Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization


Microorganisms drive soil carbon mineralization and changes in their activity with increased temperature could feedback to climate change. Variation in microbial biodiversity and the temperature sensitivities (Q10) of individual taxa may explain differences in the Q10 of soil respiration, a possibility not previously examined due to methodological limitations. Here, we show phylogenetic and taxonomic variation in the Q10 of growth (5–35 °C) among soil bacteria from four sites, one from each of Arctic, boreal, temperate, and tropical biomes. Differences in the temperature sensitivities of taxa and the taxonomic composition of communities determined community-assembled bacterial growth Q10, which was strongly predictive of soil respiration Q10 within and across biomes. Our results suggest community-assembled traits of microbial taxa may enable enhanced prediction of carbon cycling feedbacks to climate change in ecosystems across the globe.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Soil respiration, microbial growth, and their temperature sensitivity.
Fig. 2: Microbial biomass and respiration.
Fig. 3: Temperature sensitivity of respiration and growth.
Fig. 4: Temperature sensitivity of microbial growth in relation to bacterial phylogeny.

Data availability

Soil respiration, microbial biomass, and figure data are available in the Supplementary materials. Raw sequence data for this study are available in Sequence Read Achieve (SRA) database of NCBI under accession numbers PRJNA649787, PRJNA649546, PRJNA649571, and PRJNA649802.

Code availability

Code associated with qSIP calculations is publicly available at


  1. 1.

    Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW. Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Chang. 2016;6:751–8.

    Article  CAS  Google Scholar 

  2. 2.

    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Crowther TW, Hoogen JVD, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008;451:289–92.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang. 2013;3:909–12.

    CAS  Article  Google Scholar 

  6. 6.

    Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Chang. 2018;8:885–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Li JQ, Pei JM, Pendall E, Fang CM, Nie M. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biol Biochem. 2020;141:107675.

    CAS  Article  Google Scholar 

  9. 9.

    Wang QK, Zhao XC, Chen LC, Yang QP, Chen S, Zhang WD, et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Funct Ecol. 2019;33:514–23.

    Article  Google Scholar 

  10. 10.

    Nottingham AT, Baath E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Glob Chang Biol. 2019;25:827–38.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Ye JS, Bradford MA, Dacal M, Maestre FT, García-Palacios P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob Chang Biol. 2019;25:3354–64.

    PubMed  Article  Google Scholar 

  12. 12.

    Smith TP, Thomas TJH, Garcia-Carreras B, Sal S, Yvon-Durocher G, Bell T, et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat Commun. 2019;10:5124.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Schipper LA, Hobbs JK, Rutledge S, Arcus VL. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob Chang Biol 2014;20:3578–86.

    PubMed  Article  Google Scholar 

  14. 14.

    Pietikainen J, Pettersson M, Baath E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol. 2005;52:49–58.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Bárcenas-Moreno G, Gómez-Brandón M, Rousk J, Bååth E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol. 2009;15:2950–7.

    Article  Google Scholar 

  16. 16.

    Engqvist MKM. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol. 2018;18:177.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Oliverio AM, Bradford MA, Fierer N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob Chang Biol. 2017;23:2117–29.

    PubMed  Article  Google Scholar 

  18. 18.

    Bier RL, Bernhardt ES, Boot CM, Graham EB, Hall EK, Lennon JT, et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol Ecol. 2015;91:fiv113.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv. 2019;28:2405–29.

    Article  Google Scholar 

  20. 20.

    Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Koch BJ, McHugh TA, Hayer M, Schwartz E, Blazewicz SJ, Dijkstra P, et al. Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere. 2018;9:e02090.

    Article  Google Scholar 

  22. 22.

    Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol Biochem. 2013;58:115–26.

    CAS  Article  Google Scholar 

  23. 23.

    Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol. 2015;6:104.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Euskirchen ES, Bret-Harte MS, Shaver GR, Edgar CW, Romanovsky VE. Long-term release of carbon dioxide from Arctic Tundra ecosystems in Alaska. Ecosystems. 2017;20:960–74.

    CAS  Article  Google Scholar 

  26. 26.

    Reed SC, Reibold R, Cavaleri MA, Alonso-Rodríguez AM, Berberich ME, Wood TE. Chapter six—soil biogeochemical responses of a tropical forest to warming and hurricane disturbance. In: Dumbrell AJ, Turner EC, Fayle TM, editors. Advances in ecological research. (Academic Press, Cambridge MA, 2020) pp 225–52.

  27. 27.

    Witt C, Gaunt JL, Galicia CC, Ottow JCG, Neue HU. A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol Fertil Soils. 2000;30:510–9.

    CAS  Article  Google Scholar 

  28. 28.

    Berry D, Ben Mahfoudh K, Wagner M, Loy A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol. 2012;78:612.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  29. 29.

    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.

    Article  Google Scholar 

  30. 30.

    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012;22:939–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Aronesty E. ea-utils: “Command-line tools for processing biological sequencing data”. 2011.

  33. 33.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266–7.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Morrissey EM, Mau RL, Schwartz E, McHugh TA, Dijkstra P, Koch BJ, et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 2017;11:1890–9.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu X-JA, et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 2019;13:2162–72.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Gross N, Bagousse-Pinguet YL, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT. Functional trait diversity maximizes ecosystem multifunctionality. Nat Ecol Evol. 2017;1:0132.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Laliberté E, Norton DA, Scott D. Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. J Veg Sci. 2013;24:834–42.

    Article  Google Scholar 

  42. 42.

    Plass-Johnson JG, Taylor MH, Husain AAA, Teichberg MC, Ferse SCA. Non-random variability in functional composition of coral reef fish communities along an environmental gradient. PLOS ONE. 2016;11:e0154014.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43.

    Götzenberger L, Botta-Dukát Z, Lepš J, Pärtel M, Zobel M, de Bello F. Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models. J Veg Sci. 2016;27:1275–87.

    Article  Google Scholar 

  44. 44.

    Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, et al. Microbial richness and composition independently drive soil multifunctionality. Funct Ecol. 2017;31:2330–43.

    Article  Google Scholar 

  45. 45.

    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.

  46. 46.

    Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, et al. Global trait–environment relationships of plant communities. Nat Ecol Evol. 2018;2:1906–17.

    PubMed  Article  Google Scholar 

  47. 47.

    Piton G, Legay N, Arnoldi C, Lavorel S, Clément J-C, Foulquier A. Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands. J Ecol. 2020;108:876–93.

    CAS  Article  Google Scholar 

  48. 48.

    Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Chang Biol. 2020;26:3221–9.

    PubMed  Article  Google Scholar 

  49. 49.

    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Li J, Nie M, Pendall E, Reich PB, Pei J, Noh NJ, et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob Chang Biol. 2020;26:1873–85.

    PubMed  Article  Google Scholar 

  51. 51.

    Lipson DA. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol. 2015;6:615.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Buckeridge KM, Mason KE, McNamara NP, Ostle N, Puissant J, Goodall T, et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ. 2020;1:36.

    Article  Google Scholar 

  53. 53.

    Ali A, Yan E-R, Chang SX, Cheng J-Y, Liu X-Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci Total Environ. 2017;574:654–62.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Buzzard V, Michaletz ST, Deng Y, He Z, Ning D, Shen L, et al. Continental scale structuring of forest and soil diversity via functional traits. Nat Ecol Evol. 2019;3:1298–308.

    PubMed  Article  Google Scholar 

  55. 55.

    Luo Y-H, Cadotte MW, Burgess KS, Liu J, Tan S-L, Zou J-Y, et al. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecol Lett. 2019;22:1449–61.

    PubMed  Article  Google Scholar 

  56. 56.

    Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA. 2007;104:20684–9.

    PubMed  Article  Google Scholar 

  57. 57.

    Bradford MA. Thermal adaptation of decomposer communities in warming soils. Front Microbiol. 2013;4:333.

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Morrissey EM, Mau RL, Schwartz E, Koch BJ, Hayer M, Hungate BA. Taxonomic patterns in the nitrogen assimilation of soil prokaryotes. Environ Microbiol. 2018;20:1112–9.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Coskun OK, Ozen V, Wankel SD, Orsi WD. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J. 2019;13:1546–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Zhou G, Zhou X, Liu R, Du Z, Zhou L, Li S, et al. Soil fungi and fine root biomass mediate drought-induced reductions in soil respiration. Funct Ecol. 2020;34:2634–43.

    Article  Google Scholar 

  61. 61.

    Melillo JM, Frey SD, Deangelis KM, Werner WJ, Bernard MJ, Bowles FP, et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 2017;358:101–5.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Johnston ASA, Sibly RM. The influence of soil communities on the temperature sensitivity of soil respiration. Nat Ecol Evol. 2018;2:1597–602.

    PubMed  Article  Google Scholar 

Download references


This work was supported by the U.S. Department of Energy, Program in Genomic Sciences (DE-SC0020172 and DE-SC0016207). Work at LLNL was performed under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344 and Awards SCW1590 and SCW1679. CW acknowledges the funding of Key Research Program of Frontier Sciences, CAS (ZDBS-LY-DQC019), Youth Innovation Promotion Association CAS to CW (2018231), and CAS scholarship.

Author information




Experimental work was conceived by BAH, EMM, ES, KSH, JP-R, and SJB. Samples were collected and experiments performed by RLM, MH, MCM, JCM, SLB, SNM, BJK, BWS, AMP, SJB, KSH, EMM, and JP-R. CW and EMM analyzed the data, with null model analysis by JP and feedback from ES, PD, and BAH. The manuscript was written by CW and EMM with the contributions from all co-authors.

Corresponding author

Correspondence to Ember M. Morrissey.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Morrissey, E.M., Mau, R.L. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J (2021).

Download citation


Quick links