Abstract
Comparative and pan-genomic analyses of the endophytic fungus Pezicula neosporulosa (Helotiales, Ascomycota) from needles of the relict fir, Abies beshanzuensis, showed expansions of carbohydrate metabolism and secondary metabolite biosynthetic genes characteristic for unrelated plant-beneficial helotialean, such as dark septate endophytes and ericoid mycorrhizal fungi. The current species within the relatively young Pliocene genus Pezicula are predominantly saprotrophic, while P. neosporulosa lacks such features. To understand the genomic background of this putatively convergent evolution, we performed population analyses of 77 P. neosporulosa isolates. This revealed a mosaic structure of a dozen non-recombining and highly genetically polymorphic subpopulations with a unique mating system structure. We found that one idiomorph of a probably duplicated mat1-2 gene was found in putatively heterothallic isolates, while the other co-occurred with mat1-1 locus suggesting homothallic reproduction for these strains. Moreover, 24 and 81 genes implicated in plant cell-wall degradation and secondary metabolite biosynthesis, respectively, showed signatures of the balancing selection. These findings highlight the evolutionary pattern of the two gene families for allowing the fungus a rapid adaptation towards endophytism and facilitating diverse symbiotic interactions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







Data availability
M44 genomic data are available at the NCBI (BioProject number PRJNA517416, BioSample number SAMN10830013). This Whole Genome Sequencing (WGS) Project has been deposited at DDBJ/ENA/GenBank under the accession number SELE00000000. The raw genome resequencing data obtained have been deposited at the NCBI in the Short Read Archive database under the accession numbers SRR8568788-SRR8568862. Raw VCF files (SNP and indel variants) are available via Data Dryad (https://doi.org/10.5061/dryad.zs7h44j6x). The alignment and ML tree of mat1-2-1 were deposited in TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:S27214).
References
Tigano A, Colella JP, MacManes MD. Comparative and population genomics approaches reveal the basis of adaptation to deserts in a small rodent. Mol Ecol. 2020;29:1300–14.
Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G, de Vienne DM, et al. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol Ecol. 2014;23:753–73.
Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452:88–92.
Weiß M, Waller F, Zuccaro A, Selosse MA. Sebacinales-one thousand and one interactions with land plants. New Phytol. 2016;211:20–40.
Knapp DG, Németh JB, Barry K, Hainaut M, Henrissat B, Johnson J, et al. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci Rep. 2018;8:6321.
Martino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S, et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–29.
Arnold AE. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev. 2007;21:51–66.
Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology. 1988;69:2–9.
Miller JD, Sumarah MW, Adams GW. Effect of a rugulosin-producing endophyte in Picea glauca on Choristoneura fumiferana. J Chem Ecol. 2008;34:362–8.
White JF Jr, Torres MS. Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant. 2010;138:440–6.
May G, Nelson P. Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Funct Ecol. 2014;28:356–63.
Carroll G. The foraging ascomycete, in: Abstracts of the 16th International Botanical Congress. St Louis, Missouri, USA, 1999.
Müller MM, Valjakka R, Suokko A, Hantula J. Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol. 2001;10:1801–10.
Thomas DC, Vandegrift R, Ludden A, Carroll GC, Roy BA. Spatial ecology of the fungal genus Xylaria in a tropical cloud forest. Biotropica. 2016;48:381–93.
Naranjo-Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94:1443–76.
Oono R, Lutzoni F, Arnold AE, Kaye L, U’Ren JM, May G, et al. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species. Am J Bot. 2014;101:1362–74.
Shao S, Jin Z. In Species Diversity and Extinction (ed. Tepper, GH) Ch. 15. Nova Science Publishers. 2010.
Yuan ZL, Rao LB, Chen YC, Zhang CL, Wu YG. From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biol. 2011;115:197–213.
Yuan ZL, Verkley GJM. Pezicula neosporulosa sp. nov. (Helotiales, Ascomycota), an endophytic fungus associated with Abies spp. in China and Europe. Mycoscience. 2014;56:205–13.
Sieber T. Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev. 2007;21:75–89.
Levis NA, Martin RA, O’Donnell KA, Pfennig DW. Intraspecific adaptive radiation: competition, ecological opportunity, and phenotypic diversification within species. Evolution. 2017;71:2496–509.
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–D704.
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495.
Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.
Blin K, Wolf T, Chevrette MG, Lu XW, Schwalen CJ, Kautsar SA, et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45:W36–W41.
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
Enright AJ, Dongen SV, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84.
Han MV, Thomas GW, Lugo-Martinez J, Hahn MW. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol. 2013;30:1987–97.
Walkowiak S, Rowland O, Rodrigue N, Subramaniam R. Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genomics. 2016;17:1014.
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.10.1–11.10.33.
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.
Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709.
Hutter S, Vilella AJ, Rozas J. Genome-wide DNA polymorphism analyses using VariScan. BMC Bioinform. 2006;7:409.
Richards JK, Stukenbrock EH, Carpenter J, Liu Z, Cowger C, Faris JD, et al. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genet. 2019;15:e1008223.
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Looney B, Miyauchi S, Morin E, Drula E, Courty PE, Kohler A, et al. Evolutionary priming and transition to the ectomycorrhizal habit in an iconic lineage of mushroom-forming fungi: is preadaptation a requirement? bioRxiv. 2021. https://doi.org/10.1101/2021.02.23.432530.
Wey T, Schlegel M, Stroheker S, Gross A. MAT-gene structure and mating behavior of Hymenoscyphus fraxineus and Hymenoscyphus albidus. Fungal Genet Biol. 2016;87:54–63.
Zijlstra JD, Van’t Hof P, Baar J, Verkley GJM, Summerbell RC, Paradi I, et al. Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Stud Mycol. 2005;53:147–62.
Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Zuccaro A, et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci USA. 2017;114:E9403–E9412.
Gazis R, Kuo A, Riley R, LaButti K, Lipzen A, Lin J, et al. The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biol. 2016;120:26–42.
Perotto S, Daghino S, Martino E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol. 2018;220:1141–7.
Wrzosek M, Ruszkiewicz-Michalska M, Sikora K, Damszel M, Sierota Z. The plasticity of fungal interactions. Mycol Prog. 2017;16:101–8.
Parrent JL, James TY, Vasaitis R, Taylor AF. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol. 2009;9:148.
Zhang F, Anasontzis GE, Labourel A, Champion C, Haon M, Kemppainen M, et al. The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β-1,4 endoglucanase that plays a key role in symbiosis development. New Phytol. 2018;220:1309–21.
Mesny F, Miyauchi S, Thiergart T, Pickel B, Atanasova L, Karlsson M, et al. Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nat Commun. 2021;12:7227.
Schulz B, Sucker J, Aust HJ. Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res. 1995;99:1007–15.
Tanney JB, McMullin DR, Miller JD. Toxigenic Foliar Endophytes from the Acadian Forest. In: Pirttilä A, Frank A (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. 2018;343–81.
Yue Q, Li Y, Chen L, Zhang X, Liu X, An Z, et al. Genomics-driven discovery of a novel self-resistance mechanism in the echinocandin-producing fungus Pezicula radicicola. Environ Microbiol. 2018;20:3154–67.
Rogers RL, Grizzard SL, Titus-McQuillan JE, Bockrath K, Patel S, Wares JP, et al. Gene family amplification facilitates adaptation in freshwater unionid bivalve Megalonaias nervosa. Mol Ecol. 2021;30:1155–73.
Mäkinen M, Kuuskeri J, Laine P, Smolander OP, Kovalchuk A, Zeng Z, et al. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. BMC Genomics. 2019;20:430.
Yang Y, Liu X, Cai J, Chen Y, Li B, Guo Z, et al. Genomic characteristics and comparative genomics analysis of the endophytic fungus Sarocladium brachiariae. BMC Genomics. 2019;20:782.
Franco MEE, Wisecaver JH, Arnold AE, Ju YM, Slot JC, Ahrendt S, et al. Secondary metabolism drives ecological breadth in the Xylariaceae. bioRxiv. 2021. https://doi.org/10.1101/2021.06.01.446356.
Matsuda Y, Yamakawa M, Inaba T, Obase K, Ito S. Intraspecific variation in mycelial growth of Cenococcum geophilum isolates in response to salinity gradients. Mycoscience. 2017;58:369–77.
Taylor JW, Branco S, Gao C, Hann-Soden C, Montoya L, Sylvain I, et al. Sources of fungal genetic variation and associating it with phenotypic diversity. Microbiol Spectr. 2017;5:1–21.
Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, et al. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol. 2018;220:1161–71.
McCutcheon TL, Carroll GC, Schwab S. Genotypic diversity in populations of a fungal endophyte from Douglas Fir. Mycologia. 1993;85:180–6.
Perotto S, Girlanda M, Martino E. Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil. 2002;244:41–53.
Müller MM, Valjakka R, Hantula J. Genetic diversity of Lophodermium piceae in South Finland. For Pathol. 2007;37:329–37.
Morgenstern K, Polster J-U, Krabel D. Genetic variation between and within two populations of Rhabdocline pseudotsugae in Germany. Can J Res. 2016;46:716–24.
Atwell S, Corwin JA, Soltis NE, Subedy A, Denby KJ, Kliebenstein DJ. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Front Microbiol. 2015;6:996.
Gasca-Pineda J, Velez P, Hosoya T. Phylogeography of post-Pleistocene population expansion in Dasyscyphella longistipitata (Leotiomycetes, Helotiales), an endemic fungal symbiont of Fagus crenata in Japan. MycoKeys. 2020;65:1–24.
Groenewald M, Linde CC, Groenewald JZ, Crous PW. Indirect evidence for sexual reproduction in Cercospora beticola populations from sugar beet. Plant Pathol. 2008;57:25–32.
Nordborg M, Charlesworth B, Charlesworth D. Increased levels of polymorphism surrounding selectively maintained sites in highly selfing species. Proc R Soc B. 1996;263:1033–9.
Koenig D, Hagmann J, Li R, Bemm F, Slotte T, Neuffer B, et al. Long-term balancing selection drives evolution of immunity genes in Capsella. Elife. 2019;8:e43606.
Carbone I, Jakobek JL, Ramirez-Prado JH, Horn BW. Recombination, balancing selection and adaptive evolution in the aflatoxin gene cluster of Aspergillus parasiticus. Mol Ecol. 2007;16:4401–17.
Drott MT, Debenport T, Higgins SA, Buckley DH, Milgroom MG. Fitness cost of aflatoxin production in Aspergillus flavus when competing with soil microbes could maintain balancing selection. mBio. 2019;10:e02782–18.
Chen F, Goodwin PH, Khan A, Hsiang T. Population structure and mating-type genes of Colletotrichum graminicola from Agrostis palustris. Can J Microbiol. 2002;48:427–36.
Acknowledgements
Research in Yuan’s lab is financially supported by the Fundamental Research Funds for the Central Non-profit Research of the Chinese Academy of Forestry (CAFYBB2019ZA001-3) and the National Natural Science Foundation of China (No. 31722014 and 31772032). Research in Martin’s lab is supported by the Laboratory of Excellence ARBRE (ANR-11-LABX-0002-01) and the Beijing Advanced Innovation Center for Tree Breeding by Molecular Design. We extend our sincere gratitude to Dr. Primrose Boynton (Wheaton College, USA) and Dr. Fengyan Bai (State Key Laboratory of Mycology, Chinese Academy of Sciences) for useful discussions. We thank Dr Yougui Wu (Fengyangshan-Baishanzu National Nature Reserve, China) for providing basic information about the wild relict fir trees.
Author information
Authors and Affiliations
Contributions
ZLY and QW conceived and designed this study. XYW conducted molecular and microbiological work. LXX performed HPLC analysis. ZLY, ISD, GHS completed bioinformatics, evolutionary, and phylogenetic analyses and interpreted the results with guidance from QW, JYW, and ZJL. ISD and XLS helped ZLY and QW with figure preparation. ZLY wrote the manuscript, and BPS, FMM, ZHZ, ISD, and CPK contributed improvements to the text. ZLY and ISD prepared the revised version of the manuscript. LP contributed text to the supplementary file. FMM, QW, BPS, CPK, and CF aided in the discussion of results. All authors approved the final version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yuan, Z., Wu, Q., Xu, L. et al. Genomic landscape of a relict fir-associated fungus reveals rapid convergent adaptation towards endophytism. ISME J 16, 1294–1305 (2022). https://doi.org/10.1038/s41396-021-01176-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41396-021-01176-6