewska M, Mulder DW, Nguyen DMN, Lipscomb GL. The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD+. J Biol Chem. 2019;294:3271–83.
Torregrosa-Crespo J, Pire C, Richardson DJ, Martínez-Espinosa RM. Exploring the molecular machinery of denitrification in Haloferax mediterranei through proteomics. Front Microbiol. 2020;11:605859.
Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim Biophys Acta. 2013;1827:114–35.
Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ, Yuan Z, et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 2020;14:1030–41.
Miralles-Robledillo JM, Bernabeu E, Giani M, Martínez-Serna E, Martínez-Espinosa RM, Pire C. Distribution of denitrification among haloarchaea: a comprehensive study. Microorganisms. 2021;9:1669.
Duval S, Ducluzeau A-L, Nitschke W, Schoepp-Cothenet B. Enzyme phylogenies as markers for the oxidation state of the environment: the case of respiratory arsenate reductase and related enzymes. BMC Evol Biol. 2008;8:206.
Acknowledgements
DS and AM were supported by the Russian Foundation for Basic Research (RFBR grant 19-04-00401) for field work and isolation of pure cultures and by the Russian Ministry of Science and Higher Education (genomic and phylogenomic analyses). DS and MP were also supported by the Gravitation-SIAM Program of the Dutch Ministry of Education, Culture and Science (grant 24002002). EM, MY and PG were supported by the European Commission’s Horizon 2020 Program under FUTURENZYME Project (Contract 101000327). PG was supported by the Center for Environmental Biotechnology Project, partly funded by the European Regional Development Fund via the Welsh Assembly Government.
Author information
Authors and Affiliations
Contributions
DS performed sampling, isolation and physiological characterisation of pure cultures. Bioinformatics analyses was carried out by DS, AM, EM and MY. MP and CT performed proteomic analysis. PG was responsible for the genome sequencing. The data were interpreted and manuscript was written by DS, AM and MY.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Sorokin, D.Y., Merkel, A.Y., Messina, E. et al. Anaerobic carboxydotrophy in sulfur-respiring haloarchaea from hypersaline lakes. ISME J 16, 1534–1546 (2022). https://doi.org/10.1038/s41396-022-01206-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41396-022-01206-x