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Abstract
In bacteria, guaA encodes guanosine monophosphate synthetase that confers an ability to biosynthesize guanine nucleotides
de novo. This enables bacterial colonization in different environments and, while guaA is widely distributed among
Bacteroidetes and Firmicutes, its contribution to the inhabitation of the human microbiome by commensal bacteria is
unclear. We studied Streptococcus as a commensal urogenital tract bacterium and opportunistic pathogen, and explored the
role of guaA in bacterial survival and colonization of urine. Analysis of guaA-deficient Streptococcus revealed guanine
utilization is essential for bacterial colonization of this niche. The genomic location of guaA in other commensals of the
human urogenital tract revealed substantial cross-phyla diversity and organizational structures of guaA that are divergent
across phyla. Essentiality of guaA for Streptococcus colonization in the urinary tract establishes that purine biosynthesis is a
critical element of the ability of this bacterium to survive and colonize in the host as part of the resident human microbiome.

All bacterial taxa require purine nucleotides to accomplish
essential metabolic processes such as the synthesis of DNA,
RNA, and protein. Several pathways for de novo purine
synthesis and salvage converge to satisfy this requirement in
bacteria and thereby, support survival in niche environ-
ments that are limited in purine bioavailability, as reported
for Borrelia [1], Erwinia [2], Lactococcus [3], and Heli-
cobacter [4]. Phosphoribosyl pyrophosphate is utilized to
generate purines, and the biosynthetic pathway bifurcates at
the point of inosine monophosphate (IMP) to produce
adenine monophosphate or guanine monophosphate (GMP)

as precursors for deoxyribonucleotides. The latter requires
guaA-encoded GMP synthetase, which provides Guanosine-
5′-triphosphate for essential cellular processes.

The resident microbiota of the human microbiome
inhabits diverse niches that vary in nutrient availability [5].
One such niche is the “urogenital tract”, a term which refers
to an organ system that encompasses the urinary tract as
well as the anatomical sites/organs of reproduction, which
may affect the microbial load in urine, as reviewed else-
where in the context of the human microbiome [6]. Dif-
ferent tissues of the live human host vary in relative
concentrations of purines which are influenced by external
factors such as diet [7]. In human urine (HU), the purine
guanine is a precursor of uric acid and potential biomarker
of disease [8]. Bacteria of the commensal microbiome
persist in the urogenital tract through metabolic flexibility
[6]; however, the extent to which purines such as guanine
are utilized remains largely unclear. Among the estimated
50 genera of the human urogenital microbiota [6], several
including Streptococcus persist as commensals but can also
act as opportunistic pathogens. We explored the role of
guaA in Streptococcus survival and colonization in the
urinary tract as a part of the “urogenital tract” niche.

We analyzed the growth of wild-type (WT) S. agalactiae
834 compared to a guaA-deficient mutant (Supplementary
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Table S1) in HU pooled from several individuals. We also
compared the growth of these strains in synthetic human
urine, which revealed a striking attenuation of guaA- S.
agalactiae in both conditions (Fig. 1a, b). Parallel growth
assays using Todd Hewitt Broth showed no general growth
defect of the guaA mutant (Fig. 1c). Owing to its con-
tribution to GMP synthesis, we were able to chemically
complement the guaA− mutation by supplying exogenous
guanine, confirming that guaA is essential to support bac-
terial survival and growth in environments where guanine
levels are limited (Fig. 1d). Consistent with our findings,
guaA supports survival of E. coli in urine, which has been
associated with a shift to commensalism for this gram-
negative organism [9–11]. We note the genomic arrange-
ment of guaA and guaB (encoding IMP dehydrogenase that
catalyzes the step of GMP synthesis that precedes that of
guaA) in Streptococcus differs markedly from E. coli
(Fig. S1) and Staphylococcus in which control systems of
these genes are well-defined [12, 13]. Transcriptional ana-
lyses showed modest repression of Streptococcus guaA and

guaB in media conditions of exogenous guanine (Fig. 1e),
despite the distinct genomic arrangement; consistent with
findings in E. coli in which guaA is not induced as a milieu-
specific response following culture in urine [11]. Together,
these observations hint at convergent systems of guanine-
dependent control of guaA regardless of spatial gene
arrangement disparities among members of the commensal
urogenital tract microbiota. Interestingly, some strains of
uropathogenic Escherichia coli upregulate guaA only dur-
ing active UTI but not during growth in pooled HU ex vivo
[11]; these findings suggest that there may be value in
examining the transcriptional activity of the gua genes in
the context of active S. agalactiae UTI in the host
environment.

Analysis of the role of guaA in bacterial colonization
in vivo revealed a marked attenuation in survival of guaA−

Streptococcus compared to the WT in urine of mice that
were experimentally infected by transurethral delivery of
bacteria to the bladder (Fig. 1f). A similar attenuation was
detected in the bladders 24 h after infection (Fig. 1g),

Fig. 1 guaA supports S. agalactiae growth in urine and coloniza-
tion of the mouse bladder. a Growth of WT and guaA-deficient S.
agalactiae were compared in human urine (HU), b synthetic human
urine (SHU), and c THB with guaA supplied in trans to complement
the mutation (ΔguaA::guaA). dWT and ΔguaA S. agalactiae grown in
the absence (Ctrl) or presence of 0.5 mM guanine-HCl (+Gua),
compared in the same growth conditions at the 24 h timepoint. e
Expression (fold change) of guaA and guaB was quantified from WT
S. agalactiae in SHU ± 0.5 mM guanine. Data shown are pooled

results of three to five independent assays, each using different batches
of HU and SHU; bars show means ± SEM, compared using area under
the curve and Student’s t tests. The number of bacteria recovered from
the (f) urine, and (g) bladders of female C57BL/6 mice at 24 h post-
inoculation. Data shown are from three independent experiments, each
with ≥7 mice per group. Data were compared using Mann–Whitney U
test (***p < 0.001). The bars represent medians, displayed with
interquartile ranges.
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illuminating a major role for guaA in mediating Strepto-
coccus survival and colonization in the urinary tract. Bac-
terial adaptation to this niche may represent an evolutionary
strategy toward commensalism [14]; the finding of guaA’s
contribution to S. agalactiae survival and colonization in
the urinary tract may offer new explanation of how other
gram-positive bacteria survive and persist in the urinary

tract, given a high degree of conservation in the sequence of
guaA among clinical isolates (Supplementary Table S2).
Additional mechanisms that underpin bacterial survival in
urine include acquisition of iron, malic acid metabolism,
and tolerance to D-serine [15]. Notably, Streptococcus
guaA also contributes to bacterial survival in other body
niches, including blood [16]; this is relevant given that S.

Fig. 2 Cross-phyla genetic organization and sequence diversity of
guaA among commensal bacterial genera of the human urogenital
tract microbiota. a Genomic arrangement of guaA and guaB homo-
logs in different bacterial species that colonize the urogenital tract
niche [23], using reference genomes of representative members of
selected genera for which sequence data are available. Where guaA
(red) and guaB (green) are separated, the number of bases between the
genes is indicated by dashed lines. In S. agalactiae 834, IS1381

insertion element is located at the 3′ end of guaA, which is often co-
located divergently from a GntR-type regulator in streptococci. Per-
centage identity to S. agalactiae guaA is shown in white text. †bac-
terial species for which some members are uropathogenic and cause
UTI [31]. b In staphylococci, guaA and guaB are adjacent to purine
salvage genes xpt and pbuX, and are controlled by an upstream
guanine-sensing riboswitch [12].
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agalactiae can spread haematogenously to cause pyelone-
phritis [17] and can also cause urosepsis [18]. A recent
clinical study reported that urine was the second most
common source for S. agalactiae bacteraemia [19]. In this
context, it is noteworthy that mammalian plasma contains
very low concentrations of purines and purine nucleosides,
which can vary during states of physiological stress and
disease [20].

In Firmicutes, including S. agalactiae, guaA is a hotspot
for mobile insertion elements [21, 22], offering potential for
genomic rearrangement at this locus. We analyzed the
genomic locations of guaA in streptococci and other com-
mensal bacteria of the human urogenital tract [23] to reveal
substantial cross-phyla diversity among Firmicutes, Bac-
teroidetes, Actinobacteria, and Proteobacteria, and an
organizational structure that is distinct from the guaAB
operon characteristic of many enteric bacteria and staphy-
lococci (Fig. 2) [12, 13]. Despite relatively conserved amino
acid sequences among the Firmicutes (62–89% homology)
analyzed in this study, guaA genetic organization as well as
sequence diversity is more apparent comparing between
other phyla (Figs. 2 and S1). Additional elements of gene
regulation and gene transfer are also apparent, including the
presence of guanine riboswitch sequences that effect tran-
scriptional activation and insertion sequences that reflect the
hotspot for integration.

The discovery that guaA is critical for survival of and
colonization by bacteria in urine aligns closely to studies of
nutritional immunity that show metabolic gene products can
be crucial to microbial fitness in a host. The ability of
microbes to persist and proliferate in host niches depends on
essential nutrient provision, which can stem from the host or
be synthesized de novo. A widely studied example is iron
acquisition and the counteraction of iron limitation by the
host to restrict microbial growth, which might be harnessed
to medicinally target bacteria [24]. Only certain nutrients
are limiting in urine [10] and guanine is one of these for
different types of bacteria. More broadly, previous studies
that have identified selective inhibitors of guanine-related
metabolic pathways have used such compounds to treat
infection [25]. Interestingly, a prior study demonstrated that
infection of the mouse bladder with S. agalactiae 834
engages the innate immune response to generate an
inflammatory, chemotactic, and regulatory cytokine milieu
[26]. Thus, at least in mice, the host significantly activates
immune defenses in response to this bacterium, which was
isolated from the urine of an asymptomatic adult [27, 28].
Some patterns of cytokine production in mice with acute
UTI parallel immune responses that occur in humans with
UTI, as reviewed elsewhere [29]; however, reconciling the
asymptomatic nature of S. agalactiae 834 as a clinical
isolate with stimulation of innate immune responses in mice
will require further study.

Some bacteria, such as E. coli can behave as a commensal
organisms in some host niches such as the gut, but not in
other host niches such as the urinary tract (where the bacteria
cause inflammation and persists in the absence of antibiotic
treatment) and the vagina [30]. Further understanding of S.
agalactiae as a commensal of the human urogenital tract and
an opportunistic pathogen will require analysis of the bac-
teria’s requirements for survival in different host niches. It
will be of interest to study the genetic organization of guaA
and other genes (for guanine salvage), the regulatory
mechanisms of their activities in relevant models of infection,
and characterize the role of metabolic gene products,
including guanine as potential targets for microbial control. A
proposed pathway for guanine metabolism in S. agalactiae is
illustrated in Supplementary Fig. S2. Work on other com-
mensal microbes should examine guanine utilization in host
niches, given the diverse environmental and host tissue
habitats that these microbes encounter.
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