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Predicting the response of ocean primary production to climate warming is a major challenge. One key control of primary
production is the microbial loop driven by heterotrophic bacteria, yet how warming alters the microbial loop and its function is
poorly understood. Here we develop an eco-evolutionary model to predict the physiological response and adaptation through
selection of bacterial populations in the microbial loop and how this will impact ecosystem function such as primary production.
We find that the ecophysiological response of primary production to warming is driven by a decrease in regenerated production
which depends on nutrient availability. In nutrient-poor environments, the loss of regenerated production to warming is due to
decreasing microbial loop activity. However, this ecophysiological response can be opposed or even reversed by bacterial
adaptation through selection, especially in cold environments: heterotrophic bacteria with lower bacterial growth efficiency are
selected, which strengthens the “link” behavior of the microbial loop, increasing both new and regenerated production. In cold and
rich environments such as the Arctic Ocean, the effect of bacterial adaptation on primary production exceeds the ecophysiological
response. Accounting for bacterial adaptation through selection is thus critically needed to improve models and projections of the
ocean primary production in a warming world.
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INTRODUCTION
Microorganisms dominate ocean biodiversity and play a major
role in global ecosystem function. As Falkowski, Fenchel, and
DeLong [1] aptly phrased it, Earth’s biogeochemical cycles are
driven by microbial engines. The ocean microbes’ response to
current climate changes has the potential to alter the global cycles
of carbon and nutrients with likely feedbacks to the climate
system [2, 3]. To improve our projections of ecosystem function
such as primary production and better understand the future of
climate, we need to assess both how ocean microorganisms
respond to climate change and how their response impacts to the
global environment [4].
The rise of sea surface temperature causes dramatic changes in

the oceanic environment, such as increased stratification resulting
in weaker nutrient fluxes from the deep sea [5], deoxygenation [6],
and sea-level rise [7]. How ocean microorganisms are affected, and
how these potential effects might propagate through the ocean
ecological web is poorly known. In particular, primary production
response to warming is hard to predict, even on short temporal
horizons [8]. In some regions, not only the magnitude but even
the very direction of these responses remains uncertain [9, 10],
notably because of complex interactions between temperature,
nutrient supply, and light.
Among ocean microorganisms, heterotrophic bacteria are key

actors of nutrient cycling. They remineralize dissolved organic
matter into nutrients (the “recycling pathway”), and re-direct

otherwise lost organic matter to higher trophic links via grazing.
Even though this “microbial loop” [11] is estimated to process
about half of all primary production [12, 13], an explicit recycling
pathway is often missing in models of global carbon and nutrient
cycles, and instead heterotrophic bacteria are treated implicitly
[14]. Models that represent the microbial loop explicitly [15, 16]
point to complex interaction effects between recycling and sea-
surface warming: at a given temperature, models that include the
microbial loop often predict a reduction in net primary production
(NPP) [16]; however, when warming is predicted to decrease NPP
by models without a microbial loop, inclusion of the microbial
loop can reverse that prediction [17]. It thus seems that the
direction of changes in primary production can in part be
explained by the microbial loop and the balance between new
and regenerated production. Our work aims at providing a
mechanistic explanation for the direction of primary production
variations by focusing on the microbial loop response to sea-
surface warming.
A potentially important component of this response that is

completely missing from previous models is bacterial adaptation
through selection, i.e., the selection of different, more adapted
bacterial strains. Throughout this paper, “adaptation” should thus
be understood as “adaptation through selection”, and be
contrasted to the physiological responses of individual bacteria
to ecological changes in the environment that we call “ecophy-
siological response”. The combined effects of bacterial adaptation
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through selection and ecophysiological response will be referred
to as the “eco-evolutionary response”. Bacterial adaptation may
have important consequences for the future of primary produc-
tion: as individual cells respond physiologically to warming,
population- and ecosystem-level effects may feed back to the
microbial community and drive the selection of different bacterial
strains. In return, such bacterial adaptation may alter the
ecological state of the system, thus entangling ecological and
evolutionary dynamics in a closed eco-evolutionary feedback loop
[18]. The capacity of bacterial populations to adapt rapidly to
temperature change through selection mechanisms has long been
established in the laboratory [19] and evidence is mounting for
the important role of adaptation in the response of whole
microbial communities to environmental change [20, 21]. Because
of heterotrophic bacteria’s large population sizes and short
generation time [22] relative to the timescale of climate change,
we expect bacterial adaptation to play a role in their response to
ocean warming [23], potentially altering the balance between new
and regenerated primary production. How much and where then
become key questions.
Here we extend an ecological model of the ocean’s surface to

include the microbial loop and account for bacterial adaptation in
the ecosystem’s response to warming. As eco-evolutionary feed-
backs drive joint and reciprocal changes in adaptive bacterial traits
and the ecosystem, we computationally explore a large parameter
space to predict the response of the microbial loop efficiency and
the consequences for new and regenerated primary production.
We seek to compare and contrast these eco-evolutionary
responses to the responses predicted in the absence of selection,
as in current global ocean models. By applying the model to
environmental scenarios differing in baseline temperature and
nutrient influx, we identify general biogeographic conditions
under which heterotrophic bacterial adaptation through selection
is expected to have a large influence on the response of ocean
productivity to climate warming.

METHODS
First, we introduce a simple ecosystem model describing fluxes of nutrients
between phytoplankton, grazers, and an explicit compartment of
heterotrophic bacteria. Temperature influences the physiology of all
organisms in the system. Then we model bacterial adaptation using the
microbial life-history evolution framework of Malik et al. [24] to focus on
Bacterial Growth Efficiency (BGE), the fraction of resources allocated by a
cell to growth, as a key integrative bacterial trait. Assuming that BGE can
vary among bacterial strains [25, 26] under the constraint of a trade-off
with the cell’s resource acquisition capacity [25, 27], we use evolutionary
game theory (a mathematical framework to model selection among
competing populations “playing” different strategies) to predict the
optimal (adapted) BGE as a function of temperature. By feeding the
temperature-dependent adapted BGE into the ecosystem model, we can
evaluate the system’s “eco-evolutionary” response to warming. This can
then be compared to the purely ecophysiological response (in the absence
of bacterial adaptation), the difference between the two measuring the
impact of bacterial adaptation.

Ecosystem model
The ecosystem model is adapted from biogeochemical modules of global
circulation models, mainly Hasumi and Nagata [16] and Aumont et al. [14].
The backbone structure of our model is a standard “NPZ” model with three
pools: nitrogen (often the common currency in models with only one
nutrient, as stated in Sarmiento and Gruber [28]), phytoplankton, and
zooplankton. We included the microbial loop as in Hasumi and Nagata [16],
based on the seminal work of Bendsten et al. [29].
We designed our model to accommodate a 0D setting to study the

balance between new and regenerated production at sea surface. This is
why we divided the nitrogen pool into three: nitrate tracks new
production, ammonium tracks regenerated production, and Dissolved
Organic Nitrogen (DON) tracks microbial loop activity. Phytoplankton
species are grouped into one compartment, and so are heterotrophic

bacteria; both share zooplankton as one compartment of a common
predator, allowing for both emergent bottom-up and top-down limita-
tions. The outcome is a 6-compartment model called “NPZB” (Fig. 1), of
which a complete mathematical description can be found in Supplemen-
tary note S1.
As is done classically, we assume a type II (Monod) response of the

uptake rates, U, to nutrient concentrations. To keep the model
mathematically tractable, we assume that the response of grazing rates,
G, to population densities is type I; this means that phytoplankton
consumption by zooplankton is seldom at saturation. Maximum rates of
uptake and grazing are temperature-dependent through an Arrhenius
relationship, with different activation energies between autotrophic and
heterotrophic organisms, ca. 0.3 eV for phytoplankton and 0.6 eV for
bacteria and zooplankton [30]. See Supplementary note S1 for more detail.

Bacterial adaptation and the growth efficiency – resource
acquisition trade-off
Predicting how microbial processes influence primary production can be
addressed with phenotypic models in which bacterial metabolic traits
influence microbial life history strategies [24, 31, 32], which in turn shape
the interaction between mircrobial populations and their environment
through resource consumption and waste production. Here we use Malik
et al.’s [24] framework (rooted in Grimes’ [33] classical theory of life-history
evolution) to describe and parametrize microbial life history variation in
three principal dimensions: growth efficiency, resource acquisition
capacity, and stress tolerance. As such, BGE acts as a “master trait”,
resources not allocated to growth being distributed by the cell between
resource acquisition mechanisms and tolerance to environmental stressors.
Our model assumes no variation among strains in stress tolerance in order
to focus on bacterial adaptation along the growth efficiency–resource
acquisition trade-off and its ecological consequences. BGE is also a key
determinant of the bacterial influence on nutrient cycling in the ocean [18],
as different BGE strategies will lead to different fluxes of nutrients through
the system, thus potentially affecting biogeochemical cycles at large.
Because of the direct influence of BGE on the life history of cells, we

expect genetic variation in BGE [26, 27, 34] to be under intense selection
[25], and thus BGE adaptation through selection to be a significant factor
of variation between populations exposed to different environments.
Evidence for this has been provided by the genomic studies of Roller et al.
[26] and Saifuddin et al. [25] where support for the growth efficiency -
resource acquisition trade-off is also presented. Here we extend our
ecosystem model to predict BGE adaptation through selection under the
constraint of this trade-off and investigate the ecological consequences.

Microbial loop
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Fig. 1 NPZB model with microbial loop. B, bacterial biomass. P
phytoplankton biomass, Z zooplankton biomass, DON dissolved
organic nitrogen. Fluxes driven by mortality are represented with
dashed lines and all end up in the DON pool. Respiration fluxes are
represented with dotted lines, ending in the ammonium pool. Red
lines represent the incoming and outgoing fluxes of the system. All
parameters and fluxes are defined in Supplementary Note S1.

P. Cherabier and R. Ferrière

1131

The ISME Journal (2022) 16:1130 – 1139



In our model, BGE is represented by the parameter ω, and the fraction
(1 − ω) of resources that is not invested by a cell into growth is respired.
Bacterial respiration is used as a proxy for all processes involved in
maintaining cell functions [35]. This includes processes that are central to
resource acquisition and uptake, such as hydrolysis exoenzymes produc-
tion [36], ATP production [37] or rRNA copy number [26]. As a
consequence, a cell that invests more in bacterial growth will be less
efficient in acquiring nutrients. To represent this trade-off between BGE ω
and resource acquisition, we use bacteria-DON specific affinity [38],
defined as the initial rate of DON uptake per capita per unit of DON
concentration. Specific affinity is an increasing function of the respired
fraction (1−ω), so that a bacterium that invests quasi exclusively into
growth (i.e., ω close to one) will be almost unable to perform DON uptake
(i.e., an uptake rate nearing zero). Conversely, a bacterium that invests
quasi exclusively into uptake (i.e., ω close to zero) will not grow efficiently.
The optimal value ω∗ must then be between these two extremes. See
Supplementary note S2 for the corresponding mathematical formalism.
For any given temperature within relevant limits, we use an evolutionary

game theory approach [39, 40] to compute the optimal BGE value ω∗ as an
evolutionary stable strategy. This means that a population of a single strain
of bacteria with BGE ω∗ cannot be replaced by any bacterial strain with
different ω value. Unless stated otherwise, we assume that at any given
temperature the bacterial population evolves towards a single (mono-
morphic) evolutionary stable value ω∗. The optimal ω∗ can be calculated
for that temperature and given all other environmental parameters (see
Supplementary note S2 for details). A similar approach was developed in
Abs and Ferrière [41] to model the eco-evolutionary dynamics of soil
microbial populations exposed to changes in the physical or chemical
properties of their environment.

Model analysis
We use analytical and numerical simulations to quantitatively predict the
ecophysiological and eco-evolutionary responses of the ecosystem to a
temperature increase denoted by ΔT. Specifically, we compare ecological
and evolutionary steady states under three conditions:

1. Initial adaptation: Initially, the system is locally adapted to a given
sea-surface temperature, T0. The corresponding bacterial evolu-
tionary stable strategy is denoted by ω0.

2. Ecophysiological scenario: Here, temperature-dependent para-
meters respond to sea surface warming, from T0 to T1= T0+ ΔT,
but we control the model to prevent bacterial adaptation: BGE
remains at ω=ω0. In this scenario, bacterial populations are ill-
adapted to the new environment.

3. Eco-evolutionary scenario: Here, as temperature rises from T0 to
T1= T0+ ΔT, the adaptation capacity of heterotrophic bacteria is
included, and BGE evolves from ω0 at T0 to the new evolutionary
stable value ω1 at T1. Selection may act on strains with slightly
different trait values arising by mutations of small effect; as well as
strains or species that were already present at low density and have
larger differences in their trait value, as would be the case in an
ecological guild. Irrespective of the mechanism of trait variation
among strains, the adapted trait value will be the same, because of
the uniqueness of the fitness optimum that our model predicts.

By comparing the ecosystem steady states under the ecophysiological
and eco-evolutionary scenarios to the initial adaptation, we compute the
ecophysiological and eco-evolutionary responses of the system to the
warming increment ΔT. The difference between these two responses then
measures the impact of bacterial adaptation through selection.
To analyze the responses of the microbial loop to warming, we focus on

BGE, ω, and the microbial loop efficiency (MLE), η, which represents the
fraction of primary production that cycles through bacteria and thus
contributes to bacterial growth or respiration. To analyze the responses of
primary production to warming, we focus on both new and regenerated
production; we refer to the f− ratio as the ratio of new production over
total primary production. The f− ratio is relevant for the study of the
balance of new and regenerated production, but also export production: at
ecological equilibrium, it is equal to the export ratio, or e− ratio [42], which
can be denoted by the ef− ratio.
Here we report the results of 1000 simulations of the ecosystem

equilibrium with parameters sampled from a Latin cube with credible
parameter ranges (Supplementary Table 1). Parameter ranges were drawn
from two main sources: Bendsten et al. [29] for microbial loop parameters

and Aumont et al. [14] for other ecosystem processes. For parameters that
are specific to our model (as in the functional response for zooplankton
grazing), we followed [14] and selected ranges of values so that the
ecosystem model outputs are of the same order of magnitude as empirical
measurements reported in classical sources [28, 43]. A complementary set
of simulations is run specifically to compare ecophysiological and eco-
evolutionary responses under four contrasted environmental conditions
of biogeographical significance: cold vs. warm and low vs. high
nutrient input.

RESULTS
Initial adaptation
Following adaptation to the initial temperature T0 (Fig. 2), all
equilibrium state variables correlate negatively with T0, except for
inorganic nutrients (Supplementary Fig. 1). Warmer temperatures
accelerate fluxes between ecosystem compartments but do not
increase nutrient input: this acceleration is thus made at the
expense of equilibrium concentrations and biomass, which
decrease across the temperature gradient (Fig. 2a). Conversely,
higher nutrient input correlates with higher nutrient concentra-
tions and population biomass.
Correlations across state variables at equilibrium bear the

signatures of top-down controls, with strong, negative correlations
between inorganic nutrients concentrations and phytoplankton
growth rate, and between phytoplankton biomass and grazing by
zooplankton.
The f− ratio positively correlates with both BGE, ω0, and MLE, η.

By re-injecting in the trophic chain a fraction of the primary
production that would otherwise be lost in the DON pool, the
microbial loop acts as a recycling process, thus driving the export
ratio up.

Ecophysiological scenario: the direction of primary production
variation is controlled by ecophysiological changes in the
microbial loop
An increase in temperature changes multiple physiological
parameters, causing a shift in the ecosystem equilibrium even in
the absence of bacterial adaptation (green distributions in Fig. 2).
The biomass of all populations (heterotrophic bacteria, phyto-
plankton, zooplankton) and all nutrients concentrations tend to
decrease. Even though individual process rates tend to increase
with temperature, the overall effect on the ecosystem equilibrium
is negative because nutrient consumption by phytoplankton and
grazing both increase.
The general decrease in phytoplankton biomass observed

across the parameter space (Fig. 2a) is to be contrasted with the
distribution of primary production. In some cases, primary
production increases despite phytoplankton biomass decreasing
(Fig. 2b). This decoupling is explained by faster phytoplankton
metabolism, which increases per capita primary production.
Whether the effect of faster metabolism outweighs the decrease
in biomass and yields a gain of primary production depends on
the balance between new and regenerated production. While new
production always increases with temperature, this is not the case
of regenerated production (Fig. 2b). Total primary production
increases when the decrease in regenerated production is smaller
than the increase in new production.
Both nutrient limitation and the relative temperature sensitiv-

ities of phytoplankton and zooplankton are at play in this
balance (Supplementary Fig. 2) with the effect of nutrient
limitation being stronger. Indeed, total Dissolved Inorganic
Nitrogen (DIN) concentration (i.e., the sum of nitrate and
ammonium concentrations) at initial temperature T0 is a key
factor of the response of primary production to warming (Fig. 3a):
positive in nutrient-rich ecosystems, negative in nutrient-poor
ecosystems. Nutrient-rich ecosystems can sustain faster meta-
bolism of phytoplankton in warmer conditions, driving primary
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production up. In nutrient-poor ecosystems, the increased
maximum uptake rates result in stronger nutrient limitation,
driving primary production down.
In the case of nutrient-poor ecosystems, the negative effect of

warming on primary production can be directly traced to a
decrease in microbial loop activity (Fig. 3b). By resampling the set
of parameters corresponding to nutrient-poor ecosystems (Sup-
plementary Table 2), we find a significant positive correlation
between MLE and the ecophysiological response of primary
production to warming, which approaches zero in ecosystems
where little to no change occurs in MLE. This pattern is due to the
fact that in nutrient-poor ecosystems, the main component of
primary production is regenerated production, which strongly
depends on microbial loop activity. In nutrient-rich ecosystems,
primary production is driven mainly by new production, and
ammonium production relies equally on bacterial and zooplank-
ton respiration, thus causing a decoupling between primary
production and microbial loop activity. In other words, only in
nutrient-poor ecosystems does primary production hinge on the
microbial loop.

Eco-evolutionary scenario: bacterial adaptation in the
microbial loop drives system export
We now assume that heterotrophic bacterial population can adapt
to warming through selection. In response to a temperature

increase ΔT, the adapted BGE shifts from the ω0 value adapted to
the initial sea-surface temperature T0 to the new optimal value ω1

adapted to temperature T1= T0+ ΔT (see Supplementary Note S2
and Supplementary Fig. 3). The concurrent change in ecosystem
equilibrium state is the eco-evolutionary response of the system to
the ΔT warming increment (red distributions in Fig. 2). By
measuring the difference between the ecophysiological response
(without bacterial adaptation) and the eco-evolutionary response
(with bacterial adaptation) on the ecosystem state variables we
can quantify the ecosystem impact of bacterial adaptation to
warming (blue distributions in Fig. 2).
Bacterial strains with BGE lower than the initially adapted value

turn out to be competitively superior in a warming ocean; as they
replace the initial strain, BGE measured at the scale of the bacterial
population decreases (Fig. 2b). This occurs in response to the
change in ecosystem state following from the ecophysiological
response to warming. The selection gradient of BGE (equation (20)
in Supplementary Note S2) reveals the two main controls of
selection on bacteria: top-down control by mortality (including
grazing), and bottom-up control by DON-limitation. Because the
eco-physiological response of mortality to warming is always
positive, the corresponding top-down agent of selection on BGE
always intensifies with warming, which favors bacterial strains
with higher BGE. Yet the result of adaptation is a decrease in BGE,
showing that the system is under a stronger bottom-up limitation.

Fig. 2 Distributions of model outputs at initial temperature T0 (top rows) and corresponding ecophysiological (green), adaptive (blue)
and the combined eco-evolutionary (red) responses (bottom rows). The adaptive effect represents variation in the ecosystem state driven
by bacterial adaptation through selection after a temperature increase. Black dots indicate median values. a Equilibrium biomass and
concentrations. See Fig. 1 for notations. b Microbial loop and ecosystem production outputs (separated by the black vertical line). BGE
bacterial growth efficiency. MLE microbial loop efficiency. All parameters vary in the default parameter ranges (Supplementary Table 1).
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Indeed, there is a strong correlation between the decrease in DON
concentration and the adaptive response of bacteria (Fig. 4a). In
ecosystems with higher initial temperature, the increased
mortality and relatively low decrease in DON concentrations
results in weaker adaptive responses. In ecosystems with lower
initial temperature, the decrease in DON concentration is stronger,
resulting in a decrease in BGE. This is a consequence of the growth
efficiency—resource acquisition trade-off, which favors resource
acquisition when resource availability (here, DON concentration)
drops.
The effect of bacterial adaptation then ripples through the

whole ecosystem in a trophic cascade (Figs. 2 and 4c, d,
Supplementary Figs. 4–7): the decrease in BGE drives bacterial
production and microbial loop activity down (Supplementary
Fig. 4) while increasing ammonium concentrations (Supplemen-
tary Fig. 5a). This nutrient increase drives phytoplankton biomass
up (Supplementary Fig. 5b), which adds pressure to the nitrate
pool, thus decreasing the nitrate concentration (Supplementary
Fig. 6a). These variations in nutrient concentrations cause an

increase in new and regenerated production (Supplementary
Fig. 7), but not evenly so, resulting in a decrease in f− ratio
(Supplementary Fig. 6b).
The adaptation of BGE to warming causes both new and

regenerated production to increase (Fig. 4b). Importantly, the net
primary production variation due to bacterial adaptation to
warming is of the same magnitude, or even greater than the
ecophysiological response of the system (Fig. 2b). This under-
scores the importance of the microbial loop and its evolutionary
adaptative capacity to predict the response of primary production
and other ecosystem functions to warming.
While the ecophysiological response to warming is controlled

primarily by the availability of nutrients (Fig. 3), the initial
temperature of the system is also a major determinant of the
eco-evolutionary response. In cold waters, warming causes a
strong ecophysiological decrease in DON concentration, which
selects for lower BGE. In warmer environments, the ecophysiolo-
gical decrease in DON concentration is weaker, leading to a
smaller adaptive response of BGE (Fig. 4a). Thus, we expect a

Fig. 4 Eco-evolutionary feedbacks mediated by bacterial growth efficiency (BGE), ω. a From ecology to evolution: BGE adaptation as a
function of the ecophysiological response of bacterial resource (DON) to warming. Individual simulations are color-coded according to the
initial temperature. b From evolution to ecology: ecological impact of BGE adaptation on new and regenerated production. All parameters
vary in the default parameter ranges (Supplementary Table 1).

Fig. 3 Ecophysiological response of primary production to warming. a Influence of nutrient availability. b Influence of microbial loop
efficiency. Distribution of 1000 simulation outputs with parameters sampled in the ranges given in Supplementary Table 1 (see “Methods” for
more detail). In (a), the dashed line is the linear regression through the whole set of simulation outputs. In (b), the red region indicates the
kernel density of outputs for the resampled set of simulations that yielded dissolved inorganic nitrogen concentrations (DIN) lower than
1.5 mmol·m−3 (see Supplementary Table 2). The dashed line represents the linear regression for the resampled simulations.
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two-dimensional gradient of temperature and nutrient availability
to shape the pattern of microbial adaptation (Fig. 4a) and eco-
evolutionary responses (Fig. 4b).

Warming causes different eco-evolutionary responses in
different biogeographic regions
To further evaluate the ecosystem impact of bacterial adaptation
to warming, we focus on four hypothetical biogeographic regions
characterized by two different initial temperatures, T0= 5o (cold)
or 20o (warm), and nutrient input rates, φ= 0.03 day−1 (poor) or
0.1 day−1 (rich).
The temperature difference captures the expected contrast

between tropical zones and high-latitude areas. The difference in
nutrient input was chosen so that the low φ value yields nitrate
concentrations around 0.5 mmol·m−3, which is typical of oligo-
trophic zones; and the high φ value yields intermediate nutrient
concentrations, ca. 2.0 mmol·m−3. Warm and poor environments
are typical of subtropical gyres, while high latitude ecosystems are
typically cold and nutrient-rich.
For each of these four hypothetical bioregions, we performed

1000 simulations with parameters sampled from the same ranges
as before (Supplementary Table 1) while T0 and φ are fixed at
values assigned to the region. All output distributions are shown

in Supplementary Figs. 8–19. Hereafter we focus on the responses
of the microbial loop and primary production (Fig. 5).
The initially adapted value of BGE tends to be larger in cold

and/or nutrient-rich regions (Fig. 5a). With warming, these regions
are also the ones where the adaptive change in BGE is the largest
(Fig. 5b). As expected, primary production is in general much
larger in nutrient-rich regions (Fig. 5c), with little influence of the
initial temperature. In nutrient-poor regions, ecophysiological
effects of warming tend to be negative, whereas the effect of
bacterial adaptation is positive (Fig. 5d). Thus, in nutrient-poor
regions, the decrease in primary production driven by the
cophysiological response to warming may be compensated by
bacterial adaptation. In regions that are both nutrient-poor and
cold, the positive effect of bacterial adaptation may even exceed
the negative ecophysiological effect, causing an increase in
primary production (Fig. 5d).
Primary production shows contrasted ecophysiological and eco-

evolutionary responses to warming. This pattern can be under-
stood from the responses of new and regenerated production
(Fig. 5e–h). The response of new production is similar in all regions
(Fig. 5f), and the contrast in primary production comes from
regenerated production variation (Fig. 5e). As seen before, the
ecophysiological response of primary production is driven by

Fig. 5 Initial ecosystem equilibrium and ecophysiological and eco-evolutionary responses to warming in four hypothetical
biogeographic regions differing in water temperature (cold vs. warm) and nutrient availability (low vs. high). a, c, e, g Ecosystem
equilibrium at initial temperature, T0. b, d, f, h Ecophysiological (green) and eco-evolutionary (red) responses to warming with the difference
between the two quantifying the effects of adaptation through selection (blue). Initial temperature, T0, and nutrient input, φ, are fixed,
respectively at 5 °C or 20 °C for cold vs. warm regions, and 0.03 day−1 or 0.1 day−1 for nutrient-poor vs. nutrient-rich regions. All other
parameters vary in the default parameter ranges (see Supplementary Table 1).
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regenerated production variation induced by nutrient availability--
positive in nutrient-rich regions, negative in nutrient-poor regions.
In contrast, the effect of bacterial adaptation is always positive
(even if small on new production), but depends on the initial
temperature of the environment: the effect is larger in initially cold
environments, smaller in initially warm environments. This implies
that the ecophysiological response of the system and the effect of
bacterial adaptation add up in regions that are both cold and
nutrient-rich, such as the Arctic Ocean, resulting in a strong
increase in total primary production.

DISCUSSION
Our study aims at improving our mechanistic understanding of
nutrient cycling in the surface oceans and its response to climate
warming. We asked how the rise of sea surface temperature alters
the microbial loop activity and primary production, both
ecophysiologically and through bacterial adaptation. Nutrient
limitation turns out to be the main control of the ecophysiological
response of primary production to warming, controlling microbial
loop activity and thus the balance between new and regenerated
production. We show that bacterial adaptation is an equally
important factor of the response of primary production to
warming, especially in cold oceanic regions. Our results highlight
the importance of two often underestimated components of
biogeochemical ocean models, namely the dependence of
ecosystem production on the microbial loop, and the adaptive
potential of microbial populations [44, 45].

Ecophysiological vs. eco-evolutionary predictions
When used to resolve the ecophysiological response of the
ecosystem to sea surface warming, our model predicts general
trends such as a decrease bacterial, phytoplankton, and zoo-
plankton biomass and an increase in top-down controls. This is
consistent with other predictions suggesting that oceans may
become more oligotrophic over time [46], with stronger top-down
control by grazing [30]. Our model predicts that despite this
general decrease in population biomass, primary production may
either increase or decrease with warming, confirming that
biomass measurements alone are poor predictors of changes in
primary production [47].
Changes in the balance of top-down and bottom-up controls of

phytoplankton abundance are thought to be important to assess
the future of primary production in the face of climate warming
[10]. Our ecophysiological model provides a simple framework to
evaluate this balance and predict the net response of primary
production to warming. In agreement with existing data [5, 10],
our model predicts nutrient-poor areas to be more prone to a
decrease in primary production than richer regions, and provides
a mechanistic explanation for this pattern. In nutrient-poor
environments exposed to warming, regenerated production
decreases faster than new production increases, resulting in an
overall decrease in primary production. The decline in primary
production is a result of a change in the balance between new
and regenerated production due to a decrease in microbial loop
activity, further confirming the important feedback of the
recycling pathway in oligotrophic environments, as previously
reported in Fenchel [12].
At ecosystem equilibrium, the f− ratio and the e− ratio are

equal [28], meaning that new production equals export produc-
tion. This allows us to predict the ecophysiological response of
export production to sea-surface warming. Even though total
primary production can decrease due to increasing temperatures
in nutrient-poor environments, this response is fully driven by the
decrease in regenerated production. New production increases
across all simulated systems, which means that export production
increases in all regions. Due to their fast metabolic rates and short
generation time [22] relative to the timescale of climate change,

heterotrophic bacteria have a strong potential to evolve and
adapt rapidly to their changing environment. Our model was
designed to predict the optimal strategy of heterotrophic bacteria
for resource allocation into growth in a given environment, or
Bacterial Growth Efficiency (BGE), under a trade-off with resource
acquisition. As the environment changes, the optimal strategy
changes, and the consequences for primary production can be
evaluated.
As sea surface temperature rises, the optimal BGE responds to

two opposing selective pressures, namely increased bacterial
mortality and the depletion of dissolved organic matter. While
nutrient abundance is the main driver of ecophysiological
responses to warming, environmental temperature shapes BGE
adaptation. We find that increasing temperature favors a bottom-
up control of BGE, with decreasing concentrations of DON driving
the optimal BGE down. The DON decrease is stronger in cold
regions, resulting in a stronger adaptive response of bacterial
populations.
These results provide new insights into the “link or sink”

behavior of the microbial loop [12]. By recapturing otherwise lost
organic matter and recycling or transferring it to higher trophic
levels, the microbial loop can increase export production (the
“link” behavior). On the other hand, by fixing nutrients in bacterial
biomass, the microbial loop can effectively decrease export
production (the “sink” behavior). Across all simulated systems,
adaptation to warming drives BGE down and microbial loop
activity decreases, with antagonistic consequences for export
production. One effect is to decrease the export ratio (equal to the
f− ratio in our model), acting as a sink. The opposing effect is to
increase overall primary production, which increases export
production, acting as a link. Both effects on export ratio and
primary production are significant here, confirming the impor-
tance of taking both into account when assessing export
production and its response to warming [17]. The increase in
primary production is larger than the decrease of f− ratio, which
eventually makes the “link” component of the microbial loop
stronger.
We predict eco-evolutionary processes mediated by hetero-

trophic bacterial adaptation to shape contrasted biogeographical
responses to warming, as bacterial optimal BGE follows a
temperature gradient while ecophysiological responses follow a
nutrient gradient. In nutrient-rich regions, bacterial adaptation and
ecophysiological responses combine synergistically to increase
both new and regenerated production. This is of particular
significance in already productive cold and rich regions such as
the Arctic Ocean [48], where productivity is expected to increase
in the coming years [49]. Our model predicts an even larger
increase due to bacterial adaptation. In nutrient-poor regions, the
effects of bacterial adaptation oppose the ecophysiological
decrease of primary production. In cold and poor regions,
adaptation mitigates the decrease in primary production, going
as far as to reverse it, whereas ecophysiology drives the overall
response in regions that are both nutrient-poor and warm.
Our results underscore the need to take adaptive processes into

account in predictive models of ocean productivity [50]. As BGE is
often assumed to be independent of temperature for a given
strain of bacteria [51, 52], it is usually set as constant in
biogeochemical models, but we showed that natural selection
acting on bacterial strains with varying BGE could impact our
prediction of future primary production in the ocean.

Bridging eco-evolutionary modeling and sequence data
Our modeling approach derived from evolutionary game theory
[53] is purely phenotypical in essence: BGE is treated as a
quantitative character, heritable variation is assumed, and
adaptation to a changing environment is predicted as the
outcome of optimization under the constraint of a trade-off with
resource acquisition. Under broad conditions [54, 55], the

P. Cherabier and R. Ferrière

1136

The ISME Journal (2022) 16:1130 – 1139



underlying genetic architecture of the traits and genetic mechan-
isms of their variation do not alter the phenotypic results.
However, the study of microbial communities has benefited
tremendously from the expansion of our molecular sequencing
capability and genomic and other “omics” analytical toolbox.
These advances provide support for underlying hypotheses in our
models and present new opportunities to evaluate our key
predictions, as we briefly summarize hereafter.
“Omics” studies can support and inform phenotypic models by

providing data on genes, transcripts, proteins and metabolites to
infer phenotypic trait variation within and between populations,
and uncover some of the underlying mechanisms such as selection
and constraints. BGE is a challenging trait to extract from omics
data [24] because it compounds multiple underlying traits related
to cellular maintenance, protein synthesis, and metabolic and
respiratory pathways [26, 56]. Saifuddin et al. [25] circumvent these
difficulties and predict BGE by using genome-scale metabolic
modeling subject to flux balance analysis [57]. They resolve BGE
variation across 200 bacterial taxa and provide support for the
adaptive nature of this variation and for the growth efficiency—
resource acquisition trade-off used in our model. This is in support
of other studies combining comparative genomics with direct trait
measurement by laboratory assays [26, 27]
Evidence from omics studies is also growing for the role of

adaptive evolution in the response of whole microbial commu-
nities to environmental change [58–60]. New metagenomic
computational pipelines hold much promise to extend pioneering
evolutionary analyses done in small-scale systems such as the
human gut microbiome [20, 21, 61] to ocean microbial commu-
nities. For example, bioinformatic pipelines for microbial commu-
nity metagenome assembly such as GraftM [62] and MetaPop
[63, 64] can resolve microbial metagenomic sequence data at
intra-population level, identify Single-nucleotide polymorphisms
(SNPs), calculate nucleotide diversity, and detect positive selection
within populations. We expect such computational tools to greatly
improve our ability to assess bacterial adaptive evolution within
natural communities such as those involved in the ocean
microbial loop.
Finally, ecosystem models that assume a simple relation

between phenotypic traits and gene-encoded biochemical path-
ways [65] pave the way for the development of phenotype-based
models of evolutionary adaptation that will directly simulate
metagenomes and metatranscriptomes, hence opening the
possibility to quantitatively test the predictions of models like
ours with omics data.

Model extensions and conclusion
To our knowledge, this is the first model aimed to predict the
effect of microbial adaptation on ocean productivity. Previous
models of biological adaptation in warming oceans addressed the
impact of adaptation through selection on phytoplankton
community diversity [65–69]. Some of these studies suggest that
adaptation may reduce community diversity especially in tropical
regions, leading to a potential decrease in primary production in
these regions [66]. Future work is warranted to probe the
generality of this result, integrate bacterial and phytoplankton
adaptation in a common framework, and extend the scope of
potential adaptive responses to warming to a broader set of traits
and trade-offs, and to other functional groups. We highlight two
areas of interest.
Regarding the set of traits and trade-offs, our model focuses on

the growth efficiency—resource acquisition trade-off, thus assum-
ing that bacterial populations do not change along the stress-
tolerance axis of life-history variation. This assumption could be
lifted in future work. By using sequence data and computational
tools to extract quantitative information about stress tolerance
traits, we should be able to extend existing comparative genomic
analyses to obtain a more comprehensive and quantitative

understanding of bacterial phenotypic variation in all three axes
of life-history evolution: growth efficiency, resource acquisition,
and stress tolerance [24]. Such information is needed to account
for stress tolerance in predictive models of bacterial adaptation.
Once done, it will be possible to address the specific ecophysio-
logical and eco-evolutionary effects of stressors such as extreme
climatic events on microbial loop activity, and their consequences
for carbon and nutrient cycling.
Regarding the inclusion of other functional groups, viruses are

of particular interest because of their dramatic direct ecological
impact (e.g., the viral shunt of material fluxes [12, 70, 71]), their
indirect role as physiological hijackers and selective agents of their
hosts [72], and their own capacity for record fast evolution and
adaptation to ecological and environmental change. Existing
ecosystem models provide a solid foundation for such develop-
ments [73], which will contribute to a general workflow for
integrating micro-organisms evolutionary adaptation in global
earth system models. Meta-omics tools and analyses that have
been developed specifically for marine viral communities [74]
should help identify key adaptive traits and trade-offs that would
be captured in eco-evolutionary models.
In conclusion, bacteria adaptation to warming can drive

changes in ocean primary production of the same magnitude as
the ecophysiological response, especially in the most productive
areas such as the Arctic Ocean. While ecophysiological mechan-
isms may accurately predict short-term responses of ecosystem
function to seasonal variation in temperature, we expect eco-
evolutionary responses to be important on multi-annual time-
scales, over which bacterial populations may evolve and adapt to
long-term trends in temperature. Our model provides a critical
step towards the integration of microbial eco-evolutionary
processes in ocean ecosystem models, necessary for improving
our projections of ocean nutrient cycle in a warming world.
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