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Introduction

An environment is often best understood by the physiol-
ogy of the organisms that inhabit it. In microbial ecology,
the description of how microorganisms contribute to the
functioning of their ecosystem is a daunting task, owing to
their phylogenetic and physiological diversity, and our
limited capacity to study them in their habitat, e.g., the
deep sea. Categorization of microbes into functional
groups that reflect either specific processes or habitat
constraints is one approach to address this. However, this
requires robust definitions of such groups. Where spe-
cialized structures or metabolic pathways exist, definition
of such groups based on diagnostic genes or proteins is
often possible. In contrast, where groups are to be defined
based on habitat constraints for cell growth multi-
dimensional stimuli must be considered, which is often
challenging. The variation of hydrostatic pressure (HP),
temperature (T), salinity, pH, oxygen availability, water
activity, and radiation over evolutionary times contributed
to shape the present microbial diversity, and still define
the countless ecological niches on Earth. The biochemical
adaptation to these different physicochemical stimuli may
be similar (e.g., increase in unsaturated fatty acids [in

Bacteria] or glycerol ether lipids [in Archaea] at high HP
or low T; increase in ω-alicyclic fatty acids at high T or
low pH; accumulation of polar organic solutes at low
water activity or high T, HP, salinity or radiation; Mn2+

accumulation at high radiation or low water activity [1]).
Nonetheless, some trade-offs exist which limit the capa-
city of microbes to grow under different combinations of
conditions [2]. A clear definition of the operative
boundaries imposed by such factors is key to the con-
ceptual and practical use of functional groups. HP in the
deep sea is one example.

HP is the force exerted on an area by a fluid at rest. The
most pervasive effect of HP is its influence on inter-
molecular distances, where in addition to gas volumes it
affects conformation of polynucleotides (DNA and RNA),
lipid bilayers, and multimeric proteins [3]. Increased HP is
experienced by planktonic crustaceans, and marine inver-
tebrates, fish, and deep-diving mammals, and is character-
istic of the largest microbial habitats on Earth i.e. the deep
sea and subseafloor [4] where Bacteria and Archaea thrive
at tens of MPa [5]. In food and medicine production, ele-
vated HPs are managed to inactivate HP-sensitive patho-
gens and viruses [6]. However, a systematic categorization
of microbial fitness constraints in response to HP is missing.
Such preference is generally referred to as piezophily,
descriptive of microorganisms growing better at increased
HP, with obligate piezophiles (or hyperpiezophiles) unable
to grow at ambient pressure, and piezosensitive strains
growing best at ambient pressure. Although such simple
concepts recognize the effect of HP on microbes, they do
not yet provide a useful basis to truly define how HP gra-
dients influence biogeochemical processes. At what depth
are piezosensitive microorganisms outcompeted by piezo-
philes? Do such transitions shape the rates of key processes
for ecosystem modeling? Are transition points similar in all
water bodies or do they vary with other physicochemical
properties such as T or salinity?
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HP linearly increases by 1MPa every 100 m below
seawater level (bswl), and about three times as much below
seafloor level (bsfl) [3]. Enhanced growth at elevated HP
has been used to locate the beginning of the piezosphere at
corresponding depths (e.g. 1000 m bswl if HP was equal to
the corresponding ~10MPa). However, different HP
thresholds were proposed for both piezophiles and hyper-
piezophiles: ≥10MPa [7]; ≥10MPa for piezophiles and ≥50
MPa for hyperpiezophiles [8]; >0.1 MPa for piezophiles and
≥60MPa for hyperpiezophiles [9], but indicating moderate
piezophily if the HP optimum [HPopt] of an isolate under
investigation was between 10 and 30MPa [10]; ≥40MPa
(as the average oceans depth is ~3750 m bswl [11]). Fol-
lowing deep-sea sampling, isolation, and lab-scale testing, a
seminal work by Yayanos in 1986 proposed that ‘true’
piezophiles populated waters at least 2000 m bswl (≥20
MPa). This work introduced the significant concept of PTk
diagrams, where growth rates are plotted in three-
dimensional graphs versus HP and T. Such multi-
dimensional space describing growth limits aligns well with
the principle of ecological niches formalized by Hutchinson
[12]. Defining piezophily by relationship between HP and
growth rate is limited by the fact that other parameters (e.g.
T) also impact growth rate. PTk diagrams provide a means
to visualize the relationship between HP, T and growth rate,
with the maximum growth rate [μmax] observed when con-
comitantly adjusting HP and T to an optimum. Yayanos
work was almost exclusively based on psychrophiles
(microorganisms with a T optimum [Topt] ≤15 °C). The
isolation of several new piezophiles in recent years, parti-
cularly with Topt >15 °C, is an opportunity to revise the role
of T on the growth of piezophiles.

Deep-sea environments exposed to elevated HPs com-
monly experience low T (<5 °C). At polar regions, T
decreases <5 °C already at ~100 m bswl, while at warmer
low and middle latitudes T decreases rapidly along a per-
manent thermocline to ~5 °C at ~1000 m bswl [13].
Exceptions are the deep, warm Sulu, Mediterranean, and
Red Sea (~10, 13.5, and 20 °C at seafloor, respectively, at
depths of ~4400, 5270, and 3040 m bswl). At hydrothermal
vents as deep as 5800 m bswl (http://vents-data.interridge.
org) microorganisms may grow >110 °C. In deep sub-sea-
floors, T increases 25 °C every km underground [9, 14].
Notwithstanding the many HP–T combinations in the
environment, this correlation has not been systematically
addressed. This lack of information can lead to a poor
understanding of the true operative boundaries of a micro-
organism. For instance, thermophilic isolates collected from
surface waters and theoretically belonging in that environ-
ment have shown to grow best at higher T when con-
comitantly increasing HP, in both Archaea (Methanococcus
thermolithotrophicus [15]) and Bacteria (Clostridium
paradoxum [16]).

Piezophiles separate in three functional groups
based on T

To date, the most commonly accepted definition for pie-
zophily states that piezophiles show a μmax above the
atmospheric pressure of 0.1 MPa. At the time of writing,
there are only 86 documented microbial isolates with a
HPopt > 0.1 MPa, an incredibly small number for a condition
featuring the largest reservoir of prokaryotes on the planet
[4]. To determine if T exerts an ecologically-relevant effect
on the relationship between HP and optimal growth rate, all
μmax values in described piezophiles were plotted versus
either HPopt (Fig. S1A) or Topt (Fig. S1B). This would
explain growth based on HP or T independently of one
another. High HPopt is consistent with low μmax while the
opposite is true for Topt. However, no strict correlation
appears evident. Piezophiles were then divided for T pre-
ference neglecting HPopt. Microbial preference for T does
not result in subgroups with precise boundaries [17].
However, microorganisms with Topt ≤15 °C are generally
referred to as psychrophiles [18] and those with Topt ≥50 °C
as thermophiles [19], the resulting mesophiles having 16 <
Topt < 49 °C. The average μmax in piezopsychro-, piezo-
meso- and piezothermophiles increases with T namely 0.22
± 0.13, 0.42 ± 0.38 and 1.25 ± 0.84 h−1 (Table 1, all data in
Table S1). Only the average μmax in piezothermophiles is
significantly different from the other groups (t-test, p <
0.0011). The opposite approach (i.e. neglecting T classifi-
cation) was attempted using the HP thresholds suggested by
Yayanos [9]: piezophiles >0.1 MPa up to 60MPa; and
hyperpiezophiles >60MPa, however, no significant differ-
ence was found (p > 0.05, average μmax equal to 0.55 ± 0.61
and 0.41 ± 0.69 h−1, respectively).

When accounting for the combined effects of HP and T
on growth, a distinction of functional piezophilic groups
emerges. Since both HP and T influence growth rate, the
HPopt and Topt of every piezophile was divided by their μmax

to normalize the relationship across the available strains
(Fig. 1). This revealed a correlation between HP and growth
rate only when separating piezophiles in the three T-defined
subgroups piezopsychro-, piezomeso- and piezo-
thermophiles, as it can be inferred by the large variations in
the axes of Fig. 1. Within each subgroup, the normalized
HPopt and Topt of all strains have an exponential correlation
(R2 equal to 0.62 (n= 37), 0.78 (n= 12) and 0.58 (n= 17),
respectively). The data points for Profundimonas piezophila
YC-1 and Rhodobacterales bacterium PRT1 were removed
from piezopsychrophiles, as they are the slowest piezo-
philes isolated so far (μmax < 0.02 h−1) and plot out of scale.
Their inclusion increases R2 from 0.62 to 0.87. For the same
reason Archaeoglobus fulgidus VC-16T was removed from
piezothermophiles, its inclusion slightly reducing R2 from
0.58 to 0.54.
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Variations in T and HP can affect membrane fluidity
(phospholipid fatty acids packing and conformation, affect-
ing proton influx/efflux) and protein folding (structural dis-
ruption affecting activity). The subdivision of piezophiles
into three functional T subgroups suggests that the evolu-
tionary cellular adaptation to the constraints imposed by HP
occurred within the boundaries of three subsets of T.
However, the environment is not a two-dimensional space
described by HP and T alone. Aside T [20], growth rates at
increased HP may also depend on diversity and concentra-
tion of available nutrients [21], main carbon and energy
substrate [7, 22], pH [23] and salinity [2]. For instance,
variations in salinity in cold (e.g. Orca Basin, 5 °C), warm
(e.g. Nereus Basin, 30 °C) and hot (e.g. Atlantis II Deep, up
to 68 °C) deep brine pools (~2400, 2500, and 2200 m bswl,
respectively) may have additionally imposed a considerable
water activity stress, affecting protein folding and turgor
pressure. Cells maintain iso-osmosis with the environment
by intracellular accumulation of salts (requiring the mole-
cular adaptation of all intracellular enzymes) or organic
compatible solutes (an energy-demanding strategy) [24].
Understanding how these halophiles’ evolution has been
constrained by concurrent HP and T boundaries requires a
sizeable collection of isolates.

Estimating habitat preferences

The relationship between piezophiles’ capture depth and
HPopt is reported (Fig. 2A). The almost linear correlation
found with piezopsychrophiles (R2= 0.69, n= 48) may
reflect their habitat, the contiguous cold seawaters where
HP increases linearly to the seafloor (Fig. 2B, as derived
from Figs. S2–S4). The small discrepancy between the
linear increase in HP with capture depth (HPcapt) and HPopt
(dotted vs. straight line, Fig. 2A) indicates that in piezo-
psychrophiles HPopt < HPcapt, consolidating previous
observations on few isolates [25, 26]. As cold T and high
HP impose similar constraints on cells [27], piezo-
psychrophiles may also inhabit permanently cold surface
waters at polar regions (−1.8 to 5 °C [13]; yellow lines,
Fig. 2B). Piezomesophiles inhabit warm and deep anaerobic
sediments up to ~2500 m bsfl. However, in 4/6 isolates
collected underground HPopt«HPcapt (at least 2.4 times),
suggesting that definition of piezomesophiles true max-
imum HPopt in sub-seafloors may require improved HP
retainers. The warm, geographically limited seawaters of the
Mediterranean, Sulu, and Red Sea (in orange, Fig. 2B) are
another habitat for piezomesophiles, although rarely col-
lected there (1/11, Table S1B). The irrelevant correlation
between their capture depth and HPopt (R

2= 0.03, n= 11)
highlights the high resilience of sinking piezomesophiles in
colder, deeper seawaters (HPcapt ≥HPopt in 9/11) where they
may compete with piezopsychrophiles. Similarly, high TTa
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tolerant piezomesophiles (as those collected close to
hydrothermal vents; 4/11, Table S1B) may compete with
piezothermophiles. Piezothermophiles are mostly Archaea
(15/21). No correlation between capture depth and HPopt is
evident (R2= 0.07, n= 21), even when removing the six
Bacteria (R2= 0.11, n= 15). While piezothermophiles’
most obvious habitat are deep hydrothermal vents (18/21,
Table S1C; in red, Fig. 2B), those collected at hot vents
have HPopt > HPcapt (16/18), possibly because the cellular
constraints imposed by high T can be compensated with
increased HP [15, 16, 28–31].

Competitive advantage of piezophiles

The piezosphere is also inhabited by piezosensitive micro-
organisms [32]. The minimum HP setting a competitive
advantage for piezophiles remains fairly unclear. The lowest
HPopt observed so far differs according to T: in

piezopsychrophiles, eight isolates have HPopt between 10
and 20MPa (except for Shewanella sp. SC2A at 7MPa,
whose growth rate is however almost identical until
14 MPa, 0.076 vs. 0.072 h−1, respectively [25]); in piezo-
mesophiles, the lowest HPopt is 10MPa; in piezo-
thermophiles it is 20MPa (except for Thioprofundum
lithotrophica 106 at 15MPa). The present data thus sug-
gests that at ≥20MPa piezophiles consistently possess a

Fig. 1 Correlation between optimal HP and temperture with
respect to maximum growth in piezophiles. The rate increase
between HPopt (HPopt/μmax) and Topt (Topt/μmax) is described for pie-
zopsychro- (A), piezomeso- (B), and piezothermophiles (C). Statistical
correlation was obtained with GraphPad Prism 5, nonlinear regression,
exponential growth equation, least square (ordinary) fit.
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Fig. 2 Correlation between optimal HP and capture depth in
piezophiles, and estimation of their habitat. In (A) the straight line
indicates the linear regression for piezopsychrophiles (R2= 0.69, n=
48) as obtained with GraphPad Prism 5, linear regression; the dotted
line indicates the linear increase of HP with increasing depth in sea-
water; all data in Table S1. Keys reported in the graph. In (B) the
global topography reporting oceans depth, surface temperature, and
plate boundaries was obtained by over imposing three maps from the
NOAA (National Center for Environmental Information; all data
available in Supplementary Information). Keys: color scale for oceans
seawater depth reported on the map as meters below seawater level (m
bswl). Yellow lines indicate where surface temperature at polar seas is
permanently <5 °C (data averaged from 1985 to 2010); thus, at low
and mid latitude in between yellow lines surface temperature can be
higher than 5 °C. Red lines indicate plate boundaries, where hydro-
thermal vents most commonly are found. Red dots indicate hydro-
thermal vents not on plate boundaries. The warm and deep
Mediterranean, Sulu and Red Sea are highlighted in orange.
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competitive advantage irrespective of T. This aligns with
Yayanos’ proposal on piezopsychrophiles [20]. None-
theless, piezopsychro- and piezomesophiles may have an
increasingly competitive advantage already ≥10MPa. This
may indicate that piezophiles could be collected from deep
freshwater lakes as Lake Baikal and Tanganyika (1642 and
1470 m depth, respectively, at 16 and 14MPa).

Hyperpiezophiles

Hyperpiezophiles are microorganisms that cannot grow at
ambient pressure. There are several hyper-piezopsychrophiles
(11/48), no isolated hyper-piezomesophiles, and just one
isolated hyper-piezothermophile (Pyrococcus yayanosii CH1)
(Table 1). The lowest HPopt of hyper-piezopsychrophiles is
50MPa (3/11 strains) and their shallowest capture depth is
6000m bswl (Table S1), which aligns with the depth of
abyssal plains. The fact that HP at the onset of abyssal plains
is slightly higher than hyper-piezopsychrophiles’ lowest HPopt
(~60 vs. 50MPa) mirrors the small discrepancy noted for all
piezopsychrophiles (Fig. 2A), overall indicating that hyper-
piezopsychrophiles are autochthonous in deep, cold hadal
trenches.

Updated definitions

The most widely shared definition of microbial preference
for increased HP states that a microorganism is piezophilic
when its μmax is observed at HPs >0.1 MPa. By setting the
threshold to such a low value, this definition neglects the
large variation in HP preference among described piezo-
philes, and the differential effects enhanced HP may impose
on the vast diversity of microbial processes in nature.
Assessing optimal growth rates by cultivation is required to
identify the exact threshold level above which HP-adapted
microorganisms clearly separate from those thriving at
ambient pressure. In the present meta-analysis, the rele-
vance of HP–T combinations first described by Yayanos
[20] was updated to include all currently described piezo-
philes. The following updated definitions and perspectives
on their application are proposed:

(1) HP–T relationship constrains μmax, and defines three
functional groups based on T: piezopsychro-, piezomeso-,
and piezothermophiles. These functional categories should
be used to understand how piezophiles contribute to the
functioning of deep-sea environments experiencing differ-
ent HP–T combinations.

(2) Capture depth is a poor predictor of piezophilic traits,
as piezosensitive and piezophilic groups are intermixed in
the oceans.

3) A competitive advantage to piezophiles over piezo-
sensitive is predicted to begin at 10MPa and to consistently
exist irrespective of T at HPs ≥20MPa. Ecological

modeling should specifically account for HP effects on
biogeochemical processes beyond this point.

4) Hyper-piezopsychrophiles are autochthonous in hadal
trenches. Their competitive advantage over piezo-
psychrophiles begins at HP ≥ 50MPa. This threshold should
be considered for ecological modeling of hadal trenches.
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