Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photoferrotrophy and phototrophic extracellular electron uptake is common in the marine anoxygenic phototroph Rhodovulum sulfidophilum

Abstract

Photoferrotrophy allows anoxygenic phototrophs to use reduced iron as an electron donor for primary productivity. Recent work shows that freshwater photoferrotrophs can use electrons from solid-phase conductive substances via phototrophic extracellular electron uptake (pEEU), and the two processes share the underlying electron uptake mechanism. However, the ability of marine phototrophs to perform photoferrotrophy and pEEU, and the contribution of these processes to primary productivity is largely unknown. To fill this knowledge gap, we isolated 15 new strains of the marine anoxygenic phototroph Rhodovulum sulfidophilum on electron donors such as acetate and thiosulfate. We observed that all of the R. sulfidophilum strains isolated can perform photoferrotrophy. We chose strain AB26 as a representative strain to study further, and find that it can also perform pEEU from poised electrodes. We show that during pEEU, AB26 transfers electrons to the photosynthetic electron transport chain. Furthermore, systems biology-guided mutant analysis shows that R. sulfidophilum AB26 uses a previously unknown diheme cytochrome c protein, which we call EeuP, for pEEU but not photoferrotrophy. Homologs of EeuP occur in a range of widely distributed marine microbes. Overall, these results suggest that photoferrotrophy and pEEU contribute to the biogeochemical cycling of iron and carbon in marine ecosystems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: AB26 is a metabolically versatile phototrophic Fe(II)-oxidizing bacterium.
Fig. 2: AB26 grows by photoferrotrophy.
Fig. 3: AB26 performs phototrophic extracellular electron uptake.
Fig. 4: Photosynthetic electron transfer is required for extracellular electron uptake.
Fig. 5: Expression analysis of carbon fixation and storage pathways.
Fig. 6: Cytochrome c proteins are upregulated under photoferrotrophy and pEEU.
Fig. 7: Diheme cytochrome c is important for phototrophic extracellular electron uptake by AB26.

References

  1. 1.

    Snelgrove PVR, Thrush SF, Wall DH, Norkko A. Real world biodiversity–ecosystem functioning: a seafloor perspective. Trends Ecol Evol. 2014;29:398–405.

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Otte JM, Harter J, Laufer K, Blackwell N, Straub D, Kappler A, et al. The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environ Microbiol. 2018;20:2483–99.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature. 1993;362:834–6.

    CAS  Article  Google Scholar 

  4. 4.

    Byrne JM, Klueglein N, Pearce C, Rosso KM, Appel E, Kappler A. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science. 2015;347:1473–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Byrne JM, van der Laan G, Figueroa AI, Qafoku O, Wang C, Pearce CI, et al. Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles. Sci Rep. 2016;6:30969.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Wu W, Swanner ED, Hao L, Zeitvogel F, Obst M, Pan Y, et al. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum–implications for Precambrian Fe(II) oxidation. FEMS Microbiol Ecol. 2014;88:503–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Kondo K, Okamoto A, Hashimoto K, Nakamura R. Sulfur-mediated electron shuttling sustains microbial long-distance extracellular electron transfer with the aid of metallic iron sulfides. Langmuir. 2015;31:7427–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Hernandez ME, Newman DK. Extracellular electron transfer. Cell Mol Life Sci. 2001;58:1562–71.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Gupta D, Sutherland MC, Rengasamy K, Meacham JM, Kranz RG, Bose A. Photoferrotrophs produce a PioAB electron conduit for extracellular electron uptake. mBio. 2019;10:e02668–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Guzman MS, Rengasamy K, Binkley MM, Jones C, Ranaivoarisoa TO, Singh R, et al. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris. Nat Commun. 2019;10:1355.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Gupta D, Guzman MS, Bose A. Draft genome sequence of a marine photoferrotrophic bacterium, Rhodovulum robiginosum DSM 12329(T). Microbiol Resour Announc. 2019;8:e01684–18.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Straub KL, Rainey FA, Widdel F. Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int J Sys Evol Microbiol. 1999;49:729–35.

    CAS  Article  Google Scholar 

  13. 13.

    Guzman MS, McGinley B, Santiago-Merced N, Gupta D, Bose A. Draft genome sequences of three closely related isolates of the purple nonsulfur bacterium Rhodovulum sulfidophilum. Genome Announc. 2017;5:e00029–17.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Jiao Y, Newman DK. The pio operon is essential for phototrophic Fe (II) oxidation in Rhodopseudomonas palustris TIE-1. J Bacteriol. 2007;189:1765–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Rengasamy K, Ranaivoarisoa T, Singh R, Bose A. An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1. Bioelectrochemistry. 2018;122:164–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Penfold RJ, Pemberton JM. An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene. 1992;118:145–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Riedel T, Rohlfs M, Buchholz I, Wagner-Dobler I, Reck M. Complete sequence of the suicide vector pJP5603. Plasmid. 2013;69:104–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Bose A, Gardel EJ, Vidoudez C, Parra EA, Girguis PR. Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun. 2014;5:3391.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Poulton RRS. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. Am J Sci. 2002;302:774–805.

    CAS  Article  Google Scholar 

  20. 20.

    Kump LR, Seyfried WE. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet Sci Lett. 2005;235:654–62.

    CAS  Article  Google Scholar 

  21. 21.

    Brock TD, Od’ea K. Amorphous ferrous sulfide as a reducing agent for culture of anaerobes. Appl Environ Microbiol. 1977;33:254–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Velthuys BR. Electron-dependent competition between plastoquinone and inhibitors for binding to photosystem II. FEBS Lett. 1981;126:277–81.

    CAS  Article  Google Scholar 

  23. 23.

    Wraight CA. Oxidation-reduction physical chemistry of the acceptor quinone complex in bacterial photosynthetic reaction centers: Evidence for a new model of herbicide activity. Isr J Chem. 1981;21:348–54.

    CAS  Article  Google Scholar 

  24. 24.

    Kyle DJ. The 32000 dalton qb protein of photosystem II. Photochem Photobio. 1985;41:107–16.

    CAS  Article  Google Scholar 

  25. 25.

    Michel H, Epp O, Deisenhofer J. Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J. 1986;5:2445–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Oettmeier W. Herbicide resistance and supersensitivity in photosystem II. Cell Mol Life Sci. 1999;55:1255–77.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Trebst A. Inhibitors in the functional dissection of the photosynthetic electron transport system. Photosynth Res. 2007;92:217–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Broser M, Glockner C, Gabdulkhakov A, Guskov A, Buchta J, Kern J, et al. Structural basis of cyanobacterial photosystem II Inhibition by the herbicide terbutryn. J Biol Chem. 2011;286:15964–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    White D. The physiology and biochemistry of prokaryotes. Oxford: Oxford Press; 2007. pp. 112–7.

  30. 30.

    Heytler PG. Uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts. Biochemistry. 1963;2:357–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Herter SM, Kortluke CM, Drews G. Complex I of Rhodobacter capsulatus and its role in reverted electron transport. Arch Microbiol. 1998;169:98–105.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Spero MA, Brickner JR, Mollet JT, Pisithkul T, Amador-Noguez D, Donohue TJ. Different functions of phylogenetically distinct bacterial complex I isozymes. J Bacteriol. 2016;198:1268–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Dupuis A, Darrouzet E, Duborjal H, Pierrard B, Chevallet M, van Belzen R, et al. Distal genes of the nuo operon of Rhodobacter capsulatus equivalent to the mitochondrial ND subunits are all essential for the biogenesis of the respiratory NADH-ubiquinone oxidoreductase. Mol Microbiol. 1998;28:531–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Palmer G, Horgan DJ, Tisdale H, Singer TP, Beinert H. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J Biol Chem. 1968;243:844–847.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Knaff DB. The cytochrome bc1 complexes of photosynthetic purple bacteria. Photosyn Res. 1993;35:117–33.

    CAS  Article  Google Scholar 

  36. 36.

    Trumpower BL. Cytochrome bc1 complexes of microorganisms. Microbiol Rev. 1990;54:101–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Maddocks SE, Oyston PCF. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiol (Read Enl). 2008;154:3609–23.

    CAS  Article  Google Scholar 

  38. 38.

    Gibson JL, Tabita FR. Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides. J Bacteriol. 1993;175:5778–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    van Keulen G, Girbal L, van den Bergh ER, Dijkhuizen L, Meijer WG. The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor. J Bacteriol. 1998;180:1411–1417.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Joshi GS, Zianni M, Bobst CE, Tabita FR. Regulatory twist and synergistic role of metabolic coinducer- and response regulator-mediated CbbR-cbbI interactions in Rhodopseudomonas palustris CGA010. J Bacteriol. 2013;195:1381–1388.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Hartmann T, Leimkuhler S. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. FEBS J. 2013;280:6083–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Bassegoda A, Madden C, Wakerley DW, Reisner E, Hirst J. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. J Am Chem Soc. 2014;136:15473–15476.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Lemaire ON, Jespersen M, Wagner T. CO2-Fixation strategies in energy extremophiles: What can we learn from acetogens? Front Microbiol. 2020;11:486.

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Deutzmann JS, Sahin M, Spormann AM. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio. 2015;6:e00496–00415.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Rotaru AE, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, et al. Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Appl Environ Microbiol. 2012;78:7645–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Potter M, Steinbuchel A. Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromol. 2005;6:552–60.

    Article  CAS  Google Scholar 

  47. 47.

    Ekici S, Pawlik G, Lohmeyer E, Koch HG, Daldal F. Biogenesis of cbb(3)-type cytochrome c oxidase in Rhodobacter capsulatus. Biochim Biophys Acta. 2012;1817:898–910.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011;1807:1398–413.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Pettigrew GW, Echalier A, Pauleta SR. Structure and mechanism in the bacterial dihaem cytochrome c peroxidases. J Inorg Biochem. 2006;100:551–67.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol. 2016;14:651–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev. 2009;73:155–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Singer E, Emerson D, Webb EA, Barco RA, Kuenen JG, Nelson WC, et al. Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS One. 2011;6:e25386.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Wang Z, Leary DH, Malanoski AP, Li RW, Hervey WJ 4th, Eddie BJ, et al. A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode. Appl Environ Microbiol. 2015;81:699–712.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Gupta D, Guzman MS, Bose A. Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications. J Ind Microbiol Biotechnol. 2020;47:863–867.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: A comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Thony-Meyer L. Haem-polypeptide interactions during cytochrome c maturation. Biochim Biophys Acta. 2000;1459:316–324.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD. Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics 2010;26:2811–2817.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005;8:253–259.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    De Smet L, Savvides SN, Van Horen E, Pettigrew G, Van, Beeumen JJ. Structural and mutagenesis studies on the cytochrome c peroxidase from Rhodobacter capsulatus provide new insights into structure-function relationships of bacterial di-heme peroxidases. J Biol Chem. 2006;281:4371–4379.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  60. 60.

    Alric J, Tsukatani Y, Yoshida M, Matsuura K, Shimada K, Hienerwadel R, et al. Structural and functional characterization of the unusual triheme cytochrome bound to the reaction center of Rhodovulum sulfidophilum. J Biol Chem. 2004;279:26090–26097.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, Woebken D. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ Microbiol. 2018;20:1041–1063.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Srinivas A, Kumar BV, Sree BD, Tushar L, Sasikala C, Ramana CV. Rhodovulum salis sp. nov. and Rhodovulum viride sp. nov., phototrophic Alphaproteobacteria isolated from marine habitats. Int J Syst Evol Microbiol. 2014;64:957–962.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Kumar PA, Aparna P, Srinivas TN, Sasikala C. Ramana ChV. Rhodovulum kholense sp. nov. Int J Syst Evol Microbiol. 2008;58:1723–1726.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Prosser JI, Head IM, Stein LY. The family Nitrosomonadaceae, the prokaryotes: alphaproteobacteria and betaproteobacteria. Berlin/Heidelberg: Springer; 2014. pp. 901–18.

  66. 66.

    Ehrenreich A, Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol. 1994;60:4517–4526.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Kappler A, Newman DK. Formation of Fe (III)-minerals by Fe (II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta. 2004;68:1217–26.

    CAS  Article  Google Scholar 

  68. 68.

    Yarzabal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA, et al. The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol. 2002;184:313–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Liu J, Wang Z, Belchik SM, Edwards MJ, Liu C, Kennedy DW, et al. Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe (II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front Microbiol. 2012;3:37.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Pantke C, Obst M, Benzerara K, Morin G, Ona-Nguema G, Dippon U, et al. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. Environ Sci Technol. 2012;46:1439–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Etique M, Jorand FPA, Zegeye A, Grégoire B, Despas C, Ruby C. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis). Environ Sci Technol. 2014;48:3742–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Nordhoff M, Tominski C, Halama M, Byrne JM, Obst M, Kleindienst S, et al. Insights into nitrate-reducing Fe(II) oxidation mechanisms through analysis of cell-mineral associations, cell encrustation, and mineralogy in the chemolithoautotrophic enrichment culture KS. Appl Environ Microbiol. 2017;83:e00752–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, et al. Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol. 1993;113:27–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Ouchane S, Agalidis I, Astier C. Natural resistance to inhibitors of the ubiquinol cytochrome c oxidoreductase of Rubrivivax gelatinosus: sequence and functional analysis of the cytochrome bc(1) complex. J Bacteriol. 2002;184:3815–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Brasseur G, Saribas AS, Daldal F. A compilation of mutations located in the cytochrome b subunit of the bacterial and mitochondrial bc1 complex. Biochim Biophys Acta. 1996;1275:61–9.

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Crofts AR, Berry EA. Structure and function of the cytochrome bc1 complex of mitochondria and photosynthetic bacteria. Curr Opin Struct Biol. 1998;8:501–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Karthikeyan R, Singh R, Bose A. Microbial electron uptake in microbial electrosynthesis: a mini-review. J Ind Microbiol Biotechnol. 2019;46:1419–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Robert Kranz [Washington University in St. Louis (WUSTL)] for valuable assistance with heme protein characterization. We thank the Washington University’s Genome Technology and Access Center (GTAC) for technical guidance and transcriptome sequencing. The authors thank the Institute of Materials Science and Engineering at Washington University in St. Louis, which provided facilities, resources, and assistance in microfabrication. We thank Bradley Evans and Shin-Cheng Tzeng from Proteomics and Mass Spectrometry facility, DDPSC. This work was supported by the following grants to AB: The David and Lucile Packard Foundation Fellowship (201563111), the U.S. Department of Energy (grant number DESC0014613), and the U.S. Department of Defense, Army Research Office (grant number W911NF-18-1-0037). Gordon and Betty Moore Foundation, National Science Foundation (Grant Number 2021822), and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC5207NA27344 (LLNL-JRNL-812309), and AB was also funded by a Collaboration Initiation Grant, an Office of the Vice-Chancellor of Research Grant, and an International Center for Energy, Environment, and Sustainability Grant from Washington University in St. Louis. EJD is supported by an Institutional Training Grant in Genomic Science from the NIH (T32 HG000045-18). MSG was supported by the Initiative for Maximizing Student Development (IMSD) training grant from the U.S. National Institutes of Health (grant number R25-GM103757). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-821835).

Author information

Affiliations

Authors

Contributions

DG, MSG, KR, RS, EJD, and AB designed the research. AS, KR, and JMM designed, fabricated, and operated the µ-BEC arrays. DG, MSG, KR, TOR, RS, WB, and BM collected the data. DG, MSG, KR, TOR, RS, EJD, and AB analyzed and interpreted the data. DG, MSG, KR, RS, and AB wrote the manuscript with contributions from other authors. All authors reviewed, revised, and approved the final manuscript.

Corresponding author

Correspondence to Arpita Bose.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, D., Guzman, M.S., Rengasamy, K. et al. Photoferrotrophy and phototrophic extracellular electron uptake is common in the marine anoxygenic phototroph Rhodovulum sulfidophilum. ISME J (2021). https://doi.org/10.1038/s41396-021-01015-8

Download citation

Search

Quick links