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Abstract
Plants grown in distinct soils typically harbor distinct microbial communities, but the degree of the soil microbiome
influence on plant microbiome assembly remains largely undetermined. We also know that the microbes associated with
seeds can contribute to the plant microbiome, but the magnitude of this contribution is likely variable. We quantified the
influence of soil and seed microbiomes on the bacterial community composition of seedlings by independently inoculating
seeds from a single cultivar of wheat (Triticum aestivum) with 219 unique soil slurries while holding other environmental
factors constant, determining the composition of the seed, soil, and seedling bacterial communities via cultivation-
independent methods. Soil bacterial communities exert a strong, but variable, influence on seedling bacterial community
structure, with the extent of the soil bacterial contribution dependent on the soil in question. By testing a wide range of soils,
we were able to show that the specific composition of the seedling microbiome is predictable from knowing which bacterial
taxa are found in soil. Although the most ubiquitous taxa associated with the seedlings were seed derived, the contributions
of the seed microbiome to the seedling microbiome were variable and dependent on soil bacterial community composition.
Together this work improves our predictive understanding of how the plant microbiome assembles and how the seedling
microbiome could be directly or indirectly manipulated to improve plant health.

Introduction

The structure and composition of microbial communities
associated with plants (the plant microbiome) can influence
plant health, with the plant microbiome capable of affecting
plant growth, drought resistance, disease resistance, and
flowering time among other phenotypes [1–5]. Despite the
importance of microbes to plants, a thorough understanding
of the drivers of plant microbiome assembly is still lacking,
due in part to the strong and highly variable influence of a
plant’s surrounding environment [4]. Specifically, we lack a

predictive understanding of how variation in soil microbial
communities drives differences in the assembly of a plant’s
microbiome, and to what extent the soil and seed micro-
biome contribute to the emerging plant microbiome. While
most previous work has focused on those microbiomes
associated with adult plants, the impact of microbes can be
particularly critical in the earliest life stages of plant
development, as seed germination and seedling growth are
vulnerable developmental stages that impact plant popula-
tions and agricultural productivity [6–9]. Understanding the
determinants of microbiome composition in the early life
stages of a plant (i.e., seedlings) is important for under-
standing the overall process of microbiome assembly in
plants and for improving our ability to manipulate plant
health outcomes.

The composition of the plant microbiome (here referring
to microbes associated with internal and external plant tis-
sues including the endosphere, phyllosphere, and rhizo-
plane) is determined by a combination of abiotic and biotic
factors including environmental conditions (e.g., water and
nutrient availability), host species or genotype, growth
season, and plant growth stage [1, 10–15]. However, the
soil or field site in which the plant is grown is often the most
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important determinant of plant microbiome composition
[16–18]. One explanation for this is that soil represents the
main source of microbes that colonize plants, with a large
fraction of the plant microbiome represented by taxa
derived from soil [19–21]. However, not all soil microbes
are equivalent in their ability to colonize plants, and plant-
associated microbial communities are quite distinct from
soil communities [10, 17, 22] with plants actively or pas-
sively selecting for particular microbial taxa.

While the influence of soil on plant microbiomes has
been documented across plant species and geography, we
do not know how the magnitude of this soil microbiome
effect varies across different soil types, and the degree to
which the plant microbiome is predictable from the com-
position of the soil microbiome. This knowledge gap per-
sists for two important reasons. First, our current
understanding of plant microbiome assembly is based pri-
marily on studies limited to one or a few soils, making it
difficult to predict patterns of assembly across variable soil
backgrounds and to identify the range of microbial taxa that
can associate with plants. Second, soils with distinct
edaphic characteristics typically also have distinct microbial
communities. This makes it difficult to determine the extent
to which the soil-specific plant microbiomes are a product
of soil edaphic factors (e.g., soil pH, nutrient concentra-
tions, organic C pools) or a product of the different soils
having distinct microbial communities. A better under-
standing of how soil microbes influence plant microbial
communities, independent of other soil variables, would
improve our ability to determine the relative importance of
biotic and abiotic soil variables to plant microbiome man-
agement and manipulation.

What also remains unclear is the extent to which
microbial taxa on or inside seeds influence the germinating
plant microbiome, and how the importance of the seed
microbiome may vary depending on the soil in which the
plant is grown. Seeds harbor living microbes that can
include beneficial and pathogenic microbes that influence
germination success [7, 23–27]. As potential early coloni-
zers of plants, those microbes found in or on seeds may also
directly or indirectly shape the composition of the microbial
communities associated with plants as plants grow. How-
ever, the contribution of the seed microbiome to the plant
microbiome is not often investigated in studies of plant host
community assembly, as typically either the seed micro-
biome is not directly characterized, or seeds are sterilized
prior to planting (but see refs [28–30]). Seed surface ster-
ilization is a common practice to ensure a controlled (and
pathogen reduced) background, but it may obfuscate the
contribution of seed taxa to a plant’s microbiome. Exploring
if, and how, seed-derived microbes persist in seedlings
across a variety of soil microbiome backgrounds would

advance our understanding of the relative importance of
these two microbial sources (seed versus soil) in shaping the
microbiomes of growing plants.

Investigating the importance of the soil microbiome to
plant microbiome assembly requires growing plants
exposed to a wide range of different soil community types
while reducing variation in environmental and edaphic
factors. We used a collection of over 200 distinct soils to
make soil-free slurry microbial inocula and then investi-
gated the community structure and distribution patterns of
soil-derived and seed-derived bacterial taxa in inoculated
seedlings. Here we focus on wheat (Triticum aestivum), an
important agricultural crop that accounts for a large share of
both global cropland area and global food trade [31].

The goal of this study was to understand the influences of
soil and seed microbial communities in determining the
emerging wheat plant microbiome. We measured the extent to
which the seedling microbiome community composition
varied with exposure to distinct soil microbial communities,
hypothesizing that soil communities would have a non-
random and predictable effect on seedling community com-
position independent of environmental factors. In other
words, seedling communities should be more similar to the
soil communities to which they are exposed than to other soil
communities. We further sought to quantify the relative
contributions of seed and soil taxa to the seedling microbiome
and asked whether the importance of seed versus soil-derived
communities varies depending on the soil microbiome in
question. The relative strength of the soil influence likely
depends on the composition of the soil microbiome, as we
would not expect all soils to have the same numbers and types
of taxa capable of associating with plants. Finally, we asses-
sed the diversity of soil taxa that are capable of associating
with seedlings and identified the soil and seed-derived taxa
that were most commonly detected across seedlings.

Methods

Soil sample collection and characterization

To capture a range of distinct soil microbial communities,
we collected 219 unique soil samples from across the
continental United States. Soils were collected in the sum-
mer of 2018 following a standardized collection protocol.
Sample locations were chosen to span a wide variety of
cultivated and natural systems (including farms, forests,
grasslands, and gardens). At each sampling location,
approximately 30 volumetric ounces of soil were collected
by excavating to 10 cm depth (following removal of the
litter layer, if present). Information on site characteristics,
including the dominant vegetation and soil amendments,
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was collected at the time of sampling (Supplementary
Table S1). All soil samples were transported at ambient
temperature to the University of Colorado Boulder where
they were stored at 4 ˚C until further processing. Each soil
was sieved to 2 mm, homogenized, and then eight 5.5 g
(±0.25 g) soil sub-aliquots were stored at –20 ˚C. These
aliquots were used for subsequent soil slurry preparation
and DNA extraction. Remaining soil was stored at 4 ˚C for
soil analyses with these analyses conducted by the Soil,
Water and Plant Testing Laboratory at Colorado State
University (Supplementary Table S1).

Seedling germination assay

To test the influence of distinct soil microbial communities on
the wheat seedling microbiome while minimizing climate and
edaphic effects, we inoculated wheat seeds with soil slurries
generated from our soil collection, and germinated the seeds on
autoclaved germination paper in the controlled conditions of a
growth chamber. We prepared microbial inoculants by creating
a slurry of each soil sample. Conical tubes containing 5.5 g
(±0.25 g) frozen soil were thawed at room temperature. We
then added 10mL of sterile phosphate-buffered saline (PBS) to
each tube, and then mixed tubes for 1 h via 360˚ rotation on a
Hula mixer, with a 10 s shake step every 45 s. The tubes were
centrifuged at low speed (600 × g) for 4min to separate larger
soil particles from the PBS-microbe suspension. The soil-free
supernatant (“slurry,” ~ 9mL recovered) was transferred to
fresh sterile tubes. A 0.5mL subsample of each slurry was
immediately frozen for later DNA analysis. We confirmed that
live microbes were present in the soil slurries by culturing
100 µL of slurry from four test slurries on LB agar for 24 h at
30 ˚C after which we observed complete “lawn” coverage, with
no colonies detected in the corresponding soil-free PBS control
samples. We compared the bacterial communities in a subset of
the original soils and the corresponding soil slurries and found
no notable differences in community composition, the slurry
communities generally reflected the communities in bulk soil
(Supplementary Fig. S1).

Immediately following soil slurry preparation, the slur-
ries were used to inoculate wheat seeds for the germination
assays. Eight Red Winter Monument wheat seeds were
evenly spaced in ethanol-cleaned 245 mm2 plastic plate
(Corning Untreated 245 mm Square BioAssay Dishes),
lined with two layers of autoclaved germination paper
(Anchor Heavy Weight Seed Germination Paper SD7615L,
10” × 15”), pre-wet with 75 mL deionized water. Each seed
was then treated with 400 µL of inoculant (microbial soil
slurry or PBS buffer) by pipetting liquid on seed and nearby
surrounding paper. All eight seeds in an individual plate
received the same inoculant.

Inoculated seeds were gently pressed between layers of
germination paper to secure their position, and plates were

stacked vertically in clear plastic bins holding 12 plates
each. Plate position was randomized in bins, but an empty
plate was placed on top of the assay plate stack to minimize
differential light exposures. One buffer control-treated plate
was included in every bin. All plates were incubated in a
growth chamber (Percival Scientific AR36L) for 7 days on a
diurnal cycle with the following conditions: day (lights on)
6 am–8 pm, 22 ˚C; night (lights off) 18 ˚C. One plate of
eight seedlings was used for each of the 219 soil slurry
inocula treatments. We also replicated a subset of the soil
slurry inocula treatments (N= 15) an additional three times
for a total of four replicates per soil slurry treatment. These
15 replicated soils were chosen to capture different types of
microbial communities, and were thus selected to span a
range of pH values, as pH is known to be strongly asso-
ciated with differences in bacterial community composition
[32]. Together the germination assays represented over
2500 treated wheat seedlings.

Following a week of growth, seedlings ranged in size with
roots an average of 9.0 cm (range 0.5–14.3 cm) and shoots an
average of 6.7 cm in length (range 0.5–10.4 cm). The rates of
seed germination for this wheat cultivar averaged 97.5%
across all treatments. To process seedling tissue for DNA
extraction, first seeds and seed casings were removed from
plant tissue with sterile forceps. The remaining plant tissue
(root and shoot only) from all germinated seedlings was then
transferred to one piece of parchment paper and placed in a
drying bag. Seedling material was dried at 45 ˚C for 48 h in a
drying oven. Dried seedling tissue was then transferred to
–20 ˚C freezer for storage until DNA extraction. As our
samples were dried prior to DNA extraction and the drying
process may influence the plant microbiomes, we compared
the bacterial communities between oven dried and fresh-to-
frozen seedling plant tissue for the replicated seedlings to
determine if the drying process introduced biases in our
assessment of bacterial community composition (Supple-
mentary Fig. S2). Fresh and dry-frozen seedlings retained
similar bacterial communities and we found a minimal effect
of sample processing compared to the effect of soil slurry
treatment (Supplementary Fig. S2).

Bacterial community assessment: DNA library
preparation and sequencing

To characterize the microbial communities in our 219 soil
slurries, we extracted DNA from all slurries and a subset
(n = 34) of soils and included procedural PBS blank and
extraction kit negative controls to identify any potential
contaminating taxa in experimental materials. DNA
extraction was performed on soils and thawed slurry ali-
quots (400 µL of soil slurry per sample) using the Qiagen
PowerSoil Kit in 96-well plates following the manu-
facturer’s instructions.

2750 C. M. Walsh et al.



To characterize the microbial communities of the wheat
seedlings, we extracted DNA from soil slurry-treated and
control-treated seedlings. Seedling tissue (root and shoot
combined) was first pulverized, then sterile swabs of ground
plant tissue were transferred to Qiagen PowerSoil Kit 96-well
plates. To characterize the microbial communities of the wheat
seeds, we extracted genomic DNA (gDNA) from pools of
ground seed tissue. We used one lot of wheat seeds for all
experiments and sequencing. Six separate pools of approxi-
mately 3.5 g seeds each were ground with a sterile mortar and
pestle using liquid N2. Subsamples were drawn from these six
pools to yield a total of 18 seed samples. However, due to low
biomass only nine seed samples passed through our data pro-
cessing steps for inclusion in downstream analyses.

We amplified and sequenced the hypervariable V4–V5
region of the 16S rRNA gene using 515f/806r barcoded pri-
mers as performed previously [33, 34]. PCR amplification was
performed in duplicate for 219 slurries with 6 PBS blank
controls, 35 DNA extraction blank negative controls, and 6 no-
template control (PCR) negative controls. In a separate dupli-
cate PCR procedure, we used the same methods on 358 plant
samples and 34 soil samples, with 10 procedural blank controls
(PBS), 44 DNA extraction blank negative controls, and 5 no-
template PCR negative controls. Amplicons were pooled,
cleaned, and normalized using SequalPrep Normalization
plates (Thermo Fisher Scientific, Waltham, MA). We
sequenced all samples at the University of Colorado Next
Generation Sequencing Facility on a MiSeq (Illumina) platform
with 2 × 150 bp paired-end chemistry. Pooled amplicons were
run on two separate MiSeq runs with the resulting data from
both runs combined prior to downstream processing.

Sequence processing and data cleaning

Raw reads were processed using a DADA2-based bioin-
formatic pipeline (DADA2 version 1.10.1 [35], Fierer Lab
pipeline v.0.1.0 [36]). Briefly, raw reads were demulti-
plexed using idemp and primers removed using cutadapt
(version 1.8.1). Sequences were filtered and trimmed using
the following settings: (truncLen=c(140,145) for plants, c
(145,145) for slurries, maxEE=c[2, 2], truncQ=2,
maxN=0, rm.phix=TRUE), and inferred using the DADA2
algorithm on pooled samples (pool=true). Error learning
and sequence inference were performed independently for
each sequencing run as recommended, and sequence tables
were merged together using the mergeSequenceTables
command. We then removed chimeras and used the
DADA2 naïve Bayesian classifier method with the SILVA
database v132 [37] for taxonomic identification of the
resulting amplicon sequence variants (ASVs).

Prior to downstream analyses, we first removed all taxa not
classified as bacteria. We then measured and subsequently

removed chloroplast and mitochondrial reads from the dataset.
We note that for the plant samples, plant host reads represented
a majority of reads (75% of reads on average). We further
filtered the data and removed samples with low- or poor-quality
sequence data (samples with less than 1000 bacterial reads).
We also removed instances of ASVs represented by less than
ten reads in a given sample. After removing chloroplast and
mitochondrial reads and imposing these quality filtering steps,
our dataset of seed, seedling, and soil slurry inocula commu-
nities included ~5 million total bacterial reads, with an average
of 10,606 reads per sample (range 929–35098 reads). We opted
not to rarefy to avoid discarding additional information, and
instead converted data to relative abundance values. After
quality filtering, we were left with 208 slurry-treated seedling
samples, 218 soil slurry samples, 25 control-treated seedling
samples, and 9 seed samples. We included a number of
negative controls to check for potential contaminants intro-
duced during the experimental procedure, DNA extraction, and
PCR amplification steps. There were no taxa consistently
detected in the blanks, and the blanks typically had far fewer
reads than in the actual samples (median of 1816 reads in the
“blank” samples versus a median of 11241 reads in soil, seed,
and plant tissue samples).

Tree construction

To generate a phylogenetic tree of the most abundant bac-
terial taxa in our dataset, we calculated phylogenetic rela-
tionships with maximum likelihood using RaxML [38]. To
limit the size of the tree, we first restricted the number of
ASVs in the tree by removing ASVs with a total relative
abundance of less than 0.08 across the filtered dataset,
which left 533 ASVs in total. This filtering threshold was
applied only for the ASVs used in the tree visualization (and
Supplementary Fig. S2 visualization), and was not used in
any other analyses. The 16S rRNA gene sequences of these
abundant ASVs were aligned with MUSCLE (version
3.8.31). Aligned reads were used to construct a tree with
RaxML (version 7.3.9) using 100 Bootstrap searches fol-
lowed by 20ML searches to return the best tree. The
resulting tree was annotated in iTol [39].

Quantitative PCR of soil slurry samples

We used 16S rRNA gene primers targeting the same 515f/
806r region of the 16S rRNA gene for the quantitative PCR
(qPCR) analyses as used for the sequencing described above,
but the primers used for qPCR did not include Illumina
adapters (515F: 5’-GTGCCAGCMGCCGCGGTAA-3’;
806R: 5’-GGACTACHVGGGTWTCTAAT-3’). For the
DNA standard we used Escherichia coli gDNA purchased
from the American Type Culture Collection (ATCC
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#700926D5). To generate a standard curve for each qPCR
plate we created seven tenfold serial dilutions with the E. coli
gDNA. Each qPCR reaction comprised of 1.25 µL forward
and reverse primers, 12.5 µL master mix (ABsolute QPCR
SYBR Green Mix, Thermo Fisher #AB-1159/A), 5 µL PCR-
grade water, and 5 µL template DNA. Standards were run in
duplicate on each plate, and all soil slurry samples were
duplicated across separate plates to control for plate-to-plate
variability. We used the CFX Connect Real-Time System
(Bio-Rad) with the following cycling conditions: 95 °C
15min [94 °C 45 sec, 50 °C 1min, 72 °C 1:30min] × 40
cycles, 72 °C 10min.

Plate-wise comparisons to the standard curve yielded an
estimate of genome copy number in each sample. To relate
our standard to template genome copies we used 4.64Mb as
the E. coli genome size and assumed the average weight of a
base pair to be 650 Daltons. Across the six qPCR plates all
standard curves displayed a strong linear relationship between
cycle threshold and log of gene copy number (R2 > 0.99 in all
cases). We excluded samples whose coefficient of variance
across the duplicate pair was greater than 15% (n= 187
remaining). We report the results in E. coli genome equiva-
lents per µL soil slurry, which can be inferred as an index of
total bacterial biomass.

Comparing bacterial community composition in
seed, seedlings, and soil slurries

Statistical analyses and data visualizations were performed in
the R environment (version 3.6.3 [40]), with all plots gener-
ated using ggplot2 (version 3.2.1 [41]). The sample map was
created with the maps package (version 3.3.0 [42]).

We measured community dissimilarity between bacterial
communities using Bray–Curtis distances in Vegan [43]. We
visualized the overall differences in bacterial community
composition by using nonmetric multidimensional scaling
(NMDS) ordination plots. We tested for differences in micro-
bial communities with permutational multivariate analyses of
variance (adonis), and tested for differences in community
dispersion using dispersion analysis (betadisper) and ANOVA
on resulting dispersion values. We compared community dis-
tance and community richness values with Welch’s two-sample
t-test or Wilcoxon rank-sum test as appropriate. Community
richness was calculated by summing the number of distinct
ASVs in each sample in the quality-filtered dataset.

ASV categorization

We defined seed-associated taxa as those ASVs found in
more than three (out of nine) homogenized seed samples
(29 ASVs from 55 total ASVs detected in seeds). These 29
“seed-associated” ASVs represented 96% of bacterial reads
recovered from seed samples. Similar thresholding

approaches have been used elsewhere to categorize ASV
sources [44]. In addition, given the low biomass of the seed
samples there was a higher possibility of well-to-well con-
tamination during DNA extraction and PCR amplification
[45], and thus we chose to exclude those ASVs detected
infrequently in the homogenized seed samples.

For the predictive and correlative analyses, we used the full
cleaned dataset of ASVs, with no further abundance thresh-
olding. The “potential plant colonizers” used in the beta
regression models and Random Forest model were defined as
all ASVs in the soil slurry samples that were also detected in
one or more plants, or put another way, all slurry-derived
ASVs that had demonstrated potential to associate with
plants. The “common” plant colonizers used in the rank
correlation analysis were defined as ASVs detected in more
than three plants, a threshold designed to restrict analysis to
the more common and consistent plant-associating taxa and to
make the correlation strategy more robust.

To limit number of ASVs used for the visualization of the
phylogenetic tree and in Supplementary Fig. S3, we applied a
relative abundance threshold of 0.08 that resulted in 533
ASVs. This limited dataset was used for visualizations only.
To categorize the association and source in Supplementary
Fig. S3, we used the sample number thresholds listed below
to highlight those taxa we were most confident in categoriz-
ing, as our goal was to identify taxa that were more com-
monly associated with a given plant host microbial habitat. In
Supplementary Fig. S3, seed-association is defined as ASVs
detected in >3 seeds, plant-association is defined as ASVs
detected in >3 plants, and slurry association is defined as
ASVs detected in any of the soil slurries. The ASVs that did
not meet these criteria were defined as being of undetermined
origin. There were 14 of these “undetermined” ASVs in the
visualization dataset, and they were detected in 11 seedling
samples on average, representing 0.06% of total reads. These
undetermined taxa likely either came from the soil but were in
such low abundances as to be undetectable [44] or were
derived from the experimental environment.

Predicting the proportion of seed-associated taxa in
seedlings from soil microbiome features

To relate soil bacterial community characteristics to the pro-
portion of seed taxa in seedling microbiomes, we used beta
regressions (betareg version 3.1-3 [46]) with the proportion of
seed taxa as the response variable. We elected to use beta
regressions because the response variable was a continuous
proportion [47]. To independently identify soil slurry taxa that
influenced the seedling microbiome composition (proportion
of seed-associated taxa), we developed a Random Forest
model using Caret (version 6.0-86 [48]) with the Ranger
package (version 0.12.1[49]) (ranger(), 1000 trees, mtry=96,
split rule= “variance,” importance= “impurity,” five cross-
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fold validations). We used 80% of the data (n= 166) to train
the model (prediction error (MSE)= 0.040, R2= 0.31), and
the remaining 20% of samples (n= 42) to test the model
predictions.

We identified specific taxa that were commonly detected
across inoculated seedlings (i.e., bacterial ASVs that were
present in more than three inoculated plant samples, less than
5 out of 9 seed samples, less than 10 out of 25 untreated blank
samples; n= 101), and individually compared the rank of
these taxa in the soil slurry community with the rank in
seedling community using Spearman rank correlations. These
“common” plant colonizers represented 45% of the propor-
tional abundance across all seedling samples. We chose to use
rank correlations because relative abundance values were
non-normally distributed and highly skewed, and also because
relative abundance values of individual ASVs were so dif-
ferent between soils and seedlings due to the high diversity of
the soil slurry communities. The rank abundance comparisons
were performed at different levels of taxonomic resolution
(order, family, genus, ASV). Multiple test corrections of the
rank correlations were performed with the False Discovery
Rate method (p.adjust, method= “fdr”).

Results

To characterize the influence of soil microbiome on the
development of the seedling microbiome, we inoculated
sets of wheat seeds with 219 distinct soil slurries harboring
unique microbial communities. To isolate the effects of the
soil inocula from edaphic and climatic variables, we grew
seeds on sterile germination paper under controlled growth
chamber conditions, varying only the soil slurry inocula
applied (Fig. 1). To identify the relative importance of seed-
derived microbes in the assembly of the seedling micro-
biome, we opted not to surface sterilize the wheat seeds and
we characterized the bacterial taxa associated with the seeds
used in this study. While the seedling microbiome can be
considered to include bacteria, archaea, fungi, viruses, and
protists, we focus here on bacteria only. We characterized
the bacterial communities in the wheat seeds, seedlings,
and soil slurry inocula using 16S rRNA gene amplicon
sequencing. Although the PCR primers amplify the 16S
rRNA gene from both bacteria and archaea, archaea were
typically in relatively low abundance across the soils ana-
lyzed (average 1.6%, range 0–16%) and no archaea were
detected in the wheat seed or seedling microbiomes.

Diversity and community composition of soil
inocula, seeds, and seedlings

The bacterial communities in the soil slurries were highly
variable in composition, reflecting the wide range of

environments from which they were collected (Fig. 1).
These soils came from natural and cultivated ecosystems
that included desert soils, temperate forest soils, and crop-
land soils, and varied accordingly in their edaphic char-
acteristics and bacterial community compositions. For
example, soil pH values ranged from 4.5 to 10.5 and
organic matter concentrations ranged from 0.6 to 7.9%.
Likewise, the relative abundances of the dominant bacterial
phyla such as Proteobacteria and Actinobacteria ranged
from 0.07 to 89% and 0.0 to 62%, respectively (Supple-
mentary Fig. S4). There were no ASVs detected in all soil
slurries, and few ASVs were detected in most soil inocula
with individual ASVs found in only three distinct soils, on
average.

The inoculation of wheat seeds with different soil slurries
had a strong influence on the bacterial communities asso-
ciated with the week-old seedlings. Seedlings inoculated
with soil slurries had distinct, more diverse, and more
highly dispersed bacterial communities compared to seed-
ling inoculated with PBS buffer only (control-treated), and
compared to seeds (Fig. 2A, B, PERMANOVA R2= 0.09,
p < 0.001). A total of 546 ASVs were detected across the
soil slurry-inoculated seedlings, with an average of 36
bacterial ASVs detected per slurry-inoculated seedling
sample (range 9–86 ASVs, Fig. 2C). Control-treated seed-
lings had lower diversity than inoculated seedlings with an
average of 18 ASVs per sample (range 7–51 ASVs
per seedling sample, Wilcoxon rank-sum test p < 0.001,
Fig. 2C). Interestingly, the control-treated seedlings had
bacterial communities more similar to seeds than to slurry-
treated seedlings, as observed in an NMDS ordination
(Fig. 2B) and via statistical comparison of community dis-
tances (Bray–Curtis mean community distance: control
plant versus treated plant= 0.78, control plant versus seed
= 0.70; Welch t-test p < 0.001). Together, these results
demonstrate that inoculation with soil bacteria has a strong
influence on the composition of seedling microbiomes.

The composition of the soil slurry-treated seedling bacterial
communities was variable, but broadly corresponded with
previous studies of plant-associated bacterial communities in
that the seedlings were dominated by the following bacterial
phyla: Gammaproteobacteria (61–100% of bacterial reads),
Bacteroidetes (0–28%), Alphaproteobacteria (0–20%), and
Actinobacteria (0–15%) [50–52]. As expected based on pre-
vious plant and wheat microbiome studies [9, 19], the bacterial
taxa associated with the inoculated seedlings represented a
small fraction of the bacterial taxa and lineages found in soil,
with five classes of bacteria accounting for >99% of 16S rRNA
gene reads in seedlings (Fig. 3A–C). Bacterial taxa that were
relatively abundant in the soil inocula, including Verrucomi-
crobia, WPS-2, and Acidobacteria phyla, were not detected in
any seedlings (Fig. 3B). We note that many bacterial taxa that
were relatively abundant in inoculated seedlings had relatively
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low abundances in the corresponding soil inocula (e.g., Bur-
kholderiaceae Massilia ASV 5, and Pseudomonadaceae spp.
ASV 6), while few taxa were relatively abundant both in the
soil inocula and the corresponding inoculated seedlings (e.g.,
Pseudomonadaceae spp. ASV 10, Enterobacteriaceae Kleb-
siella ASV 4) (Fig. 3A and Supplementary Table S2). We did,
however, find a small number of soil-dwelling ASVs (n= 7)
that were detected in seedlings across a majority of soil slurry
treatments. Members of the Pseudomonas genus were the most
common taxa found to colonize plants from soil, accounting for
10 of the top 20 most common soil-derived taxa recovered in
seedlings (Supplementary Table S2).

Overall, few individual bacterial ASVs were shared across
seedlings, likely due to the distinct nature of the soil inocula.
Only 16 ASVs were detected in more than half of the seedling
samples, while 235 ASVs were found in fewer than 10 of the
208 seedling samples (Supplementary Fig. S3). This low rate of
occupancy is likely the result of the soil inocula harboring such

distinct bacterial communities (Supplementary Fig. S4) and
highlights the importance of surveying large numbers of dis-
tinct soil communities to capture the breadth of potential plant-
associated taxa. Put another way, if we had only focused on
three distinct soils, we would have identified only ~30–80
seedling-associated bacterial ASVs, a number far below the
total number detected upon examining all 208 distinct soil
inocula (546 ASVs). The number of distinct wheat-associated
bacterial taxa identified increased with each additional slurry
inocula tested (Supplementary Fig. S5).

The most commonly detected ASVs across the wheat
seedling samples were found to be seed associated as
opposed to ASVs originating from the soil slurries (Sup-
plementary Fig. S3). Nine of the 29 ASVs identified as
being seed associated (see Methods) were among the 11
most commonly detected ASVs across the seedlings,
including the only ASV detected in all seedling samples
(Enterobacteriaceae Pantoea, ASV 3) [53]. The seed-

Fig. 1 Experimental design. A Soil samples (n= 219) were collected
from across the continental United States. B Soil slurries were created
from each soil by mixing 5 g soil with 10 mL PBS, and slowly cen-
trifuging to remove particulates. C Eight seeds were inoculated with
each soil slurry, and grown on sterilized germination paper in a growth

chamber. D After 1 week, all eight seedlings from one plate were
combined and destructively sampled. In panels B–D, the stars indicate
soil, seed, and seedling samples were analyzed with 16S rRNA gene
sequencing to determine microbial community composition. Created
with BioRender.com.
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associated ASVs were members of the Gammaproteo-
bacteria, Alphaproteobacteria, Actinobacteria, Bacilli, and
Bacteroidia bacterial classes (Fig. 3A). The seed-associated
ASVs were either absent or found in low abundances in the
soil inocula (Fig. 3A and Supplementary Fig. S3). We note
that these taxa identified as “seed associated” could have
been vertically inherited from the parent plant (i.e., seed
endophytes) or introduced to the seed from external sources.

Inoculation with soil bacteria decreases the
contributions of seed-associated bacteria to the
seedling microbiome

Given that the soil slurry communities demonstrably influ-
enced community structure in seedlings, but that the most

ubiquitous taxa detected across seedlings appeared to come
from seeds, we next sought to determine the relative con-
tributions of soil slurry taxa versus seed-associated taxa to
the seedling bacterial community. The proportion of seed
taxa detected in seedlings was calculated by summing the
relative abundances of the seed-associated ASVs in each
seedling sample. The seed-associated ASVs accounted for a
median of 45% of bacterial 16S rRNA gene reads obtained
from the soil slurry-inoculated seedling samples (range
3–95%), and represented approximately a third of inoculated
seedling ASV diversity (mean 33% ASVs, range 7–73%
seed-associated ASVs in seedlings) (Fig. 2D). This variance
in the proportion of seed taxa detected across seedlings was
notable, as we highlight in more detail below. As expected,
the control-treated seedlings were more strongly dominated

Fig. 2 Community composition and richness of soil slurries, wheat
seedlings, and wheat seeds. A, B NMDS ordination plots (first two of
three dimensions) of bacterial community structure in soil slurries, soil
slurry-treated seedlings (“treated plant”), PBS buffer control-treated
seedlings (“control plant”), and seeds. Panel B includes the same
samples as panel A with the soil slurry samples excluded. Panel A

stress: 0.11; Panel B stress: 0.18. PERMANOVA R2= 0.09, p < 0.001;
homogeneity of dispersions test, ANOVA p= 171, p < 0.001.
C Bacterial richness per sample type calculated as number of distinct
ASVs out of 1000 bacterial reads per sample. D The proportion of
reads from “seed-associated” taxa (ASVs detected in >3 seed samples)
across different sample types.
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by seed taxa (median of 92% of 16S rRNA gene reads,
Wilcoxon rank-sum test p < 0.001) (Fig. 2D), a pattern
corroborated by their community similarity mentioned pre-
viously (Fig. 2B). The ASVs detected in the control-treated
seedlings that accounted for the remaining <8% of 16S
rRNA gene reads were presumably introduced from the air

inside the lab or growth chamber, or from experimental
materials like the assay plates or the deionized water used to
wet the germination paper, and were not consistently found
across the control-treated seedlings.

Together these results show that seed-associated taxa
represent an important, but highly variable, component of

Fig. 3 Bacterial diversity in
soil slurries, seedlings, and
seeds. A A maximum-likelihood
phylogenetic tree of the top 533
most abundant bacterial ASVs
detected in this study. Colored
bar height indicates prevalence
(number of samples) in which
each ASV was detected in
seedlings (green), and soil
slurries (blue); red bars indicate
seed-associated taxa (ASVs
detected in >3 seed samples).
B Relative abundances of
bacterial classes shown for seed,
seedling, and soil samples.
Bacterial classes that were
detected in seedlings are
highlighted in green shades, all
other classes are colored gray.
C Relative abundance of ASVs
in the five plant-associating
classes shown for seed, seedling,
and soil samples.
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the week-old seedling microbiome. However, it is important
to note that a few seed-derived ASVs were the most com-
monly detected ASVs across inoculated seedlings (Sup-
plementary Fig. S3), suggesting a restricted but consistent
role of microbe transmission from seed to seedling regard-
less of soil community exposure.

Soil bacterial contributions to the seedling
microbiome are determined by soil microbial
community characteristics

We next assessed whether the variation in the proportion of
seed-associated taxa detected across inoculated seedlings
(3–95%; Supplementary Fig. S6) could be explained by dif-
ferences in the soil slurry inocula. We hypothesized that the
proportion of seed taxa remaining on seedlings would be
higher in seedlings inoculated with soil slurries that contained
lower proportions of taxa that could potentially associate with
plants. Here, we defined “potential plant colonizers” as soil
slurry taxa (ASVs) that were detected in one or more seedling
samples (see Methods). We used beta regressions to detect
relationships between soil bacterial community composition
and the proportion of seed taxa remaining in seedlings, and also
used Random Forest modeling to independently verify these
results by predicting the proportion of seed taxa in seedlings
from soil slurry bacterial community composition. In addition,
we assessed whether total bacterial biomass in the soil slurries
(estimated from qPCR) was related to the observed variation in
seed-associated taxa found across seedlings.

We found that the proportion of seed-associated taxa in
the seedling microbiome was partially explained by the
proportion of potential plant colonizers found in the soil
slurries. If the soil slurry communities harbored more taxa
with the potential to colonize seedlings, the proportion of
seed taxa remaining on week-old seedlings was lower (ASV
model phi= 3.9, pseudo R2= 0.17, p < 0.001; Pearson
r= –0.41) (Supplementary Fig. S6). While this relationship
was strongest when considering bacterial taxa at the ASV
level (i.e., the sum relative abundance of all ASVs found to
associate with one or more plants), the pattern held across
levels of taxonomic resolution up to the class level (the sum
relative abundance of all five classes found to associate with
one or more plants) (class model phi= 3.7, pseudo
R2= 0.12, p < 0.001) (Supplementary Fig. S6). Particularly,
the relative abundance of Gammaproteobacteria in the soil
inocula was negatively correlated with the proportion of seed
taxa in seedlings (Pearson r= –0.33, p < 0.001), meaning
that the higher the gammaproteobacterial relative abundances
in soil slurries, the lower the abundances of seed-associated
taxa on the seedlings (Supplementary Fig. S6). These find-
ings suggest that the likelihood of seed taxa persisting in a
growing seedling depends on the relative abundances of
specific taxa in the surrounding soil.

To complement the beta regressions and to test the pre-
dictive power of soil microbiome information for determining
the relative contributions of seed taxa to the seedling micro-
biomes, we built a Random Forest model to predict the pro-
portion of seed-associated taxa in seedlings using the relative
abundances of bacterial families in the soil slurry inocula as
predictors. We used a Random Forest model to independently
identify soil taxa important for determining the magnitude of
seed community influence without any a priori knowledge of
whether bacterial taxa were plant or seed associated. The
Random Forest model described over 30% of the variation in
proportion of seed taxa in seedlings (R2= 0.32, p < 0.001),
and the model predictions correlated strongly with the true
values of seed taxa abundances in the test set (Pearson
r= 0.64, p < 0.001) (Supplementary Fig. S6). The most
important bacterial families for generating these predictions
were families within the Gammaproteobacteria and Actino-
bacteria phyla (Supplementary Table S3). Together these
results show that the relative contribution of seed taxa to
seedling communities is strongly influenced by the soil
community, with the magnitude of colonization from seed
taxa dependent on the relative abundance of specific lineages
(especially Gammaproteobacteria) in the soil. The success of
seedling colonization by soil or seed microbes is strongly
related to the composition of the soil bacterial communities.

To test whether the bacterial biomass in soil slurries
influenced the proportion of seed or soil slurry-associated
taxa proliferating in seedlings (a “mass effect”), we related
the qPCR-based estimates of bacterial genome copies
detected in each soil slurry to the proportion of seed-
associated taxa detected in seedlings (Supplementary Fig.
S7). We found a weak negative relationship between the
qPCR-based estimates of bacterial biomass in the soil
slurries and the proportion of seed taxa found to be asso-
ciated with the seedlings (beta regression phi= 3.4, pseudo
R2= 0.07, p < 0.001, Pearson r= –0.28, p < 0.001). Thus,
the biomass of soil slurry communities also influenced the
relative success of soil and seed-derived bacteria in seed-
lings, but to a lesser extent than the taxonomy of those taxa.

The soil microbiome is predictive of the seedling
microbiome

We next determined the degree to which the soil slurry
microbiome had a predictable influence on the structure or
membership of seedling microbiomes. First, to determine the
reproducibility of bacterial community assembly in our seed-
ling system, we inoculated seeds with four replicate slurries
derived from each of 15 soils (see Methods). We found that,
across the replicate seedling samples (those inoculated with
the same soil slurry), soil slurry inoculum explained 70% of
the variation among seedling communities (PERMANOVA
R2= 0.70, p < 0.001; Supplementary Fig. S8). In addition,
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pairwise community distances across replicates that received
the same soil slurry inocula were significantly lower than
distances between replicates of different soil slurry treatments
(Welch’s t-test p < 0.0001; Supplementary Fig. S8). The
consistency and similarity of community composition within
replicates highlights the reproducibility of community
assembly in this system.

We also compared the pairwise distances in community
composition between soil slurry inocula and inoculated
seedlings. We expected that seedlings inoculated with more
similar soil communities would have more similar micro-
biomes. We found that a seedling sample inoculated with a
given soil slurry community consistently harbored bacterial
communities that were more similar in composition to that
soil slurry community than to other (random) soil slurry
communities to which it was not exposed (Supplementary
Fig. S8). Even though seedlings and slurries had distinct
bacterial communities with plants selecting for particular
taxa (Fig. 2A), the influence of soil slurries on seedling
microbiome composition was clearly evident.

Correspondence between soil bacterial abundances
and abundances on inoculated seedlings

We next investigated whether there were specific taxa
responsible for the community-level patterns of similarity
between corresponding soil slurries and slurry-treated seed-
lings. We asked whether the abundance of the most common
plant-associated ASVs in the soil slurries explained the pre-
sence or abundance of those ASVs in seedlings. Even though
many plant-associating taxa were detected at relatively low
relative abundances in the soil slurries, within a restricted
group of around 100 soil taxa that were most commonly
found across seedlings, their rank abundances in soil slurries
corresponded with their rank abundances in seedlings. The
correlations between taxon abundances in soil slurries and the
abundances in inoculated seedlings were evident at varying
levels of taxonomic resolution, and were particularly strong
for several individual ASVs (Fig. 4 and Supplementary
Table S4). For example, the rank abundance of family Bur-
kholderiaceae in slurries and on seedlings correlated at a Rho
value of 0.59 (df= 169, p < 0.001, Fig. 4), while Bur-
kholderia ASV 23 correlated at a Rho value 0.78 (df= 60,
p < 0.001, Fig. 4). These results suggest that, for those taxa
capable of associating with wheat seedlings, their initial
abundance in the soil slurries can be an important determinant
of their relative abundance on the corresponding plant.

Discussion

Understanding the influence of the soil microbiome on plant
microbiomes is challenging due to the difficulties of

disentangling the effects of climactic and soil edaphic
properties from the effects of changes in soil microbiome
composition. Our experimental setup allowed us to test the
predictability of seedling microbiome assembly as a func-
tion of soil community composition, although we
acknowledge that the controlled nature of our system
minimizes additional variation that could be important in
more field-relevant conditions. By screening over 200
individual soils with a single wheat cultivar, we were able to
show that the soil bacterial community exerts an important
but variable influence on the wheat seedling bacterial
community, with the seed microbiome contributing the
most ubiquitous taxa. The contribution of the soil and seed
bacteria to the seedling microbiome is predictable from
characteristics of the soil microbiome.

The observed differences between microbiomes of
seedlings treated with different soil slurries (Fig. 2) are in
agreement with previous work showing that soil microbes
exert an important influence on plant microbiomes
[8, 10, 14, 54]. We found that soil-derived taxa to typically
represent a majority of the week-old seedling microbiome,
with seed-associated taxa contributing to approximately a
third of bacterial reads in the slurry-inoculated wheat
seedlings (Fig. 2D). Seedlings that were not inoculated with
soil slurries bacteria harbored a larger fraction of seed-
associated taxa. This result suggests that, while seed-
associated microbes are capable of colonizing seedlings, the
majority of microbes colonizing a plant originate from the
soil as has been suggested previously [55, 56].

Few published studies that have investigated the
assembly of plant microbiomes have included a character-
ization of the starting seed community (but see [7, 42]), and
we quantified a variable, but consistently present, con-
tribution of the seed microbiome to the seedling micro-
biome (Fig. 2 and Supplementary Fig. S3). However, since
we used a single lot of seeds for all of our experiments, we
acknowledge that the starting seed microbiome likely had
limited variability. The most commonly detected taxa across
seedlings were seed associated (Supplementary Fig. S3), a
pattern that could be due to these seed taxa being highly
evolved with the plant, potentially due to vertical inheri-
tance, or due to the advantage of being the initial taxa
present as plants start to grow [7, 26]. We acknowledge that
the young age of the plants (7 days), and controlled con-
ditions of the experimental setup may have made it easier
for seed taxa to persist on seedlings, and it is likely this
community would continue to shift as the plants matured
[12, 57]. However, even if the seed-derived taxa were
outcompeted as plants continue to grow, the presence of
seed taxa in the earliest stages of a plant’s life could drive
later patterns in community assembly, or be critical for the
early stages of plant growth [58, 59]. Previous drop-out and
arrival order experiments show that historical contingency
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Fig. 4 The relationship between the rank abundance of plant-
associating bacterial taxa in soil slurry inocula and in seedlings
across different levels of taxonomic resolution. A Common plant-
associating orders, B families within the orders from panel A directly

above, C genera within families from panel B directly above, D ASVs
within genera from panel C directly above. Asterisks indicate Spearman
correlation values significant at ***p < 0.001, **p < 0.01, *p < 0.05.
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and priority effects can influence plant microbiome com-
munity assembly [60]. Future work should investigate
whether those seed-associated taxa that are highly ubiqui-
tous across plants are vertically transmitted across genera-
tions, or are seed-mediated environmentally acquired taxa.
Identifying the identities and traits of these “successful”
seed taxa that effectively colonized emerging seedlings
could have important implications for improving seed coat
treatment technologies.

Despite the restricted phylogenetic diversity of the bac-
teria associated with wheat seedlings (Fig. 3 and Supple-
mentary Fig. S4), we generally found few ASVs shared
across inoculated seedlings outside of those that were seed
associated. The community dispersion across treated seed-
lings (Fig. 2A, B) and ASV-level heterogeneity highlights
the benefits of surveying multiple different soil types when
designing experiments to characterize plant-microbe asso-
ciations. Depending on the specific research questions
posed, the number of soil types included in an experiment is
an important consideration given that distinct soils can yield
such distinct seedling microbiomes.

Despite the variation in community composition across
seedling microbiomes, there were a few bacterial taxa that
commonly occurred in soils and were consistently detected
in seedlings (Fig. 3A and Supplementary Table S2). Those
soil-derived taxa that were particularly effective at colo-
nizing wheat seedlings (including members of the Pseudo-
monas, Pseudoarhthrobacter, and Novosphingobium
genera) are likely to be good candidates for probiotic
applications in wheat agriculture, as has been discussed
previously [61–63]. More generally, the broad collection of
paired soil and plant samples captured could inform the
selection of other potential taxa that might successfully be
used as plant probiotics due to the combination of their
abundance across soil types and plant colonization efficacy.

Finally, several lines of evidence support the hypothesis
that soil bacterial communities exert a predictable influence
on seedling microbiome structure and membership. First,
replicate exposure of seeds to soil slurries derived from the
same parent soil assembled highly similar and reproducible
communities (Supplementary Fig. S8). This reproducibility
for a given soil slurry inoculum treatment suggests a
dominance of deterministic factors over stochasticity in
bacterial community assembly on plants [60, 64], though
we acknowledge that the absence of environmental varia-
bility and the fact that we focused exclusively on wheat
seedlings (not adult plants) may enhance the observed
similarity among replicates. Second, bacterial communities
in the soil slurries and the corresponding recipient inocu-
lated seedlings were more similar to each other than to
“non-paired” (or mismatched) plant and soil communities
(Supplementary Fig. S8). The higher similarity between soil
slurries and recipient plants shows that plant communities

reflect their surrounding soil communities despite the
stringent filtering imposed by the plant. Third, of the soil
taxa identified as having the ability to associate with plants,
their abundances in soil often corresponded to their abun-
dance on seedlings (Fig. 4). The taxa detected as abundant
in the soil slurries were not enriched by the wheat seedlings
since the bacterial communities in the soil slurries were
characterized prior to seed inoculation. We emphasize that,
while some dominant soil taxa never colonized seedlings, of
those taxa with a demonstrated ability to associate with
seedlings, their abundance in soil slurries was often related
to their abundance in the seedlings. Fourth, the composition
of the soil slurry community influenced the degree to which
seed-associated taxa proliferated in seedlings (Supplemen-
tary Fig. S6). Variation in the proportion of seed-associated
taxa in seedling microbiomes was predictable from the
presence and relative abundance of particular bacterial
groups in the soil slurries (Supplementary Fig. S6). How-
ever, we note that the concentration of bacteria in the soil
slurries was also correlated with the proportion of seed-
associated taxa in seedlings (but this relationship was rela-
tively weak), with higher bacterial biomass in soil slurries
corresponding to seedlings that tended to be colonized by
fewer seed taxa (Supplementary Fig. S7). This suggests that
the “mass effect” of sheer bacterial cell numbers in soil
could add additional explanatory value in considering
seedling assembly patterns [65]. Together, these results
suggest a hierarchy of assembly forces for seedling micro-
biome assembly, with more deterministic processes
restricting the types of taxa that colonize seedlings and the
abundances of those taxa in soil determining their abun-
dances on seedlings. In general, which taxa ultimately
associate with plants is largely determined by the abundance
and composition of potential plant colonizing taxa found in
soil. The role of soil community composition in determining
the extent of the soil or seed influence has important
implications for attempts to manage plant microbiomes:
seed inoculants may not be as effective in soils that have
higher abundances of taxa able to colonize plants.

Conclusions

By characterizing the bacterial communities of wheat seeds,
over 200 soil slurries, and the seedlings inoculated with
those soil slurries, we were able to quantify how the seed
and soil microbiomes influence the wheat seedling micro-
biome. We found soils to have a strong, but variable,
influence on the nascent wheat seedling microbiome, and
identified a restricted, but important, contribution of the
seed microbiome to the seedling microbiome. Since the
composition of a plant’s microbiome likely influences plant
health [61, 66, 67], determining how the plant microbiome
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varies across different soil types can ultimately improve our
predictive understanding of how the plant microbiome
could be directly or indirectly manipulated to improve plant
health, a topic of intense interest in basic and applied
agricultural research [2, 61, 66, 68].

Data availability

The dataset generated and analyzed in this study along with
representative sequences and sample metadata are available on
FigShare (https://doi.org/10.6084/m9.figshare.c.5323961) and
further sample metadata is available in the Supplementary
tables.
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