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The phylogenetic resolution at which microorganisms display geographic endemism, the rates at which they disperse at global
scales, and the role of humans on global microbial dispersal are largely unknown. Answering these questions is necessary for
interpreting microbial biogeography, ecology, and macroevolution and for predicting the spread of emerging pathogenic strains.
To resolve these questions, I analyzed the geographic and evolutionary relationships between 36,795 bacterial and archaeal
(“prokaryotic”) genomes from ∼7000 locations around the world. I find clear signs of continental-scale endemism, including strong
correlations between phylogenetic divergence and geographic distance. However, the phylogenetic scale at which endemism
generally occurs is extremely small, and most “species” (defined by an average nucleotide identity ≥ 95%) and even closely related
strains (average nucleotide identity ≥ 99.9%) are globally distributed. Human-associated lineages display faster dispersal rates than
other terrestrial lineages; the average net distance between any two human-associated cell lineages diverging 50 years ago is
roughly 580 km. These results suggest that many previously reported global-scale microbial biogeographical patterns are likely the
result of recent or current environmental filtering rather than geographic endemism. For human-associated lineages, estimated
transition rates between Europe and North America are particularly high, and much higher than for non-human associated
terrestrial lineages, highlighting the role that human movement plays in global microbial dispersal. Dispersal was slowest for hot
spring- and terrestrial subsurface-associated lineages, indicating that these environments may act as “isolated islands” of microbial
evolution.
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INTRODUCTION
Endemism caused by geographic isolation, i.e., the restriction of a
taxon to a specific region of the world due to dispersal limitation,
can be a major driver of biogeographic patterns and evolutionary
dynamics and has long been a topic of great interest [1–3].
Depending on the relative rates of evolutionary divergence and
geographic dispersal, endemism by geographic isolation can be
observed at very coarse taxonomic levels, the restriction of the
entire mammalian family Macropodidae (kangaroos, wallabies and
others) to the Australasian region [4] being a striking example. In
bacteria and archaea (henceforth “prokaryotes”), whose dispersal
is generally less restricted than in larger organisms, endemism is
not observed at these high taxonomic levels, but it is unknown at
what phylogenetic resolution prokaryotes do display endemism,
or how fast they disperse at global scales relative to their
evolutionary divergence. For example, it is intensely debated
whether prokaryotic taxa are globally distributed even at the
species level [5–10]. The phylogenetic resolution of prokaryotic
endemism and rates of global prokaryotic dispersal have far
reaching implications for prokaryotic biogeography, ecology, and
macroevolution. A global distribution of prokaryotic species could
limit the potential for prokaryotic speciation and thus constrain
global prokaryotic diversity [5]. Indeed, if global dispersal is
sufficiently fast, prokaryotic speciation would be bound to
effectively occur “sympatrically”, i.e., without geographic barriers
to gene flow [11]. A global distribution of prokaryotic species may
also reduce the risk of extinction in the face of local or global

environmental change, since at any given time it is likely that
some areas in the world remain suitable for a species to persist
and fast colonization of these areas would act as a rescue
mechanism [12]. Rates of prokaryotic dispersal also dictate how
fast genetic material, such as genes involved in antibiotic
resistance, pathogenicity or bioremediation, can spread across
space. Lastly, knowing the rates of global prokaryotic dispersal is
necessary for a proper interpretation of biogeographic patterns,
such as species-area or distance-similarity relationships [13, 14].
Surveys of prokaryotic 16S rRNA gene sequences suggest that at

the typical considered resolution (i.e., when clustered at 97%) most
prokaryotic taxa are globally distributed [15–19]. This means that
over the time scales needed for the 16S rRNA gene to diverge by
3% (∼30–150 Myr [20, 21]), a prokaryotic lineage is likely to have
dispersed around the globe. These findings only provide a coarse
one-sided bound on the phylogenetic resolution at which
prokaryotes display endemism, and do not clarify the actual rates
at which prokaryotes disperse at global scales. Indeed, for many
taxa global dispersal appears to be much faster than the rate at
which the 16S rRNA gene and other single marker genes can
measurably diverge, thus necessitating the consideration of
multiple genes or whole genomes [22, 23]. A notable exception
are extremophilic (e.g., hot spring-associated) taxa, where geo-
graphic endemism at the species or strain level has been observed
in specific clades using marker genes or genomics [6, 24–31],
although even in these cases the phylogenetic resolution of
endemism and rates of dispersal are poorly understood.
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Here, to determine the precise phylogenetic resolution at which
prokaryotes display geographic endemism at global scales and to
estimate actual rates of global prokaryotic dispersal in the context
of a process-based model, I present a phylogeographic analysis of
36,795 high-quality georeferenced prokaryotic genomes from
∼7000 locations around the world. I distinguished between
human-associated genomes, other (i.e., non-human-associated)
terrestrial genomes, and marine genomes, since substantial
differences are expected between these environments and to
facilitate comparison with previous environment-specific studies.
Among non-human-associated terrestrial genomes, I also per-
formed focused analyses of genomes found in hot springs, lakes
(henceforth “terrestrial lakes”) or the subsurface (henceforth
“terrestrial subsurface”), as global microbial dispersal might be
particularly slow in these environments.

RESULTS AND DISCUSSION
A collection of thousands of georeferenced genomes
To examine the global distribution patterns of prokaryotic
clades at phylogenetic resolutions beyond those permitted by
single-marker-gene sequences, I analyzed 36,795 georeferenced
quality-filtered whole or draft genomes (≥ 90% complete, ≤ 1%
contamination) retrieved from NCBI GenBank [32]. The majority
of genomes were >99% complete with <0.2% contamination
(Supplementary Figs. S1 and S2). The genomes originated from a
diverse range of environments across 183 countries, such as the
surface and deep ocean, lakes, soil, human and other animal
guts, hot springs, sediments, caves, wells, hydrothermal vents,
glaciers, aquifers and rivers (world maps in Supplementary
Fig. S3, summaries in Supplementary Table S1). The evolutionary
divergence between genomes was, wherever meaningful,
measured in two alternative ways: First, divergence between
genomes was measured in terms of average nucleotide
difference (AND) across their shared genes, which permits a
much higher resolution for delineating closely related strains
(compared to single genes). Note that here AND is calculated as
100%-ANI, where ANI is the average nucleotide identity, a widely
used measure of microbial relatedness [33–35]. An AND

threshold of ∼5%, in particular, is currently a commonly used
measure for delineating prokaryotic species [33–37], thus
facilitating the interpretation of biogeographic patterns and
comparisons to previous studies. Second, divergence between
genomes was measured in terms of absolute time (years) based
on time-calibrated phylogenies, which were constructed from
120 bacterial and 122 archaeal largely universal single-copy
proteins [38, 39] and dated based on multiple constraints
(details in Methods and Supplementary S.1.3).

Geographic location exhibits a clear phylogenetic signal
Phylogenetic conservatism in numerical traits (i.e., closely related
lineages exhibit more similar traits) is often confirmed based on a
positive correlation between pairwise trait differences and
evolutionary divergences, while correcting for the non-
independence of related taxa [40]. By analogy, here I considered
the geographic location of a lineage as an evolving trait, measured
the “trait difference” between two genomes in terms of their
geographic (great-circle) distance, and examined whether this
distance correlates with phylogenetic divergence [41]. I found that
the AND between genomes correlated strongly and significantly
with their geographic distance (Fig. 1), regardless of environment
(P < 0.05 in all cases, overview in Supplementary Table S2,
methods details in Supplementary S.1.5). Spearman rank correla-
tions ranged from ρ= 0.266 for marine genomes up to ρ= 0.655
for hot spring genomes. Significant correlations were also
observed in all environments between temporal divergence and
geographic distance (ρ > 0.1, P < 0.05). Note that quantitative
comparisons of these correlations between environments should
be avoided, since correlations also depend on the phylogenetic
coverage available (e.g., whether mostly distantly related organ-
isms are included in the data or not). A correlation between
phylogenetic and geographic distance is in principle not
surprising, since dispersal inevitably occurs at a non-infinite rate.
What these significant correlations show, however, is that
dispersal rates are sufficiently slow to cause a detectable
phylogenomic signal in a clade’s geographic location, thus
allowing estimation of dispersal rates through comparative
genomics (see below).
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Fig. 1 Average nucleotide difference vs. geographic distance. Geographic distances (vertical axes) and average nucleotide differences (AND,
horizontal axes) between genome pairs (one dot per genome pair), restricted to human-associated (A), non-human-associated terrestrial (B),
marine (C), hot-spring-associated (D), terrestrial lake-associated (E) and terrestrial subsurface-associated (F) prokaryotes. Curves show the
expected geographic distance as a function of AND, based on a fitted Spherical Brownian Motion diffusion model (see Methods for details).
The range of ANDs shown is restricted to closely related genome pairs for clarity. Note the different AND-axis range for each environment.
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Continental endemism
To determine the phylogenetic resolution at which prokaryotes
display geographic endemism over large scales, I calculated the
fraction of genome pairs that were found on opposite hemi-
spheres depending on the maximum allowed AND (Fig. 2). For any
given AND threshold, this fraction corresponds to the probability
that two genomes with AND at or below this threshold would be
located on opposite hemispheres (henceforth denoted α). Two
genomes were considered on “opposite hemispheres” if one could
split Earth into two hemispheres, with one genome being in the
center of the first hemisphere and the other genome being
anywhere within the other hemisphere; this criterion is equivalent
to their distance being >1/4 of Earth’s circumference (for
alternative distance thresholds see Supplementary Fig. S4). If
below a certain AND threshold clades are restricted to areas much
smaller than one hemisphere, one would expect α to be close to
zero below that threshold. Further, I compared α to the expected
probability under the null model of infinitely fast dispersal
(henceforth denoted αo), i.e., where relatedness has no influence
on geographic distance, while accounting for the number of
genomes sampled from each location (see Methods for details).
I found that two randomly chosen genomes generally had a

non-negligible probability α of being on opposite hemispheres,
except for very small AND thresholds or for hot spring- and
terrestrial subsurface-associated genomes. For example, for
human-associated genomes and an AND threshold of 0.1%, the
estimated probability α is about 0.2, which means that two
randomly chosen genomes with AND ≤ 0.1% have a ∼20% chance
of being on opposite hemispheres (Fig. 2A). Considering that for
any given prokaryotic cell there likely exist millions or more cells
within this relatedness radius, the probability that at least one of
them will be located on the opposite hemisphere is thus nearly 1.
If we define “globally distributed” clades to be those clades that

have members in opposite hemispheres, then this implies that
even if human-associated clades were delineated at an AND cutoff
as low as 0.1%, nearly all of them would be globally distributed
(Fig. 3 and Supplementary Fig. S5). This conclusion is consistent
with previous studies that showed a global distribution for specific
human-associated bacterial species [22, 42]. Similar conclusions
can be reached for other terrestrial non-human-associated as well
as for marine clades (Fig. 2B, C). Reciprocally, a non-global
distribution corresponds to the situation where all (or nearly all)
members of a clade are located on the same hemisphere, which
corresponds to the situation where α ≈ 0. As can be seen in Fig. 2,
the AND threshold at which α is nearly zero depends on the
environment: Marine clades clearly exhibit the lowest AND
threshold (∼0.0003% AND), followed by human-associated clades
(∼0.005% AND), non-human-associated terrestrial (∼0.01% AND),
and terrestrial lake-associated (∼0.4% AND) clades. Hot spring and
terrestrial subsurface clades deviate strikingly from the terrestrial
average, exhibiting an AND threshold above 5%. These differences
between environments might be due to a variety of reasons,
including differences in dispersal mechanisms, and differences in
the availability of suitable environments (e.g., hot springs are more
geographically restricted than the ocean).
The phylogenetic scale at which most examined marine and

terrestrial clades are restricted to one hemisphere is extremely
small, and certainly smaller than could possibly be resolved with
16S rRNA gene sequences. Indeed, a single mutation in the ∼1550
bp-long 16S rRNA gene is expected to take 0.7–3 Myr [20, 21],
which based on a genome-wide nucleotide substitution rate of
0.7–30% per Myr [20, 43] corresponds to an AND of at least 0.49%.
These findings explain previous observations that marine taxa,
when clustered at 97% similarity in the 16S rRNA gene (generally a
much coarser threshold than 0.1% AND), are essentially globally
distributed [16, 18]. For human-associated clades and at an AND
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Fig. 2 Phylogenetic scales of cosmopolitanism. Estimated probability (α, thick gray curves) that two randomly chosen genomes would be
located on opposite hemispheres (i.e., at a distance >1/4 of Earth’s circumference), as a function of their maximum allowed average nucleotide
difference (AND, %), for (A) human-associated, (B) non-human-associated terrestrial, (C) marine, (D) hot spring, (E) terrestrial lake and (F)
terrestrial subsurface genomes. In other words, at any given AND value on the horizontal axis, the curve’s ordinate specifies what fraction of
genome pairs, with AND at or below that value, is located on different hemispheres. Note that in (F) no two genomes analyzed in this study
with AND ≤ 5% were found in opposite hemispheres. In each figure, the thin horizontal line shows the expected probability under the null
model of infinitely fast dispersal (i.e., choosing genome pairs at random regardless of relatedness). Observe that genome pairs with very small
ANDs are unlikely to be found on separate hemispheres, although strong differences exist between environments. For the same analyses but
using random genome subsets of equal size for each environment, see Supplementary Fig. S7. For a similar analysis of continental endemism
see Supplementary Figs. S6 and S8. For analyses showing α for alternative distance thresholds (i.e., other than 1/4 of Earth’s circumference) see
Supplementary Fig. S4.
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threshold around 5%, commonly used to operationally define
prokaryotic species [33–35], α is nearly equal to αo (Fig. 2A); this
suggests that the global distribution of human-associated
prokaryotic species is nearly indistinguishable from the extreme
scenario of infinitely fast dispersal.
Analogous results were also obtained for continental ende-

mism, i.e., examining the probability of genome pairs being
located on different continents (Supplementary Fig. S6). Similar
results were also obtained when the same number of genomes
was analyzed from each environment, suggesting that the above
conclusions are not overly sensitive to sampling effort (Supple-
mentary Figs. S7 and S8). Note that the estimated probability α
constitutes an average over all sampled clades. It is possible that
some broad clades (e.g., species or higher level) may be
geographically restricted to a single continent, although the data
suggest that such cases are rare and mostly found in extreme
environments such as hot springs and the subsurface. It is also in
principle possible that many non-sampled clades deviate sub-
stantially from these patterns, for example if current sequencing
efforts are somehow biased toward fast dispersers.

Rates of global diffusive dispersal
The above results show that most examined prokaryotic clades
only display geographic endemism at very fine phylogenetic
resolutions, but they do not clarify the actual rates at which
prokaryotes disperse at global scales. To determine the rates of
dispersal in terms of physically interpretable quantities, an explicit
process-based model for continuous dispersal across space is
needed. While a variety of phylogeographic process-based models
are used in the literature, most are based on a planar
approximation of space and are thus unsuitable for describing
dispersal at global scales, where Earth’s spherical geometry
becomes important [41, 44]. Here I used phylogeographic
Spherical Brownian Motion (SBM) models, which describe the
dispersal of individual lineages over time as a diffusion-like
process, governed by a single diffusion coefficient D (henceforth
“diffusivity”), while accounting for Earth’s spherical geometry
[41, 45]. Under diffusive dispersal, cells are allowed to move in any
random direction and may over time partly or fully reverse
previous movements; hence, such dispersal cannot be described
by a linear velocity. Intuitively, the diffusivity D determines the rate
at which the expected squared distance traversed by a lineage
over short times increases, measured in units km2 yr−1 [46]; note
that the perhaps better known “infinitesimal variance” σ2 is equal
to 2D. The diffusivity can be estimated from phylogeographic data
by comparing the evolutionary distances between closely related
genomes to their corresponding geographic distances, via
maximum-likelihood and using “independent contrasts” to
account for phylogenetic correlations between genomes
[40, 41]. To account for geographic sampling biases, which could
influence diffusivity estimates, an iterative correction approach

was used based on parametric bootstrapping (see Methods for
details), although in most cases the effects of such biases were
only moderate.
The highest diffusivity was estimated for human-associated

prokaryotes (D= 1211 km2 yr−1, overview in Supplementary
Table S3). Based on this diffusivity, after 100 years a single cell
lineage is expected to have traversed a net distance of ∼580 km, or
otherwise said, two extant independently dispersing cells coales-
cing 50 years ago (thus having patristic distance 100 years) are
expected to be on average ∼580 km apart (see Supplementary
Fig. S9 for the expected distance over different time intervals, for
mathematical formulas see [45, 46]). It should be kept in mind that
dispersal rates of human-associated prokaryotic lineages have
likely increased over time (e.g., due to increased global human
traffic), and hence these diffusivity estimates should be seen as
average rates over recent times. Also note that the dispersal of
human-associated prokaryotic lineages need not necessarily
resemble the dispersal of individual humans, since prokaryotes
can be transferred between humans as well as between humans
and objects. For other terrestrial and marine prokaryotes,
estimated diffusivities were somewhat lower albeit within the
same order of magnitude (D= 455 km2 yr−1 and D= 346 km2 yr−1,
respectively). This means that the expected net distance traversed
after 100 years is about 370 km for non-human-associated
terrestrial prokaryotes and 325 km for marine prokaryotes. Note,
however, that the estimation uncertainty for marine prokaryotes
was high, with the 95% confidence interval of the diffusivity
including values multiple orders of magnitude higher than the
maximum-likelihood estimate (Supplementary Table S3). Much
lower diffusivities were estimated with high confidence for
terrestrial lakes and hot springs (D= 1.29 km2 yr−1 and D= 1.01
km2 yr−1, respectively). By far the lowest diffusivity was estimated
for the terrestrial subsurface (D= 0.042 km2 yr−1). This means that
even after 10,000 years a terrestrial subsurface lineage is expected
to only traverse a distance of ∼35 km. A slower dispersal of hot
spring-, lake- or subsurface-associated lineages is consistent with
the stronger geographic endemism observed earlier (Fig. 2). For
hot springs, in particular, a low diffusivity is also consistent with
previous reports of endemism in thermophilic microorganisms
[6, 24–27, 29, 31, 47].
Strong differences were also found between bacteria and

archaea. For almost all considered environments, estimated
bacterial diffusivities were two or more orders of magnitude
greater than archaeal diffusivities (Supplementary Tables S4 and
S5). For example, diffusivities for non-human-associated terrestrial
bacteria and archaea were 633 km2 yr−1 and 0.113 km2 yr−1,
respectively, while diffusivities for hot spring bacteria and archaea
were 3.95 km2 yr−1 and 0.0348 km2 yr−1, respectively. This sug-
gests that bacteria and archaea generally differ in their ability to
disperse over long distances. One potential explanation might be
that cyst formation, sporulation and the ability to survive in

Fig. 3 Global distribution of closely related human-associated lineages. Geographic locations of prokaryotic genomes (circles) in each of
the two largest human-associated species-level genome bins (SGBs, i.e., genome clusters with an average nucleotide difference cutoff of 5%)
analyzed in this study (A) Escherichia coli, (B) Staphylococcus aureus). Straight lines connect genomes with average nucleotide difference
(AND) ≤ 0.1% (i.e., average nucleotide identity ≥ 99.9%). Representative strains and the number of genomes (n) in each SGB are noted in the
sub-titles. See Supplementary Fig. S5 for additional SGBs.
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variable environments— all of which facilitate passive long-
distance transport across barriers of inhospitable habitats—are
more common in bacteria than in archaea [48]. A notable
exception was the terrestrial subsurface, where archaea exhibited
higher diffusivities than bacteria, although the 95% confidence
intervals of the estimates nearly overlapped between the two
clades. Also note that estimates for human-associated archaea
were not possible due to a scarcity of genomes.
The above diffusivities represent averages across many clades.

Dispersal rates could, however, vary substantially between clades
even in the same environment, for example depending on a
clade’s ecological niche. To investigate this potential variation, I
also estimated the diffusivity individually for species-level genome
bins (SGBs), i.e., clusters of genomes with an AND ≤ 5%, commonly
assumed to correspond to prokaryotic species [33, 35–37]; this
analysis was only performed for human-associated prokaryotes,
where a sufficient number of large SGBs was available. I found that
diffusivities can vary by 4–5 orders of magnitude between SGBs
(Fig. 4A), although for most SGBs diffusivities were estimated in
the range 10–103 km2 yr−1. To further examine variation between
clades, and to specifically compare the dispersal rates of human-
associated to other terrestrial prokaryotes while controlling for
broad taxonomy, I also estimated the diffusivities for individual
prokaryotic phyla (Fig. 4B). Similarly, to control for broad
phenotype I also estimated the diffusivities for individual
metabolic functional groups, i.e., organisms sharing specific
metabolisms (as inferred using the tool FAPROTAX [49]; Fig. 4C).
Within each phylum examined, and within each functional group

examined, human-associated lineages had higher diffusivities than
other terrestrial lineages. This is consistent with my earlier
conclusion that human-associated prokaryotes tend to disperse
faster than non-human-associated terrestrial prokaryotes.

Transition rates between continents
A caveat of diffusion models is that they may not always be an
appropriate description of long-range dispersal, for example
driven by human intercontinental air traffic or tropospheric air
flow [50]. To more accurately determine the rate at which
prokaryotes disperse between continents, I fitted phylogeographic
Markov chain (Mk) models [51], which describe the transitions
between continents over time as a probabilistic process whose
rates depend on the pair of continents considered (Fig. 5A, B). To
avoid biases caused by sample size differences, the same number
of genomes was used for each continent (randomly subsampled
where needed). For human-associated lineages, the highest per-
lineage transition rate was estimated between Europe and North
America (∼5.5 Myr−1), followed by Europe and Africa and then
Asia and Africa (Fig. 5A). For non-human-associated terrestrial
lineages, transition rates are generally much lower than for
human-associated lineages; for example, the maximum estimated
per-lineage transition rate, between Asia and North America
(0.026 Myr−1, Fig. 5B), is two orders of magnitude lower than for
human-associated lineages. This suggests that human movement
greatly accelerates the global circulation of human-associated
prokaryotes, consistent with previous findings for certain human
pathogens [42]. Oceania (i.e., Australia, New Zealand, and other

Fig. 4 Dispersal rates by SGB, phylum and metabolic phenotype. A Diffusivities (vertical axis) estimated for individual human-associated
SGBs (one point per SGB), plotted against the SGB’s size (number of genomes, horizontal axis). B Diffusivities estimated for individual
prokaryotic phyla (circles: human-associated genomes, triangles: other terrestrial genomes). C Diffusivities estimated for individual metabolic
phenotype groups, i.e., genomes estimated to be capable of performing specific metabolic functions (circles: human-associated genomes,
triangles: other terrestrial genomes). In all figures, only shown are SGBs (A) or phyla (B) or phenotypes (C) for which the diffusivity could be
estimated based on at least ten genome pairs, and for which the lower and upper bound of the 95% confidence interval differed by less than
a factor of 5 (i.e., the upper bound is at most five times greater than the lower bound).
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Fig. 5 Transitions rates between continents. Probabilistic transition rates (per-lineage per time) between continents for (A) human-
associated and (B) terrestrial non-human-associated lineages, estimated by fitting a continuous-time stochastic Markov model for discrete trait
evolution to time-calibrated phylogenies built from the genomes. Larger and darker circles correspond to faster transition rates. Note the
different scales in (A) and (B). Models were fitted using rarefied datasets, i.e., with the same number of genomes per continent.
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nearby islands) generally exhibits the lowest transition rates to/
from other continents, and this holds true for both human-
associated and other terrestrial lineages, resembling common
observations for larger organisms such as animals [4].
Note that the estimated intercontinental transition rates, as well

as the diffusivities estimated earlier, should be interpreted on a
per-lineage basis, i.e., they describe the rate at which a single cell
lineage disperses over time and over generations. These estimates
do not specify the rate at which an entire clade with multiple
members expands its geographical boundaries over time, since
the latter depends on the size of the clade and the correlations
between trajectories of its members. Most bacterial species likely
comprise billions or more individual cells [19, 52]; if each of these
cells is considered an independently dispersing lineage, it
becomes clear that the expected time needed for at least one
member to colonize a new continent is orders of magnitude lower
than when considering any single lineage. For example, a
hypothetical human-associated bacterial species comprising 108

independently dispersing members initially located entirely in
Europe, is expected to disperse to North America (i.e., have at least
one member arrive in North America) within less than a day.

Human influence on non-human-associated prokaryote
dispersal
It is possible that the dispersal of non-human-associated
prokaryotes may also be accelerated by human activity, for
example through cargo ships or automobiles. In that case, the
diffusivities estimated for non-human-associated prokaryotes—
even if correct—may be much higher than their natural (“back-
ground”) diffusivities, i.e., what would be expected prior to the
appearance of humans, thus complicating the interpretation of
microbial biogeography over geological time scales. Such
“hitchhiking” effects are expected to be particularly strong in
coastal areas (where ship densities are highest) and in densely
populated areas on land. To assess the extent of this effect, I re-
estimated diffusivities using marine genomes sampled from non-
coastal areas and using non-human-associated terrestrial gen-
omes sampled from remote areas (Supplementary Fig. S3G, H).
Non-coastal areas were defined as being at least 370 km away
from any major coast, corresponding to the standard width of
exclusive economic zones, within which maritime activity tends to
be higher [53]. Remote terrestrial areas were defined as those
where population density in 2020 was estimated to be <10
humans per land km2. While the diffusivities estimated for these
restricted genome sets differed somewhat from the nonrestricted
estimates, there was no strong evidence that dispersal in the
former was substantially slower than in the latter. Indeed, for the
non-human-associated terrestrial prokaryotes the restricted diffu-
sivity estimate was only about 19% lower than the unrestricted
estimate, and for marine prokaryotes the restricted diffusivity
estimate was only about 21% lower than the unrestricted
estimate. In both cases the 95%-confidence intervals of the
restricted and unrestricted estimates overlapped (details in
Supplementary Table S3). Hence, while human activity probably
contributes to the diffusive dispersal of non-human-associated
prokaryotes, its overall contribution seems to be relatively
moderate when compared to the naturally occurring dispersal.

CONCLUSIONS
An old, heavily contested and yet persistent hypothesis in
microbial biogeography is that “everything is everywhere” and
that “the environment selects” [9]. Much uncertainty exists over
the validity of this hypothesis, partly because different studies
investigating the importance of dispersal limitation consider
different phylogenetic/taxonomic resolutions or different time
scales (reviewed in [13]). The present work clarifies the phyloge-
netic resolution and temporal scales at which prokaryotes display

geographic endemism at global scales, and quantifies overall
global prokaryotic dispersal rates in the context of an explicit
dispersal model. On the one hand, I find that geographic
endemism is sufficiently strong to be detectable via whole-
genome comparisons. On the other hand, even at clearly sub-
species resolutions (e.g., ≤1% AND), nearly all prokaryotic clades
on Earth’s surface seem to be globally distributed, that is, are not
confined to a specific continent or hemisphere (Figs. 2, S6, S4)
consistent with previous 16S rRNA-based studies [14–19]. Note
that the goal of this study was not to determine the actual
mechanisms by which prokaryotes disperse, which can include
ocean currents, subsurface fluids, wind [50] or movement of
animal hosts, nor does it clarify if the few observed cases of
substantial endemism (notably in hot springs and terrestrial
subsurface) are entirely driven by dispersal limitation and not
environmental filtering; answering these questions remains a
separate major task. Similarly, the dispersal models fitted here
(SBM and Mk) are inevitably simplifications of reality, and are by
no means an attempt to fully capture microbial biogeographic
patterns (this would necessitate the incorporation of a multitude
of physical and ecological processes, accounting for environ-
mental heterogeneities and dispersal barriers). As such, the
estimated diffusivities and Mk transition rates between continents
should be seen as “effective”measures of dispersal rates, averaged
over many clades and underlying processes. It should also be kept
in mind that in the case of serious model violations such effective
measures may be less meaningful [54, 55].
The finding that most prokaryotic clades on Earth’s surface are

globally distributed suggests that local disturbances or rapid
climatic shifts are unlikely to cause an extinction of a large fraction
of prokaryotic species, in contrast to larger organisms. Further,
many global-scale biogeographical patterns previously observed
at coarse phylogenetic resolutions (e.g., as permitted by the 16S
rRNA gene; [13]) are probably driven by environmental filtering—
either current or in the recent past—rather than geographic
isolation. Note that this does not imply that dispersal limitation is
irrelevant, especially at short (ecological) time scales, since that
would be equivalent to dispersal being essentially infinitely fast
(which, as shown here, is not the case). For example, a recently
formed or altered lake may not yet exhibit all bacterial species that
could in principle live there, because migration (e.g., from other
similar lakes) and establishment inevitably take time, thus leading
to short-term historical contingency effects [56]. From the above
analyses it becomes clear that the time scales over which historical
contingencies matter will differ between environments, and may
in some cases be long enough to have evolutionary implications.
Indeed, estimated diffusivities were particularly low for the
terrestrial subsurface and hot springs, which seem to constitute
“isolated islands” of prokaryotic evolution.

METHODS DETAILS
Genomes, metadata, and phylogenies
Complete or draft genomic sequences were downloaded from
GenBank [32] on January 14, 2021, based on the following criteria:
Only genomes with a contig-N50 above 5000, and with the
“excluded_from_refseq” entry either being empty or only contain-
ing the terms “derived from metagenome”, “missing tRNA genes”,
“derived from environmental source”, “derived from single cell”,
“unverified source organism”, “partial”, “genus undefined”, were
downloaded. The original sample coordinates were extracted from
the corresponding BioSample’s “latitude”, “longitude” and/or
“lat_lon” fields or (for a small number of isolate genomes) from
the literature. Only georeferenced genomes, i.e., with available
sample coordinates, were kept. Protein-coding genes were
predicted for each georeferenced genome using prodigal v2.6.3
[57]. The quality of each genome was assessed based on the
presence of multiple single-copy marker genes using checkM
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v1.1.3 [58], with option “reduced_tree”. Only genomes with an
estimated completeness ≥90% and a contamination level ≤1%
were kept, thus yielding 36,795 high-quality georeferenced
genomes. The taxonomic identities of genomes were taken from
GenBank, based on each genome’s taxid. An overview of genome
qualities and completeness is provided in Supplementary Fig. S1.
An overview of taxonomic coverages (genomes per taxon) is
shown in Supplementary Fig. S10. Genome accession numbers,
coordinates and other metadata are provided in Supplementary
File 1. Pairwise geographic distances between genomes were
calculated in terms of the great-circle distance, assuming that the
Earth is approximately a sphere with radius R⊕= 6371 km [59].
The environment type of each genome was determined based on
its geographic coordinates, based on metadata provided by
GenBank and using the tool FAPROTAX [49] (see Supplementary
S.1.1 for details). The metabolic phenotype of each genome was
predicted using the tool FAPROTAX [49] (see Supplementary S.1.2
for details). The human population density (estimated humans per
land km2 for the year 2020) at every genome’s sampling location
was obtained from the Gridded Population of the World data
provided by the Socioeconomic Data and Applications Center
(SEDAC), version 4.11, grid resolution 2.5 min [60], using bilinear
interpolation between grid points where necessary. The distance
of every genome’s sampling location to the nearest major
coastline (including major islands) was calculated based on the
Natural Earth coastlines database, version 4.1.0, resolution 110m,
accessed November 22, 2020 (www.naturalearthdata.com). A
time-calibrated phylogenetic tree of genomes was built separately
for each domain (bacteria and archaea) using multiple domain-
specific universal marker genes. Briefly, genes were identified and
aligned using the GTDB-Tk workflow v1.3.0 [39], trees were built
from the concatenated alignments using FastTree v2.1.11 [61], and
trees were dated with PATHd8 v1.0 [62] using multiple timing
constraints from the literature (details in Supplementary S.1.3).
Note that while this approach reflects current standard practice
[38, 63], prokaryotic timetrees may still exhibit errors, for example
due to violated molecular clock assumptions and a scarcity in
dating constraints.

Estimating diffusivity in terms of km2 yr−1

Based on the dated trees and the genome coordinates, I fitted an
SBM model [45, 64] for diffusion-like geographic dispersal, using
the R package castor v1.6.6 [41, 65]. SBM models are analogous to
the widely used Brownian Motion models of continuous dispersal
[66–69], with the difference that SBM models do not simply
encode geographic locations as two independent (i.e., orthogonal)
numeric coordinates but instead account for Earth’s spherical
geometry [41]. An SBM model is defined by a single “diffusivity”
parameter D, which is equal to half the infinitesimal variance of
Brownian Motion (typically denoted σ2) [70]. To estimate
environment-specific diffusivities, the archaeal and bacterial trees
were pruned to the subset of genomes associated with a
particular environment, prior to model fitting. Note that, strictly
speaking, each of these pruned trees may include old ancestral
nodes specialized to a different environment than their tips,
however this is expected to have a negligible effect on the
estimated diffusivity since castor constructs independent con-
trasts mostly from recently diverged tip pairs. For additional
details on how D is estimated, and how geographic sampling
biases are accounted for, see Supplementary S.1.4. For diffusivity
estimates not accounting or accounting for geographic sampling
biases see Supplementary Tables S6 and S3, respectively.

Calculating average nucleotide differences
Pairwise average nucleotide identities (ANIs) between genomes
were calculated as follows: First, approximate ANIs between all
genomes were calculated using mash v2.2 [71]. Next, for any
genome pair with a mash-based ANI ≥ 85% (roughly 3.9% of

genome pairs), I recomputed the ANI using fastANI v1.3 [36]. The
reason for this two-step approach is that while fastANI is slightly
more accurate than mash, it is orders of magnitude slower; hence,
calculating all possible pairwise ANIs with fastANI would have
been practically unfeasible (and in fact unnecessary, since my
analyses focus largely on ANIs > 90%). See Supplementary Fig. S11
for a comparison of mash vs. fastANI, and Supplementary Fig. S12
for the distribution of ANIs. Only fastANI-based ANIs were
considered in the subsequent analyses. Throughout this paper,
AND is defined as 100% minus ANI, and expressed in %.

Species-level genome bins
Species-level genome bins (SGBs) were constructed by clustering
genomes at an AND cutoff of 5% using a modification of the
approach taken by Pasolli et al. [72], as follows. First, bifurcating
trees were constructed based on pairwise ANDs and using the
BIONJ∗ algorithm [73] implemented in the R package ape v5.4-1
(function bionjs) [74]. For computational efficiency, prior to
clustering, genomes were split into smaller disjoint subsets of
moderately to closely related genomes, based on an AND cutoff
threshold of 15%. BIONJ∗ trees were rooted using the midpoint
method [75]. Next, tips in the BIONJ∗ trees (corresponding to
genomes) were grouped into SGBs based on a maximum pairwise
distance of 5% AND, using the function collapse_tree_at_resolu-
tion in the R package castor [65].

Assessing continental endemism
To examine the phylogenetic resolution of continental endemism
(Supplementary Fig. S6), I proceeded as follows. For every
genome, I assigned a country code based on the genome’s
geographic coordinates using the python package reverse_geo-
coder v1.5.1 and then converted the country code to the
corresponding continent name using the python package
pycountry_convert v0.7.2 [76]. For any given environment type
(e.g., human-associated), and for any given AND threshold, I
considered all genome pairs with an AND at or below the
threshold and determined which fraction of those genome pairs
(denoted α) was located on separate continents. To determine the
expectation for this fraction under the null hypothesis of infinitely
fast dispersal (denoted αo), I randomly chose 1,000,000 genome
pairs from the same environment regardless of their relatedness,
and calculated the fraction of such pairs located on separate
continents. Because randomly chosen genomes retained their
original geographic location and environment, this null model
accounts for broad environmental constraints and for geographic
sampling biases, i.e., the fact that the number of genomes
sampled is not equal among continents. To examine the fraction
of genome pairs located on opposite hemispheres (Fig. 2) I
proceeded in a similar manner, with the difference that two
genomes were considered to be on opposite hemispheres if their
distance was greater than πR⊕/2, where R⊕ is Earth’s radius. The
null model corresponding to infinitely fast dispersal was
implemented by randomly choosing 1,000,000 genome pairs
regardless of their relatedness, and calculating the fraction of such
pairs located on separate hemispheres. To examine whether the
conclusions from this analysis are sensitive to sample sizes and
biased due to differences in the number of genomes from each
environment, I repeat the analyses using rarefied data, i.e., using a
random subset of 400 genomes per environment. The results are
shown in Supplementary Figs. S6, S7 and S8, and confirm the main
conclusions presented in the main article regarding the approx-
imate AND thresholds at which endemism appears in each
environment.

Estimating intercontinental transition rates (Mk modeling)
To estimate intercontinental transition rates of prokaryotic
lineages (Fig. 5), I fitted a continuous-time Markov chain model
of discrete trait evolution (“Mk” model) [51] via maximum-
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likelihood using the castor function fit_mk, treating each
continent as a distinct state. To reduce sampling biases between
continents, the same number of genomes was considered for
every continent through random subsampling. Antarctica was
omitted from the analyses because very few genomes were
available from there. To reduce the risk of overfitting, the
transition rate between any two continents was assumed to be
symmetric, i.e., to only dependent on the two continents but not
on the direction (thus, the fitted model had 21 free parameters).
To reduce the risk of converging to a local non-global maximum
of the likelihood function, fitting was repeated 100 times with
random start parameters. Note that an Mk model was not fitted to
hot spring, lake and subsurface-associated lineages because the
available data did not sufficiently cover all continents. An Mk
model was also not fitted to marine lineages, as a separation of
ocean space into discrete continents is much less meaningful.
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