Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Do methanogenic archaea cause reductive pyrite dissolution in subsurface sediments?

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Rickard D, Luther G. Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125 degrees C: the mechanism. Geochim Cosmochim Acta. 1997;61:135–47.

    Article  CAS  Google Scholar 

  2. Thiel J, Byrne JM, Kappler A, Schink B, Pester M. Pyrite formation from FeS and H2S is mediated through microbial redox activity. Proc Nat Acad Sci USA. 2019;116:6897–902.

    Article  CAS  Google Scholar 

  3. Canfield DE, Habicht KS, Thamdrup B. The archean sulfur cycle and the early history of atmospheric oxygen. Science 2000;288:658–61.

    Article  CAS  Google Scholar 

  4. Fike DA, Bradley AS, Rose CV. Rethinking the ancient sulfur cycle. Annu Rev Earth Planet Sci. 2015;43:593–622.

    Article  CAS  Google Scholar 

  5. Payne D, Spietz RL, Boyd ES Reductive dissolution of pyrite by methanogenic archaea. ISME J. 2021. https://doi.org/10.1038/s41396-021-01028-3.

  6. Berner RA. The synthesis of framboidal pyrite. Econ Geol. 1969;64:383–84.

    Article  CAS  Google Scholar 

  7. Rickard D. Sulfidic sediments and sedimentary rocks. Developments in Sedimentology. 65. Amsterdam: Elsevier; 2012.

    Google Scholar 

  8. Kondo K, Okamoto A, Hashimoto K, Nakamura R. Sulfur-mediated electron shuttling sustains microbial long-distance extracellular electron transfer with the aid of metallic iron sulfides. Langmuir. 2015;31:7427–34.

    Article  CAS  Google Scholar 

  9. Rotaru A-E, Calabrese F, Stryhanyuk H, Musat F, Shrestha PM, Weber HS, et al. Conductive particles enable syntrophic acetate oxidation between geobacter and methanosarcina from coastal sediments. MBio. 2018;9:1–14.

    Article  Google Scholar 

  10. Kato S, Igarashi K. Enhancement of methanogenesis by electric syntrophy with biogenic iron-sulfide minerals. MicrobiologyOpen. 2018;8:e647.

    Google Scholar 

  11. Yang ST, Okos MR. Kinetic study and mathematical modeling of methanogenesis of acetate using pure cultures of methanogens. Biotechnol Bioeng. 1987;30:661–7.

    Article  CAS  Google Scholar 

  12. Costa KC, Ho-Yoon S, Pan M, Burn JA, Baliga NS, Leigh JA. Effects of H2 and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis. J Bacteriol. 2013;195:1456–62.

    Article  CAS  Google Scholar 

  13. Scherer P, Lippert H, Wolff G. Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biol Trace Elem Res. 1983;5:149–63.

    Article  CAS  Google Scholar 

  14. Beulig F, Røy H, Glombitza C, Jørgensen BB. Control on rate and pathway of anaerobic organic carbon degradation in the seabed. Proc Natl Acad Sci USA. 2018;115:367–72.

    Article  CAS  Google Scholar 

  15. Liu J, Pellerin A, Antler G, Kasten S, Findlay A, Dohrmann I, et al. Early diagenesis of iron and sulfur in Bornholm Basin sediments: the role of near-surface pyrite formation. Geochim Cosmochim Acta. 2020;284:43–60.

    Article  CAS  Google Scholar 

  16. Rotaru A-E, Yee MO, Musat F. Microbes trading electricity in consortia of environmental and biotechnological significance. Curr Opin Biotech. 2021;67:119–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank David Rickard, Amelia-Elena Rotaru, Jiarui Liu, and Donald E. Canfield for helpful ideas and information for this commentary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Barker Jørgensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has not received financial or other external support.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jørgensen, B.B. Do methanogenic archaea cause reductive pyrite dissolution in subsurface sediments?. ISME J 16, 1–2 (2022). https://doi.org/10.1038/s41396-021-01055-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-021-01055-0

Search

Quick links