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Methanotrophic microorganisms play a critical role in controlling the flux of methane from natural sediments into the atmosphere.
Methanotrophs have been shown to couple the oxidation of methane to the reduction of diverse electron acceptors (e.g., oxygen,
sulfate, nitrate, and metal oxides), either independently or in consortia with other microbial partners. Although several studies have
reported the phenomenon of methane oxidation linked to selenate reduction, neither the microorganisms involved nor the
underlying trophic interaction has been clearly identified. Here, we provide the first detailed evidence for interspecies electron
transfer between bacterial populations in a bioreactor community where the reduction of selenate is linked to methane oxidation.
Metagenomic and metaproteomic analyses of the community revealed a novel species of Methylocystis as the most abundant
methanotroph, which actively expressed proteins for oxygen-dependent methane oxidation and fermentation pathways, but
lacked the genetic potential for selenate reduction. Pseudoxanthomonas, Piscinibacter, and Rhodocyclaceae populations appeared to
be responsible for the observed selenate reduction using proteins initially annotated as periplasmic nitrate reductases, with
fermentation by-products released by the methanotrophs as electron donors. The ability for the annotated nitrate reductases to
reduce selenate was confirmed by gene knockout studies in an isolate of Pseudoxanthomonas. Overall, this study provides novel
insights into the metabolic flexibility of the aerobic methanotrophs that likely allows them to thrive across natural oxygen
gradients, and highlights the potential role for similar microbial consortia in linking methane and other biogeochemical cycles in
environments where oxygen is limited.
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INTRODUCTION
Methanotrophic microorganisms play a major role in the cycling of
methane (CH4) in both oxic and anoxic environments [1, 2], with
relevance to global carbon transformations and the Earth’s
climate. Aerobic methanotrophs have been identified within
several bacterial lineages of the Proteobacteria and Verrucomi-
crobia, and are widely distributed in nature [3]. The key enzyme
possessed by these microorganisms is an oxygen-dependent
methane monooxygenase (MMO), catalyzing the oxidation of
methane to methanol [3]. Methanotrophs possessing an MMO are
routinely observed in hypoxic environments, where they have
been suggested to utilize alternate electron acceptors (e.g.,
nitrate), or fermentation pathways, to achieve redox balance for
oxygen-limited growth [4–7].
In anoxic environments, the bacterium “Candidatus Methylo-

mirabilis oxyfera” has been shown to couple MMO-mediated
methane oxidation to the reduction of nitrite by generating its
own oxygen from nitric oxide [8]. Several uncultured anaerobic
methanotrophic (ANME) archaea oxidize methane, essentially
through the reversal of the classical methanogenesis pathway,
in consortia with sulfate-reducing bacteria (SRB) [9–11]. In
addition, members of the Methanoperedenaceae (formerly

ANME-2d), can also perform nitrate- and metal-oxide-dependent
anaerobic oxidation of methane independent of a syntrophic
partner [12–16], and have the genetic potential to utilize other
terminal electron acceptors, including selenate [17].
Selenium (Se) compounds are abundant in the Earth’s crust and

have been found in different aquatic ecosystems, such as
agricultural drainage and wetland sediments [18, 19], which are
known hot spots for methane cycling [20–22]. Selenium is mainly
found in the form of selenate (SeO4

2−), selenite (SeO3
2−), and

elemental selenium (Se0), with the former two being more mobile
and toxic than the latter. Transformations between these states of
Se can be mediated by both chemical and biological agents [23].
High concentrations of selenium in the environment may result in
significant ecological damage, with only one order of magnitude
separating essential and toxic levels for living organisms [23].
Anthropogenic activities associated with a variety of industries,
including production of photoelectric devices, coal mining and
combustion, and flue-gas desulfurization [18, 24], are important
sources for selenium pollution, leading to a wider distribution in
natural environments.
Although the phenomenon of methane oxidation linked to

selenate reduction has been reported [25–27], neither the
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microorganisms involved nor the underlying trophic interaction
has been resolved. To fill this knowledge gap, we established a
bioreactor microbial consortium from wetland sediments that
coupled methane oxidation to the reduction of selenate. Spectro-
scopy, isotope tracer experiments, metagenomics combined with
metaproteomics, and gene knockout studies were applied to
understand trophic interactions in the enriched microbial com-
munity. Based on the results, we propose a novel, synergistic
pathway for methane-fueled selenate reduction with organic acids
acting as interspecies electron shuttles.

RESULTS AND DISCUSSION
A wetland sediment sample was used to inoculate a membrane
biofilm batch reactor system (MBBR; Fig. S1) fed with methane and
selenate as the sole electron donor and acceptor, respectively,
under hypoxic conditions. A stable selenate reduction rate of
9.4–11.7 μM/day was achieved after 1 month of operation (Fig. S2).
Batch tests containing microbes from the established MBBR
system confirmed the oxidation of supplemented 13C-labeled
methane to 13CO2 during 40 days (Fig. 1a). In parallel, a total of
~550 μM selenate (added in three lots) was reduced to selenite
(~340 μM) and elemental selenium (~210 μM; Fig. 1a). The
formation of precipitated elemental selenium was shown by
scanning electron microscopy (SEM) and X-ray photoelectron
spectroscopy (XPS) (Fig. 1b, c). These results demonstrated a
stoichiometric balance for Se, with selenite and elemental
selenium as the products of selenate reduction. However, selenate
was not consumed in the absence of methane, indicating that its
reduction was strictly dependent on the addition of methane or
other carbon sources (Fig. S3).

In order to understand the metabolic pathways responsible for
the observed transformations, metagenomics and metaproteo-
mics were applied to samples collected at the end of the batch
incubations. Metagenomics enabled the recovery of 15 meta-
genome assembled genomes (MAGs), after quality filtration,
accounting for ~90% of the sequenced reads (Table 1 and
Fig. S4). Two MAGs were associated with canonical aerobic Type II
methanotrophs, being classified with the Genome Taxonomy
Database (GTDB) [28] as novel species within the genera
Methylocystis (S2B18) and Methylosinus (S3B16), respectively.
These MAGs encoded and expressed the complete aerobic
methane oxidation pathway, including a particulate methane
monooxygenase (pMMO), methanol dehydrogenase, the tetra-
hydromethanopterin (H4MPT)-linked C1 transfer pathway and a
formate dehydrogenase (Table S1). Together these two metha-
notrophic species accounted for 14.5% of the total sequenced
reads. None of the other populations possessed the annotated
genetic potential for methane metabolism (Table 1). No archaea
were detected in abundance in the present study (~0.3% of the
reads). This is in contrast to a similar MBBR seeded from the
system described here, where Archaea, predominantly the genus
Methanosarcina spp., made up ~2.5% of the microbial community
[27]. Methanosarcina is typically known as a methanogen but was
suggested to oxidize methane in that system through a reversal
of the methanogenic pathway like related ANME. Batch experi-
ments with the biomass of that system using selective inhibitors
of MMO (acetylene) and methyl-coenzyme M reductase (bro-
moethanesulphonate) suggested that both Methanosarcina and
Methylocystis were important for the observed methane-linked
selenate reduction, but the metabolic mechanism was not further
investigated [27].
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Fig. 1 Kinetics of methane oxidation linked to selenate reduction. a Concentrations of selenate (black squares), selenite (red circles),
elemental selenium (gray diamonds), and 13CO2 (blue triangles) during oxidation of 13CH4 and selenate reduction. The symbols show the
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The ability of aerobic methanotrophs to thrive under hypoxic
conditions is consistent with several previous pure culture studies
and environmental surveys [5, 29–32]. Under hypoxic conditions,
the limited available oxygen is known to be used for methane
oxidation to methanol, whilst net electron balance is achieved
through the reduction of nitrate or fermentation of methane-
derived formaldehyde [4, 5, 7]. In our experiments, the fermenta-
tion of formaldehyde by the abundant methanotrophs was
supported by the accumulation of micromolar organic acids,
including formate, acetate, propionate, butyrate, and lactate, in
the absence of selenate (Fig. S5 and Table S2). The ratios of
isotopically labeled carbon could not be measured for individual
organic compounds due to their very low concentrations.
However, the 13C/(13C+ 12C) ratio was found to increase
dramatically for total dissolved carbon (i.e., inorganic plus organic)
but not for total inorganic carbon (Fig. S6), in selenate-free
incubations supplemented with 13CH4. These observations
strongly support the idea that the methanotrophs are oxidizing
methane and fermenting the resulting formaldehyde to organic
compounds.
The dominance of aerobic methanotrophs in the system is

interesting given that oxygen was not supplied to the batches and
yet was consistently detected at low levels during the incubations
(<250 nM). A supply of around 250 μM O2 would be required to
account for the amount of methane oxidized (i.e., ~250 μM CH4,
calculated from the produced 13CO2 in Fig. 1a) by the expressed
pMMOs of Methylocystis (MAG ID in Table 1: S2B18) and
Methylosinus (S3B16) in this study. To investigate the possibility
that oxygen was produced as a metabolic intermediate, several
18O-labeling batch experiments were performed similar to those
used to confirm the intra-aerobic pathway utilized by “Ca. M.
oxyfera” [8]. No 18O2 was ever detected in the headspace when
the biomass was incubated with either 18O-selenate or 18O-H2O in
the presence of methane (Table S3), suggesting that an analogous
intra-oxygenic pathway to “Ca. M. oxyfera” is unlikely. The
methanotrophs may be able to scavenge any oxygen leaking
into the vials [33], although substantial ingress was ruled out by
parallel abiotic incubations (Fig. S7). Several previous studies have
described similar observations, in which aerobic methane oxida-
tion also preceded despite very low O2 concentrations [5, 30, 31].

For example, Kits, et al. [5] reported methane oxidation by the
aerobic methanotroph Methylomonas when the O2 concentration
was below 50 nM throughout the experiment. Further investiga-
tion of the potential for cryptic oxygen cycles in experimental and
natural ecosystems is warranted.
Unexpectedly, none of the MAGs generated in this study

encoded a specific selenate reductase (e.g., Ser, Srd) [34, 35].
However, phylogenetic analyses of annotated members of the
dimethyl sulfoxide (DMSO) reductase superfamily revealed that
some of the MAGs possessed genes that clustered with
periplasmic nitrate reductases known to reduce selenate
[36, 37]. These enzymes were found in Pseudoxanthomonas sp.
(S2B13), Piscinibacter sp. (S3B8), and unclassified Rhodocyclaceae
(S3B23) (Figs. 2 and S8, Table S4). Selenate reduction was
previously reported for members of the family Rhodocyclaceae
[38], but not for the genera Pseudoxanthomonas or Piscinibacter.
To experimentally validate the proposed role of these

periplasmic nitrate reductases in selenate reduction, gene-
knockout experiments were performed with an isolate of
Pseudoxanthomonas wuyuanensis [39] that possessed a napA
gene similar to the enzymes above (i.e., percent identity=
74.6–86.6%, query coverage= 88.0–99.0%). Successful knockout
of the napA gene in this isolate was confirmed by the absence of
PCR amplification of DNA from the mutant with primers targeting
the gene (Fig. 3a) and a relatively shorter product with primers
targeting motifs flanking the gene (Fig. 3b). Oxygen respiration of
wild and mutant P. wuyuanensis strains was similar (Fig. 3c),
indicating that the napA-deletion did not harm the essential
metabolism of this facultative anaerobic microorganism. Despite
not possessing a canonical selenate reductase, the wild-type P.
wuyuanensis was able to reduce selenate, with observed
upregulation of the napA gene by 101.1 ± 8.0 fold when selenate
was added to the media (Fig. 3d). Conversely, the napA-deletion
mutant could not reduce selenate, providing strong evidence for
the role of the annotated periplasmic nitrate reductase in selenate
reduction in this microorganism and, based on the presence of
very similar napA, in Pseudoxanthomonas sp. (S2B13), Rhodocycla-
ceae (S3B23) and Piscinibacter sp. (S3B8) in our study.
The enzymes involved in the observed reduction of selenite by

the MBBR community were less easily identified. The enzymes

Table 1. Properties of recovered provisional whole-genome sequences with completeness >70%, contamination <5% and abundance >1.0%.

MAG
IDs

Classification Completeness (%) Contamination (%) Size (Mbp) Metagenomic
abundance (%)

Proteomic
abundance (%)

δ13C (%)

S2B13 Pseudoxanthomonas sp. 99.7 0.5 4.4 16.8 0.8 −31.8 ± 5.2

S3B26 Thermaceae 97.4 0.0 3.2 15.1 2.2

S2B18 Methylocystis sp. 99.4 1.0 3.8 11.9 32.1 −14.3 ± 1.1

S1B30 Thermomonas sp. 98.8 1.0 2.6 11.6 1.5 −37.3 ± 6.7

S2B15 Ramlibacter sp. 100.0 0.0 4.1 7.2 0.2

S2B27 Methylophilus sp. 100.0 0.0 3.0 5.4 0.3

S2B20 Burkholderiaceae 93.4 0.1 3.6 3.3 0.1

S1B24 Melioribacteraceae 100.0 0.6 3.1 3.3 4.6 −6.4 ± 3.3

S3B23 Rhodocyclaceae 97.6 1.4 3.3 3.0 1.5 −10.1 ± 5.9

S4B40 Nucleicultrix sp. 78.6 0.0 1.8 2.8 0.0

S3B16 Methylosinus sp. 99.3 0.0 3.9 2.6 19.8 −43.9 ± 0.8

S3B25 Novosphingobium sp. 99.9 0.4 3.3 2.1 0.0

S2B30 Anaerolineaceae 91.8 2.0 2.8 1.5 0.3 −37.3 ± 7.7

S1B20 Didemnitutus sp. 99.3 3.0 3.5 1.1 0.8

S3B8 Piscinibacter sp. 96.2 1.8 5.6 1.0 0.1

Others 143 11.5 35.6

Genomes in bold encode enzyme complexes similar to known nitrate/selenate reductases; genomes in italic belong to aerobic methanotrophs. The inability to
generate δ13C values for some MAGs was possibly due to the few detected peptides.
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responsible for selenite reduction are generally less well studied
and few specific reductases have been reported in the literature.
The selenate-reducing Pseudoxanthomonas sp. (S2B13) and Pisci-
nibacter sp. (S3B8) are potentially also responsible for the reduction
of selenite to elemental selenium, with both possessing genes of
the NIR/SIR reductase family, as some members of this family have
shown the ability of selenite reduction (Fig. S9, Table S5) [40, 41].
No genes were identified in this study that had close homology
with the few genes with reported selenite-reducing activity
belonging to the fumarate reductase (FAD-binding superfamily)
and NADH:flavin oxidoreductase (Old Yellow Enzyme family)
(Figs. S10 and S11, Tables S6 and S7) [42–44]. It is worth noting
that selenite reduction is often associated with detoxification, with
several biomolecules also shown to have selenite-reducing activity,
including glutathione, glutaredoxin, and siderophores [45].
As none of the putatively identified selenate-reducing populations

(i.e., Pseudoxanthomonas, Rhodocyclaceae, and Piscinibacter) had the
annotated-potential for methane oxidation, they likely relied on the
methane-derived fermentation by-products released by methano-
trophs (Figs. S5 and S6, Table S2). In support of this hypothesis,
compared to the average rate of selenate reduction in the methane-
fed incubation (i.e., 1.15 ± 0.04 μM-h−1, Fig. 4a), the rates were an
order of magnitude higher for parallel incubations with formate
(10.20 ± 0.37 μM-h−1, Fig. 4b), acetate (8.19 ± 0.64 μM-h−1, Fig. 4c),
propionate (7.60 ± 0.95 μM-h−1, Fig. 4d), butyrate (7.79 ± 0.52 μM-h−1,
Fig. 4e), and lactate (8.08 ± 0.80 μM-h−1; Fig. 4f), suggesting that these
identified intermediates were preferred electron donors for selenate
reduction by these bacteria.
Genes responsible for the activation of formate, acetate,

propionate, and lactate were encoded in the MAGs representing
all three of the putative selenate-reducing community members,
as well as other heterotrophic populations. The expression of
these genes was detected during methane-driven selenate
reduction (Figs. 4, 5 and S12). The absence of canonical
butyrate-activating genes suggests an alternate pathway for
butyrate metabolism in these selenate-reducing populations,
noting that the addition of this substrate to batches stimulated
selenate reduction (Fig. 4e). The importance of fatty acids as
interspecies electron shuttles was supported by the diffuse floc

structure of the biomass and the presence of suspended
methanotroph cells (Fig. S13). In contrast, direct interspecies
electron transfer (DIET) would require microcolonies with much
more compact physical association [46, 47]. Genes for multi-heme
cytochromes or pili associated with DIET were also not annotated
in the MAGs representing the methanotrophs and putative
selenate reducers in this study, lending more supports to the
involvement of interspecies electron shuttles.
To compare the contribution of the two populations of

methanotrophs to fatty acid production, we measured the δ13C
of each population with proteomics [48]. When incubated with
unlabeled methane, Methylocystis and Methylosinus had quite
different δ13C values of −14.3‰ and −43.9‰, respectively
(Table 1). Being Type II methanotrophs, these bacteria use the
serine cycle to assimilate approximately equal amounts of
formaldehyde and CO2, both originating from methane oxidation
[3, 49–51]. Because the CO2 in the external medium is heavier than
methane, the lower δ13C value for Methylosinus is consistent with
it completely oxidizing more of the supplied methane and
assimilating the lighter methane-derived CO2 relative to Methylo-
cystis, where the latter methanotroph is suggested to release more
13C-depleted intermediates and assimilate heavier CO2 from the
culture medium. As such, Methylosinus appears to be more reliant
on scavenging available oxygen and less on fermentation for
redox balance. These results are consistent with the observation
that the Methylocystis MAG possesses a more extensive suite of
genes for fermentation than the Methylosinus MAG which would
rely more on fermentation to acetate and formate (Fig. 5).
Among the putative selenate reducers, Pseudoxanthomonas sp.

displayed a δ13C value of −31.8‰, suggesting its assimilation of
isotopically depleted methane-derived intermediates. The Rhodo-
cyclaceae displayed a much higher δ13C value of −10.1‰,
indicating that this population incorporated less of the organics
into its biomass and possibly fixed heavier carbon from CO2 via
the Calvin Cycle annotated in the representative MAG (Fig. S14).
In conclusion, we report a novel trophic relationship linking

methane oxidation to selenate reduction under hypoxic condi-
tions. In our bioreactor enrichment community, a species of
Methylocystis appeared to be primarily responsible for the
oxidation and fermentation of methane-derived carbon to organic
acids, which were in turn utilized by co-abundant heterotrophic
populations as a source of carbon and electrons for selenate
reduction. This novel synergistic process may link the global
carbon and selenium cycles in a new way, supported by the
widespread co-occurrence of the key bacterial genera in natural
environments, at relative abundances of >1.0%, including the
wetland sediment used to seed the MBBR (Fig. S15 and
Dataset S1). The discovered trophic interaction could also
potentially be applied for the treatment of wastewater or
contaminated environmental sites, as the reduction product Se0

is insoluble and can be easily removed from the environment by
filtration [52].
Although previous studies have suggested that methane-

derived carbon released by methanotrophs supports the growth
of a broad range of co-existing heterotrophic populations in the
environment [53–56], specific trophic relationships have not
been identified. Diffusible intermediates of methane oxidation
—such as hydrogen, formate, acetate, methanol, and metha-
nethiol—have been suggested to mediate the transfer of
electrons from anaerobic archaeal methanotrophs to their SRB
partners [57–60], but none of these have been confirmed
experimentally. Subsequent studies have demonstrated that
DIET is more probable for the ANME-SRB consortia [46, 47, 61].
Our study provides a clear example of community metabolism
of methane and highlights the possibility that similar trophic
relationships may link methane metabolism with a range of
terminal electron acceptors in hypoxic environments. Our study
highlights the metabolic flexibility of aerobic methanotrophs,
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likely contributing to their success along the entire oxygen
gradient of natural systems.

MATERIALS AND METHODS
Description of the inoculum
In this study, a membrane biofilm batch reactor was set up to enrich for a
microbial community coupling methane oxidation to the reduction of
selenate (Fig. S1). The reactor had 32 ~10-cm long composite bubble-less
hollow fibers with 280-μm outer diameter and 180-μm inner diameter, and a
total membrane surface area of 2.8 × 10−3m2 (Mitsubishi Rayon). Fibers were
glued and sealed in Norprene tubing and supplied with CH4 at a pressure of
15 psig (1.97 atm). The MBBR had an overall volume of 1200mL, and active
volume of 1000mL of liquid. A magnetic stirrer (HJ-1, Xinbao, Ltd., China) was
used to mix the contents of reactor. The reactor was operated in batch mode
at a temperature of 35 ± 1 °C and pH at 7.2 ± 0.2 throughout the experiment.
Dissolved O2 in the medium was calculated to be <250 nM according to
Henry’s Law, based on the measured O2 concentration in headspace being
below the detection limit (i.e., 200 ppm) of gas chromatography (GC, Agilent
7890A, USA). The GC was configured with Molesieve 5A column and thermal
conductivity detector, using Argon as the carrier gas. The MBBR was
inoculated with a sediment sample (~5 g) from the wetland in Zhejiang
University (30°17′53″ N and 120°05′10″ E, Hangzhou, China) and 1000mL of
anoxic mineral salt medium (Table S8). Selenate was introduced at a
concentration of ~30mg Se/L in the form of selenic acid solution and was
replenished after being completely consumed.

Selenate reduction linked to methane oxidation in serum
bottles
For batch experiments, the MBBR was gently shaken to detach the biofilm
on Day 328. Approximately 20mL of the suspended enriched culture from
the MBBR was inoculated into 120-mL serum bottles containing 60mL of
anoxic medium. All the bottles were sparged with Argon for 25min, and
then tightly closed with butyl rubber stoppers, sealed with crimped
aluminum caps. Stock solutions of selenate were added to the medium at
a final concentration of 185 μM, serving as the sole electron acceptor, and
10mL of 13C-labeled CH4 (99.5%

13CH4, purchased from Sigma-Aldrich) was
introduced simultaneously as the sole electron donor. The electron
equivalents of the supplied methane (8mol e− per mol) was in excess of
that required to completely reduce the supplied Se(VI) to Se(0). Selenate was
re-introduced when its concentration reached below 10 μM. The O2 in the
headspace was measured over time and the calculated dissolved oxygen
was always below the detection limit of 250 nM. For the negative controls,
only selenate or 13CH4 (at the same concentration) was added. Experimental
batches were performed in triplicate and negative controls in duplicate.

Comparison of selenate reduction with different electron
donors
To assess the ability of the enrichment community to utilize fermentation
products, batch experiments were set-up in 120-ml bottles containing ~20mL
enriched culture from the MBBR (Day 433). For the methane-fed batches,
enrichment cultures were amended with selenate at a final concentration of
120 μM and 10mL of CH4 (0.45mmol). For the organic-fed batches,
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enrichment cultures were amended with selenate at a final concentration of
~200 μM and formate of 22.5mM (1.8mmol), acetate of 5.62mM (0.45mmol),
propionate of 3.22mM (0.26mmol), butyrate of 2.25mM (0.18mmol), and
lactate of 3.75mM (0.3mmol). The concentration of the added electron donor
was selected to give the same electron equivalents (based on: 8mol e− per
mol of methane; 2mol e− per mol of formate; 8mol e− per mol of acetate;
14mol e− per mol of propionate; 20mol e− per mol of butyrate; 12mol e− per
mol of lactate) and in excess of that required to fully reduce Se(VI) to Se(0).
Batches were performed in triplicate.

Exploration of oxygen source
To assess the possible intrusion of air into batch vials, sterile anoxic
medium was introduced in similar serum bottles and degassed with Argon
as described above. After closing and sealing, oxygen gas was injected to
give a final concentration of ~0.4% and 2.4% (v/v), respectively. These

bottles were set up in triplicate and incubated with the same conditions as
detailed for the batch experiments.
To investigate possible metabolic sources of oxygen, batch experiments

were performed as detailed earlier with several combinations of 18O-
enriched components: (1) abiotic setup with medium only; biotic setups
with (2) CH4, Se

18O4
2−, and H2

16O; (3) CH4, Se
16O4

2−, and H2
18O; (4) CH4

and H2
18O; (5) Se18O4

2− and H2
16O. Incubations with 18O-water were used

to cover other metabolites as potential sources of O2—reliant on 18O
exchange with the added water—as applied previously to assess nitrate as
the source of oxygen for “Ca. M. oxyfera” [8]. Incubations with 18O-enriched
selenate were included to assess the possibility that O2 was derived from
selenate, noting that there will be no 18O exchange between selenate and
water under the batch incubation conditions [62].

18O-enriched selenate was synthesized through oxygen isotope
exchange between 16O-selenate and 18O-enriched water following the
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reported protocol [62]. Briefly, 18O-enriched water (18O, 98%, Shanghai
Research Institute of Chemical Industry) was incubated with selenate at pH
of 1.00 and 80 °C for 100 h. Then the pH was adjusted to 6–7 by NaOH to
quench the isotope exchange reaction. The mixed solution was evaporated
and complemented using 16O-water five times to achieve the final 18O-
enriched selenate stock solution. The ratio of 18O to total oxygen atoms is
3.23 ± 0.28% for the synthetic 18O-enriched selenate, compared to 0.20 ±
0.0015% for the commercial 16O-selenate.

Chemical analysis procedures
Liquid samples were filtered with a 0.22-μm membrane filter, and selenate,
selenite, organic acids, and nitrate concentrations were measured using
ion chromatography configured with an AS 11 column (Dionex ICS-1500,
ThermoFisher Scientific). For selenate, selenite, and nitrate, the concentra-
tion of the eluent KOH was set at 20mM. To better quantify organic acids
(e.g., formate, acetate, propionate, butyrate, and lactate), the eluent
concentration was set at 0.5 mM initially for 80min, and then increased to
40mM to wash the column. Precipitated elemental selenium was
centrifuged, washed with phosphate buffer, and digested by 69% HNO3

at 100 °C for 10min, after which the total soluble Se was measured using
inductively coupled plasma-mass spectroscopy (ICP-MS, PerkinElmer
NexION 300X). The quantity and isotopic composition of 13CO2 in the
headspace was measured using GC/MS (GC 7890A coupled to MSD 5977B,
Agilent). The 13DIC (Dissolved Inorganic Carbon) in the liquid was
measured using isotope-ratio mass spectrometry (IR-MS, MAT 253, Thermo
Scientific). Total 13CO2 was calculated as the sum of 13CO2 in the
headspace and 13DIC in the liquid, and then normalized by the total liquid
volume. The total carbon (i.e., inorganic and organic) in the liquid was
measured using the same mass spectrometry as described above, by
oxidizing the solution with a mixture of H2SO4 and KMnO4 to convert all
the organic carbon to CO2. Please note that the oxidants H2SO4 and

KMnO4 would not oxidize any CH4 present, excluding the contribution of
supplied 13C–CH4 to any observed increase in the 13C/(12C+ 13C) ratios. In
support of this, Day 0 samples for total carbon measurements were taken
after injecting CH4 and there was no difference in measured 13C/(12C+ 13C)
ratios between the 13C–CH4 and

12C–CH4 amended batches (Fig. S6). The
18O2 in the headspace was measured using IR-MS (Sercon 20–22)
configured with Molesieve 5 A column.
The oxygen isotopic compositions of selenate were measured according

to the previously described method [62]. Briefly, selenate was precipitated
by reaction with excess BaCl2. Produced BaSeO4 was centrifuged, with the
pellet dried and reacted with glassy carbon at 1300 °C in silver capsules to
completely convert selenate-derived oxygen to CO. Released CO was
loaded into IR-MS (MAT 253, Thermo Scientific) for measuring δ18O values.
The δ18O value of CO is theoretically equal to that of selenate.
Electron spectroscopy analysis of the precipitates was performed with

SEM (Hitachi) following the manufacturer’s instructions. An electron
spectrometer (Thermo Electron) with Al Kλ radiation (1486.6 eV) at 150W
was used to analyze the valence state of Se in lyophilized samples.

DNA extraction and sequencing
The DNA was extracted from the wetland inoculum using the DNeasy
PowerSoil Kit (QIAGEN, USA) according to the instruction manual, and then
used as template for the PCR amplification of the 16S rRNA gene with 341F
(5′-CCTAYGGGRBGCASCAG-3′) and 806R (5′-GGACTACNNGGGTATCTAAT-
3′) primers. The resulting amplicons were sequenced on the MiSeq
platform (Illumina). Community profiles from this sequencing data were
generated with the SHAMAN platform [63].
DNA samples for metagenomic analyses were collected at the end of the

batch experiment that was incubated with 13C-labeled CH4 and selenate
(Fig. 1). We first centrifuged the suspensions in serum bottles at 6000 × g
for 20 min at 4 °C, and then extracted DNA from the biomass pellet using
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the DNeasy PowerSoil Kit. Shotgun metagenomic sequencing (2 × 150 bp)
was performed using the HiSeq X Ten (Illumina) for 4 replicate samples.
The TruSeq DNA Nano Library Prep Kit was used for library preparation. For
the first sample, about 70 million paired-end reads were generated; for the
latter three samples, 201–216 million reads per sample were produced.
The quality of the raw data was confirmed using FastQC (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/). The partial primers and
adapters were trimmed from the reads using the BBmap package (https://
sourceforge.net/projects/bbmap/), and reads were filtered out which:
(i) contained the spike-in PhiX sequences; (ii) were low-quality (Phred Quality
Score <15) or short (<30 bp); (iii) had low complexity. All reads that passed
quality control were assembled into contigs individually using metaSPAdes
[64] and collectively using MEGAHIT v1.1.1 [65], yielding five assemblies (four
individual samples and one co-assembly). Quality-controlled reads were
mapped to assembled contigs (>500 bp) and annotated using MetaErg [66].
Metabat and CheckM were used to bin the contigs and select the best
binning results, respectively [67, 68]. All the bins were combined and
dereplicated using dRep to obtain the final high-quality draft genomes [69].
The bacterial genome tree was constructed based on the concatenated

120 bacterial-specific conserved marker genes using the Genome Taxonomy
Database (GTDB v2.3.2) [28]. The toolkit GTDB-Tk was performed to identify,
align, and concatenate marker genes in each genome, and further infer the
tree topology and classify the MAGs [70]. The protein phylogenetic trees
were constructed using MEGA 6 program with recovered sequences in the
study and selected references from NCBI public database [71].

Gene knockout and physiology test
The Pseudoxanthomonas wuyuanensis isolate (CGMCC: 1.10978) was
purchased from the Institute of Microbiology, Chinese Academy of
Sciences. The whole-genome sequence of this isolated has previously
been deposited in the NCBI database under the accession number of
OCND00000000. The upstream and downstream fragments of napA were
amplified using the primers Up-FsmaI (5′-TCCCCCGGGGCATCAGC
CAAGCCGTGATT-3′) and Up-R (5′-TACGCATGACAACAACCCTCCAGTCTGCT
CCGGTCGGTACG-3′), Down-F (5′-ACCGACCGGAGCAGACTGGAGGGTTGT
TGTCATGCGTA-3′) and Down-KnpIR (5′-GGGGTACCGGCCTTCAGGCGATCC
CATTC-3′), with the genomic DNA of the wild strain as the template. The
generated fragments were recovered and ligated by PCR. The joint
fragment was then digested with SmaI and KpnI, as well as the vector
pTCX18Cm, and ligated to produce the pT-ΔnapA. The synthetic plasmid
was transformed into P. wuyuanensis competent cells using electropora-
tion. Transformed cells were plated on agar plates containing clindamycin
and kanamycin for selection of the first homologous recombination. The
mutants were further identified via sucrose counter-selection of the
second homologous recombination [72].
The potential mutants were confirmed by PCR amplification using

primers V17m (5′-TGGACVATGGGYTTYAAYC-3′) and napA4r (5′-ACYTCRC
GHGCVGTRCCRCA-3′) [73], and Conf-F (5′-GGTGCATATCGCCAGTTTCGT-3′)
and Conf-R (5′-GCTGCCTTCCTGGTCCACCG-3′). The former pair of primers
target sites within the napA gene, while the latter target sites up- and
downstream of the gene. The respective amplified products are 152 and
3007 bp for wild-type strain, and absent and 514 bp for the mutant strain.
Both the wild-type strain and confirmed mutants were grown in trypticase
soy broth medium to an OD600 of 0.3, and incubated with O2 and selenate
in serum bottles using the above mineral salt medium amended with
glucose as the carbon and electron source. RNA samples of wild-type
strains amended with selenate were extracted, reverse-transcribed, and
quantified using the primer V17m and napA4r at 0 and 44 h. The 2(-Delta
Delta C(T)) method was used to calculate the relative expression of napA
[74], using amplification of the 16S rRNA gene, with the primer 16SF (5′-GT
GSTGCAYGGYTGTCGTCA-3′) and 16SR (5′-ACGTCRTCCMCACCTTCCTC-3′)
[75], as a reference.

Protein extraction, identification, and quantification
For protein analyses, the biosample was sonicated on ice in lysis buffer (8M
urea, 1% Protease Inhibitor Cocktail). The remaining debris was removed by
centrifugation at 12,000 g at 4 °C for 10min. Finally, the supernatant was
collected and the protein concentration was determined with BCA kit
according to the manufacturer’s instructions. For digestion, the protein
solution was reduced with 5mM dithiothreitol for 30min at 56 °C and
alkylated with 11mM iodoacetamide for 15min in darkness. Trypsin was
added at 1:50 trypsin-to-protein mass ratio for the first digestion overnight
and 1:100 trypsin-to-protein mass ratio for a second 4 h-digestion. The tryptic
peptides were dissolved in 0.1% formic acid (solvent A), directly loaded onto

a custom-made reversed-phase analytical column (15-cm length, 75 μm i.d.).
The gradient was comprised of an increase from 6 to 23% solvent B (0.1%
formic acid in 98% acetonitrile) over 26min, 23 to 35% in 8min and climbing
to 80% in 3min then holding at 80% for the last 3min, all at a constant flow
rate of 400 nl/min on an EASY-nLC 1000 UPLC system.
The peptides were subjected to NSI source followed by tandem mass

spectrometry (MS/MS) in Q Exactive Plus (Thermo) coupled online to the
UPLC. The m/z scan range was 350–1800 for a full scan, and intact peptides
were detected in the Orbitrap at a resolution of 70,000. The resulting MS/
MS data were processed using Maxquant search engine (v.1.5.2.8) [76].
Tandem mass spectra were searched against the target proteomic
database concatenated with a reverse decoy database. The target
database was created by combining all protein sequences generated
from the metagenomic data and those downloaded from the NCBI
database of reference microorganisms (Table S9). The final database
contained 396,698 protein sequences. FDR was used for protein
identification, which was adjusted to <1%, and the minimum score for
peptides was set at >40. The stable isotope fingerprints were performed by
the Calis-p software package as previously described [48]. In brief, the
Calis-p program first (1) extracted isotope peak intensities for identified
peptides, (2) pre-filtered and cleaned isotope patterns on the basis of
peptide ID confidence scores and peak intensity, (3) estimated peptide
13C/12C ratios by fitting the experimental spectra using Fast Fourier
Transforms, (4) reported δ13C values for all peptides and calculated
averages and standard errors for each taxon, and finally (5) corrected δ13C
values using the known δ13C value of the reference material.

Fluorescence in situ hybridization
FISH was performed essentially as previously detailed [77]. Biomass was
fixed with 4% paraformaldehyde (w/v) and stored at −20 °C. The 5′ and 3′
ends of the oligonucleotide FISH probe was labeled with the Alexa488 dye
(Integrated DNA technologies, Singapore). The NON-EUB nonsense probe
was used as a negative hybridization control [78]. Type II methanotrophs
were identified with the Mα450 probe at a hybridization formamide
concentration of 30% (v/v) [79]. Cells were stained with DAPI (1 ng/µl) for
15min in the dark. Microscopy was performed with a Stellaris5 white light
laser confocal microscope (Leica, Germany).

Global distribution of key genera
The almost full-length 16S rRNA gene sequences of representative
Methylocystis (NR_044946.1) and Pseudoxanthomonas (OCND00000000.1)
species were used to screen Short Read Archive (SRA) datasets by IMNGS
[80]. To explore the natural distribution of these two genera, the minimum
identity threshold was set at 95% with a minimum nucleotide size of 200
[81]. Samples were tagged when (1) their category description was
associated with a natural environment (e.g., soil) and (2) they contained
both Methylocystis and Pseudoxanthomonas at relative abundance of more
than 1.0%. Geographic locations of tagged samples were extracted and
plotted using R packages (ggplot2, sf, rnaturalearth, and rnaturalearthdata).
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