Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extinction of anciently associated gut bacterial symbionts in a clade of stingless bees


Animal-microbe symbioses are often stable for millions of years. An example is the clade consisting of social corbiculate bees—honeybees, bumblebees, and stingless bees—in which a shared ancestor acquired specialized gut bacteria that subsequently diversified with hosts. This model may be incomplete, however, as few microbiomes have been characterized for stingless bees, which are diverse and ecologically dominant pollinators in the tropics. We surveyed gut microbiomes of Brazilian stingless bees, focusing on the genus Melipona, for which we sampled multiple species and biomes. Strikingly, Melipona lacks Snodgrassella and Gilliamella, bacterial symbionts ubiquitous in other social corbiculate bees. Instead, Melipona species harbor more environmental bacteria and bee-specific Starmerella yeasts. Loss of Snodgrassella and Gilliamella may stem from ecological shifts in Melipona or the acquisition of new symbionts as functional replacements. Our findings demonstrate the value of broadly sampling microbiome biodiversity and show that even ancient symbioses can be lost.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Gut bacterial community composition and a model of symbiont gain and loss in eusocial corbiculate bees.
Fig. 2: Distribution of eight dominant fungi across Melipona, Tetragonisca angustula and Apis mellifera.


  1. 1.

    Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.

    CAS  Article  Google Scholar 

  2. 2.

    Bourguignon T, Lo N, Dietrich C, Roisin Y, Brune A, Evans TA, et al. Rampant host switching shaped the termite gut microbiome. Curr Biol. 2018;28:649–54.

    CAS  Article  Google Scholar 

  3. 3.

    Matsuura Y, Moriyama M, Łukasik P, Vanderpool D, Tanahashi M, Meng X. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc Natl Acad Sci USA. 2018;115:E5970–9.

    CAS  Article  Google Scholar 

  4. 4.

    Chong RA, Moran NA. Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J. 2018;12:898–908.

    CAS  Article  Google Scholar 

  5. 5.

    Bennett GM, Moran NA. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA. 2015;112:10169–76.

    CAS  Article  Google Scholar 

  6. 6.

    Sudakaran S, Kost C, Kaltenpoth M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 2017;25:1–16.

    Article  Google Scholar 

  7. 7.

    Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol. 2011;20:619–28.

    Article  Google Scholar 

  8. 8.

    Kwong WK, Medina LA, Koch H, Sing KW, Soh EJY, Ascher JS, et al. Dynamic microbiome evolution in social bees. Sci Adv. 2017;3:1–17.

    Article  Google Scholar 

  9. 9.

    Kwong WK, Moran NA. Gut microbial communities of social bees. Nat Rev Microbiol. 2016;14:374–84.

    CAS  Article  Google Scholar 

  10. 10.

    Rothman JA, Leger L, Graystock P, Russell K, McFrederick QS. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ Microbiol. 2019;21:3417–29.

    CAS  Article  Google Scholar 

  11. 11.

    Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA. 2011;108:19288–92.

    CAS  Article  Google Scholar 

  12. 12.

    Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci USA. 2017;114:4775–80.

    CAS  Article  Google Scholar 

  13. 13.

    Mockler BK, Kwong WK, Moran NA, Koch H. Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees. Appl Environ Microbiol. 2018;84:1–11.

    CAS  Article  Google Scholar 

  14. 14.

    Giannini TCG, Boff S, Cordeiro GD, Cartonalo EA Jr, Veiga AK, Imperatriz-Fonseca VL, et al. Crop pollinators in Brazil: a review of reported interactions. Apidologie. 2015;46:209–23.

    Article  Google Scholar 

  15. 15.

    Koch H, Abrol DP, Li J, Schmid-Hempel P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol. 2013;22:2028–44.

    CAS  Article  Google Scholar 

  16. 16.

    Leonhardt SD, Kaltenpoth M. Microbial communities of three sympatric Australian stingless bee species. PLoS One. 2014;9:1–6.

    Article  Google Scholar 

  17. 17.

    Díaz S, de Souza Urbano S, Caesar L, Blochtein B, Sattler A, Zuge V, et al. Report on the microbiota of Melipona quadrifasciata affected by a recurrent disease. J Invertebr Pathol. 2017;143:35–39.

    Article  Google Scholar 

  18. 18.

    Teixeira ACP, Marini MM, Nicoli JR, Antonini Y, Martins RP, Lachance M-A, et al. Starmerella meliponinorum sp. nov., a novel ascomycetous yeast species associated with stingless bees. Int J Syst Evol Microbiol. 2003;53:339–43.

    Article  Google Scholar 

  19. 19.

    Paludo CR, Menezes C, Silva-Junior EA, Vollet-Neto A, Andrade-Dominguez A, Pishchany G, et al. Stingless bee larvae require fungal steroid to pupate. Sci Rep. 2018;8:1–10.

    CAS  Article  Google Scholar 

  20. 20.

    Ramírez SR, Nieh JC, Quental TB, Roubik DW, Imperatriz-Fonseca VL, Pierce NE. A molecular phylogeny of the stingless bee genus Melipona (Hymenoptera: Apidae). Mol Phylogenet Evol. 2010;56:519–25.

    Article  Google Scholar 

Download references


We acknowledge the UFV, the financial support from CNPq, CAPES – Finance Code 001 and FAPEMIG, a USDA NIFA postdoctoral fellowship (2018-08156) to TJH, and NIH award R35GM131738 to NAM. We thank Marina Cunha, Gil Viana, José Souza, Eduardo Ferreira, Leandro Campos, Marcelo Silva, Antônio Alves, Sidcley de Lucena, Flávio Yamamoto, Hilton Gomes, Kalhil França, Gilvan Santos and Helder Resende for providing bees, and Fernando da Silveira for Amazonian bees identification.

Author information



Corresponding author

Correspondence to Alan Emanuel Silva Cerqueira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cerqueira, A.E.S., Hammer, T.J., Moran, N.A. et al. Extinction of anciently associated gut bacterial symbionts in a clade of stingless bees. ISME J (2021).

Download citation


Quick links