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Abstract
Authigenic carbonates represent a significant microbial sink for methane, yet little is known about the microbiome
responsible for the methane removal. We identify carbonate microbiomes distributed over 21 locations hosted by seven
different cold seeps in the Pacific and Atlantic Oceans by carrying out a gene-based survey using 16S rRNA- and mcrA gene
sequencing coupled with metagenomic analyses. Based on 16S rRNA gene amplicon analyses, these sites were dominated
by bacteria affiliated to the Firmicutes, Alpha- and Gammaproteobacteria. ANME-1 and -2 archaeal clades were abundant in
the carbonates yet their typical syntrophic partners, sulfate-reducing bacteria, were not significantly present. Based on mcrA
amplicon analyses, the Candidatus Methanoperedens clades were also highly abundant. Our metagenome analysis indicated
that methane oxidizers affiliated to the ANME-1 and -2, may be capable of performing complete methane- and potentially
short-chain alkane oxidation independently using oxidized sulfur and nitrogen compounds as terminal electron acceptors.
Gammaproteobacteria are hypothetically capable of utilizing oxidized nitrogen compounds and may be involved in
syntrophy with methane-oxidizing archaea. Carbonate structures represent a window for a more diverse utilization of
electron acceptors for anaerobic methane oxidation along the Atlantic and Pacific Margin.

Introduction

Authigenic carbonates consisting of different minerals and
growing in various sizes and morphologies form at cold
seeps precipitating at or near the sediment-water interface or
buried within the sediment column, with chemosynthetic
communities such as mussels and microbial mats attached

to exposed carbonates [1–10]. Cold seeps vary in their
degree of activity ranging from intense gas discharge to
dormant sites, and changes in activity can occur over time
[11, 12]. Several hundred seeps can be found along the
United States Atlantic over a large range of depths within
and outside the gas hydrate stability zone [13], similar to
along the Pacific Margin [14], with active seafloor fluid
seepage recently documented along the Queen Charlotte
Fault [15]. The removal of methane from seeps plays a
significant role in the marine carbon cycle and occurs pre-
dominantly via microbial anaerobic oxidation of methane
(AOM) [16, 17] representing a long-term storage and
sink via the formation of methane-derived authigenic car-
bonates [18–20].

AOM can be mediated by symbiotic consortia of anae-
robic methane-oxidizing archaea (methanotrophs, ANME)
and sulfate-reducing (SRB) or sulfur-disproportionating
bacteria [21–29]. Three distinct ANME clades and their
subgroups distantly related to the Methanosarcinales and
Methanomicrobiales, have been identified in association
with sulfate reducing bacteria: ANME-1 (ANME-1a,1b),
ANME-2 (ANME-2a-c) and ANME3. Members of ANME-
1 and ANME-2 in association with SRB affiliated to the
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Desulfosarcina/Desulfococcus group [30] and ANME-3
found in association with the members of the Desulfobulbus
group [31, 32] have been detected oxidizing the seafloor
methane and channeling reducing equivalents to their syn-
trophic partner [3, 8]. Electrons generated from methane
oxidation are likely transferred into nitrate or sulfate
through cytochromes mediating electron transfer from
ANME to syntrophic sulfate reducing bacteria as described
in previous studies [33–35]. AOM coupled to sulfate
increases the alkalinity of the porewater promoting the
precipitation of calcium carbonate by producing two units
of alkalinity per one unit of dissolved inorganic carbon
resulting in the formation of alkaline 13C-depleted carbo-
nates [9, 36–40]. Isotopic analysis, lipid biomarker and 16S
rRNA gene analyses revealed the presence and activity of
ANMEs carrying out the AOM and favoring the precipita-
tion of methane-derived authigenic carbonates [1, 5, 36, 40–
48]. AOM coupled to sulfate reduction has been most
extensively studied due to the abundance of sulfate in
marine systems. Nitrate, nitrite and metal oxides can also
act as electron acceptors of AOM mediated by members of
the archaeal family Candidatus Methanoperedenaceae,
formerly known as ANME-2d [49–52]. These electron
acceptors have been mostly overlooked in deep marine
environments.

Previous investigations from well-studied seep sites
showed that carbonates in the Black Sea and at Hydrate
Ridge in the Pacific Ocean host active bacterial commu-
nities consisting predominantly of Alpha-, Gamma-, and
Deltaproteobacteria and archaeal communities notably
dominated by ANME-1a-b but also members of ANME-2a-
c and the thaumarchaeotal lineage Marine Benthic Group B
[29, 43, 46, 47, 53, 54]. Bacterial communities were more
dependent on the physical substrate type of the carbonate
sites, whereas archaeal members affiliated to ANME groups
were more dependent on the methane flux activity [45].
Microbial communities of carbonate are dynamic and react
to seepage activity [53]. However, much is still unknown
about the microbiome of deep-sea carbonates, including the
large-scale biogeography.

In this study, we describe the mineralogy, chemical para-
meters, and the microbial community structures and functions
of the carbonates at acive seep sites sampled from the Atlantic
and Pacific margins. We employed single gene diversity
surveys using both 16S rRNA and mcrA genes in association
with metagenomics to investigate 21 carbonate samples iso-
lated from seven different seep sites across the Atlantic and
Pacific Oceans. Our analyses focused on comparing the
microbial community structures of these geographically dis-
tinct authigenic carbonates, investigating their methane-
oxidizing communities and identifying the repertoire of the
electron acceptors that could be potentially utilized by these
microbes and/or their proposed syntrophic partners.

Materials and methods

Sample collection and study site

Authigenic carbonate samples were collected from cold
seeps along the United States Atlantic Margin (USAM) and
Pacific Margin as part of regional efforts to better under-
stand the linkages between geology, tectonics, biology, and
methane availability along a passive margin and transform
fault. In 2012, 2013, 2017, and 2018 authigenic carbonates
were collected from Norfolk Canyon, Baltimore Canyon,
Washington Canyon, Chincoteague, Pea Island and Blake
Ridge near previously identified USAM methane seeps
from a large range of depths including well within the gas
hydrate stability zone, and less than 500 m water depth,
outside the methane hydrate stability field [9, 13, 55, 56].
Samples were collected onboard the NOAA ship Nancy
Foster (NF-12-14) using the Kraken II ROV (University of
Connecticut, USA), the NOAA ship Ronald H. Brown (RB-
13-05) using the Jason II ROV (Woods Hole Oceano-
graphic Institution, USA), the R/V Hugh Sharp (HRS-17-
04) using the Global Explorer (Oceaneering, 2017), and
R/V Atlantis (AT41) using the Deep Submergence
Vehicle Alvin (Woods Hole Oceanographic Institution,
USA). Along the Queen Charlotte Fault, authigenic car-
bonate samples were collected onboard the R/V John P.
Tully in 2011, 2015, and 2017 by either a grab sampler
developed capable of collecting 1-m [3] sample of rela-
tively undisturbed sediment or rock, or from a piston corer
at water depths ranging from 507 to 1003 m [15].
When available, bottom water and pore water sampling
associated with the authigenic carbonates was accom-
plished using Niskin bottles and push cores, respectively
(Supplementary Table 1 and Supplementary Fig. 1).
Samples were immediately processed in the laboratory as
outlined below.

Carbonate and water chemical analyses

Upon collection, carbonate samples were frozen for storage
until analysis. A portion of each carbonate sample was
homogenized to a fine powder in preparation for inorganic
geochemical analysis. Subsamples were used to determine
carbon content, stable isotope composition, and mineralogy
following methods described in Prouty et al. [9, 10]. In
brief, carbon content was measured by a UIC Coulometrics
CM5012 CO2 coulometer via combustion (USGS Sediment
Laboratories, Santa Cruz, CA), carbonate carbon (δ13C) and
oxygen (δ18O) isotope composition was determined using
Thermo-Finnigan MAT 253 with a Kiel IV Automated
Carbonate Prep Device (University of California, Santa
Cruz Stable Isotope Lab), and mineralogy was determined
by X-ray diffraction (XRD) using a Philips XRD with
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graphite monochromator at 40 kV and 45 mA (USGS
Marine Minerals Laboratory, Santa Cruz, CA).

Porewater samples were extracted using Rhizon samplers
(0.15 μm pore size) [57] inserted into the liner of either
sediment push cores or piston cores and stored frozen. Sedi-
ment surface water was collected from the push cores using a
vacuum pump and bottom water samples were collected using
a Niskin directly attached to the ROV or CTD rosette and
filtered using an in-line 0.45 μm filter. Nutrients were ana-
lyzed via flow injection analysis for NH4

+, Si, PO4
3-, and

[NO3
-+NO2

-], with precisions of 0.6–3.0%, 0.6–8%,
0.9–1.3%, and 0.3–1.0% relative standard deviations,
respectively at the University of California at Santa Barbara’s
Marine Science Institute Analytical Laboratory.

DNA extraction

Authigenic carbonates were crushed and homogenized asep-
tically using a homogenizer. The carbonate homogenate was
subsequently transferred to sterile power bead tubes provided
by Qiagen (Hilden, Germany). DNA was then extracted using
the DNeasy® Ultra Clean® Microbial Kit according to the
manufacturer’s instructions (Qiagen). The DNA pellet was
washed with 70% (v/v) ethanol and resuspended in 50 μL
nuclease free water (Qiagen). Agarose gel electrophoresis and
a RiboGreen assay (Qubit Assay Kit, Invitrogen, Life Tech-
nologies Corporation, Oregon, USA) were used to analyze the
DNA concentration and purity according to the manu-
facturer’s instructions. The extracted DNA was used as tem-
plate for bacterial and archaeal 16S rRNA gene and mcrA
gene, encoding for the methyl coenzyme M reductase,
sequencing as well as for metagenomic sequencing.

16S rRNA and mcrA gene sequencing

Amplicon libraries were generated from the DNA by fol-
lowing Illumina’s 16S Sequencing Library Preparation Pro-
tocol. The universal primer pair 515F/806R targeting the V4
hypervariable region of the bacterial and archaeal 16S rRNA
genes [58–60] and the mcrA primer pair mcrAF/mcrAR
encoding for the methyl coenzyme M reductase [61] were
used for the initial amplification. PCR products were purified
using the GeneJET Gel Extraction Kit (Thermo-
FisherScientific, Vilnius, Lithuania) and quantified using a
fluorometric RiboGreen kit (Qubit Assay Kit, Invitrogen, Life
Technologies Corporation, Oregon, USA) according to the
manufacturer’s instructions. Purified amplicons were multi-
plex sequenced using the Illumina MiSeq platform (Microbial
Analysis, Resources and Services, UConn Biotechnology
Bioservices Center, Stamford, CT, USA) according to Lange
et al. [62] Denoising chimera removal and trimming of poor
quality read ends were performed using QIIME 1.9.1. (https://
qiime.org) [58] Reads were clustered into OTUs with >97%

sequence similarity using the uclust_ref algorithm [63] and
the SILVA Database (v.132; https://www.arb-silva.de) [64].
Statistical analyses of the datasets were carried out according
to Clarke [65] using R (Vienna, Austria) and XLSTAT
(AddinSoft, Paris, France).

Metagenomic community profiling

Metagenomic libraries were prepared from the carbonate
samples collected from Norfolk Canyon and Queen Char-
lotte Fault sites. DNA sequencing was conducted at the
University of Delaware DNA Sequencing and Genotyping
Center (Newark, DE, USA) on an Illumina NextSeq
sequencer. The raw sequencing data were processed with
Trimmomatic [66] to remove Illumina adapters and low
quality reads (“SLIDINGWINDOW:10:25”). The quality-
controlled reads from the two samples were de novo co-
assembled into contigs using Megahit v.1.1 [67] with the k-
mer length varying from 27 to 117. Contigs longer than
1000 bp were automatically binned using MaxBin2 [68].
The resulting MAGs were quality assessed using CheckM
[69]. Genome bins of >50% completeness were manually
refined using Vizbin based on t-SNE signatures [70] and the
gbtools [71] based on the GC content, taxonomic assign-
ments, and differential coverages in different samples.
Coverages of contigs in each sample were determined by
mapping trimmed reads onto the contigs using BBMap
v.37.61 [72]. Taxonomy of contigs were assigned according
to the taxonomy of the single copy marker genes in contigs
identified using a script modified from blobology [73] and
classified by BLASTn. To improve the quality of the
recovered genomes, we recruited reads from highest-
abundance-sample (i.e., highest genome coverage) using
BBMap as described above, and the recruited reads were re-
assembled using SPAdes v.3.12.0 [74]. After removal of
contigs shorter than 1 kb, the resulting scaffolds were
visualized and re-binned manually using gbtools [71] as
described above. The quality of the resulting MAGs were
checked using CheckM v.1.0.7 [69] with the “lineage_wf”
option. MAGs were dereplicated using dRep (version
v2.0.5 with ANI > 99%) [75] and the most complete MAG
per group was selected for downstream analyses. Encoded
proteins were predicted using Prodigal v2.6.3 applying the
default translation table [76]. Contigs were annotated using
Prokka v.1.1268 [77]. Proteins were queried against the
KEGG database using GhostKOALA [78].

Phylogenomic and phylogenetic analysis

Phylogenomic positions of the recovered MAGs were pri-
marily evaluated using a concatenated alignment of 120 sin-
gle copy marker genes implemented in GTDB_TK for the
bacterial MAGs and 122 single copy marker genes for the

Expanding the repertoire of electron acceptors for the anaerobic oxidation of methane in carbonates in. . . 2525

https://qiime.org
https://qiime.org
https://www.arb-silva.de


archaeal MAGs. The phylogenomic positions of the MAGs
were further confirmed via a single phylomarker gene
approach. We primarily used the small ribosomal protein 3
(RPS3), which is commonly used in phylogenetic analysis
because of its known strong phylogenetic signals [79, 80]. In
cases where the MAGs were missing RPS3, the taxonomic
positions of the MAGs were confirmed using RPL2.
Maximum-likelihood trees were calculated based on two
single ribosomal proteins (L2 and S3) using IQ-Tree (v1.6.6)
[81] (located on the CIPRES web server) [82]. Evolutionary
distances were calculated based on best fit substitution model
(VT+ F+R10), and single branch location was tested using
1000 ultrafast bootstraps and approximate Bayesian compu-
tation, branches with bootstrap support >80% were marked by
black circles. Also, the Putative taxonomic ranks for obtained
MAGs were further evaluated using average Amino Acid
Identity and the taxonomic affiliations of the contigs using
blastn against non-redundant (nr) and UniProtKB databases.

Metabolic reconstruction and functional annotation
of the MAGs

Predicted proteins from all MAGs were screened using HMM
search tool against modified custom HMM databases [83]
representing the key genes for different microbial energy
metabolism (electron donors and acceptors), and various
biogeochemical cycles including sulfur and nitrogen (see
supplementary material for HMM databases). The completion
of the pathways was assessed through querying the predicted
proteins against KEGG database using BlastKoala tool [78].

Functional protein-based trees

All functional protein-based trees were built by aligning the
query protein sequences to the reference sequences
belonging to the same protein family using Muscle v3.8.31
[84]. Reference sequences were collected from AnnoTree
using the corresponding KEGG entry as search keyword
[85]. Aligned sequences were manually curated using
Geneious v9.0.5 (https://www.geneious.com). The phylo-
genetic trees were computed using IQ-TREE (v1.6.6) [81],
through the CIPRES web server and the evolutionary rela-
tionships were described using the best fit model. Branch
locations were tested using 1000 ultrafast bootstraps and
approximate Bayesian computation. The McrA alignment is
available in the supplementary material.

Results and discussion

This study examined 21 carbonate samples representing 7
different authigenic carbonate-based methane seeps from

the Atlantic and Pacific Margin. Geochemical and
mineralogical examinations were performed on carbonate
material and the surrounding environment. Microbial
community compositions were assessed based on 16S
rRNA gene analysis. The key microbial players of the
methane cycle in the authigenic carbonates were identified
using a large scale mcrA gene-based survey. The
overall functions of the microbial communities and
potential metabolic interactions were evaluated through
metagenomic and metagenome-assembled genomes
(MAG) analyses.

Geochemical characteristics of authigenic
carbonates in spatially distributed seep
environments

Composition and geochemical characteristics of authi-
genic carbonates collected from seven different active
seep sites, located in the along the Atlantic and Pacific
Margins, were analyzed (Fig. 1, Table 1, Table S1).
Carbonates were sampled from different water depths
ranging from 342 to 2169 m between the years 2012 and
2018 and are aragonite dominated, with contributions
from dolomite, calcite, and quartz (Table 1). The δ13C and
δ18O values indicate a variety of processes and fluids
involved in the formation of each carbonate, considering
the wide range in values (Table 1). For example, the range
in carbonate δ13C values suggests mixing between
microbial methane and thermogenic hydrocarbon sources
[86], whereas the δ18O values indicate potential influence
from 18O-enriched fluid source. At select seep sites, bot-
tom water and porewater from push cores were taken next
to the carbonate sampling sites and measured for nutrient
concentrations (Table S1). The sediment surface and
bottom water revealed nitrite and nitrate concentration up
to 3.95 μM and up to 23.59 μM, respectively. The pore-
water was characterized by high ammonium concentra-
tions ranging from 17 to 163 μM. Carbonates represent a
habitat structure were methane comes in contact with
nitrate and nitrite, suitable oxidants for AOM. Sulfate is
abundant in seawater and sulfate-dependent AOM was
detected in seawater systems with sulfate concentrations
of 2 mM sulfate or lower [42, 87–89]. As such, multiple
electron acceptors may be available for methane oxida-
tion. As a caveat, since methane oxidation was not tested
via geochemistry, we are using the microbial community
to serve as indicators of potential methane oxidation.
However, it has been shown that carbonate structures have
malleable microbial communities and microbial compo-
sition may reflect age or seepage activity [53]. All of our
samples were collected within 20 m of active seepage
activity (Fig. 1).
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Fig. 1 Map of sample locations, photos of samples. Map of the
Pacific (A) and Atlantic Margin (B), red circles indicate the locations
of origin of the authigenic carbonate samples used in this study,
accompanied by images showing the carbonate collection at Baltimore
Canyon (C1-2), Norfolk Canyon (D1-2) and Queen Charlotte Fault
(E1, F1) and the sampled carbonates and their structure (C3-4, D3-4,
E2-3, F2-3). Samples were collected at Baltimore Canyon, Norfolk

Canyon, Washington Canyon, Chincoteague Seep, Pea Island Seep
and Blake Ridge Seep on the Atlantic Margin and along Queen
Charlotte Fault on the Pacific Margin at water depths ranging from
342 to 2169 m and 492 to 1003 m, respectively. The base map is
derived from Global Multi-Resolution Topography (GMRT) [99],
GeoMapApp.
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Microbial community structures of the Atlantic and
Pacific Margin carbonates show a disconnection
between ANME and SRB

The microbial community compositions in all carbonates
from the Atlantic and Pacific Margins were analyzed using
gene-based approach targeting both 16S rRNA and mcrA
gene sequences (Fig. 1). Both bacterial and archaeal lineages
were represented in all carbonate samples from all sampling
sites of the Atlantic and Pacific Margin via 16S rRNA gene
sequencing (Fig. 2). The 16S rRNA gene analyses indicated
that bacterial communities comprise 70–90% of the total
microbial communities and were dominated by lineages
belonging to Alpha- and Gammaproteobacteria, Firmicutes,
and Bacteroidetes (Fig. 2). Euryarchaeota dominated the
archaeal communities, comprising up to 31% of the total
microbial community composition harboring predominantly
archaea affiliated to the ANME-1, ANME-2 and ANME-3
clades. No methanogenic archaea were detected via the 16S
rRNA gene amplicon analysis.

We found multiple bacterial lineages belonging to dif-
ferent metabolic groups that could serve as potential syn-
trophic partners for the ANME. This is consistent with
previous results from Norfolk and Baltimore Canyon seep
sites where AOM was found to be tightly coupled to both
sulfate and nitrate reduction in a syntrophic relationship
[10]. ANME carrying out AOM in syntrophy with SRB is
an important process for AOM to occur via reverse
methanogenesis facilitated by electron acceptors such as
sulfate or nitrate, whilst coupling AOM with nitrate and
nitrite reduction yields significantly more energy [90, 91].

Across all sites, the highest abundance and diversity of
SRB were observed in carbonates sampled from the Norfolk
Canyon, Washington Canyon and Blake Ridge, located
in the Atlantic Margin (Fig. 2). The sulfate reducing
communities were dominated by Desulfovibrio oceani
(Desulfovibrionales), Desulfobulbus sp, Desulfocapsa sp.,
Desulfosarcina, sp. (Desulfobacterales), Desulfatiglans sp.
(Desulfarculales) as well as members of the SEEP-SRB1
and SRB4 groups (Desulfobacterales) belonging to the
Deltaproteobacteria. SRB within the orders Desulfovi-
brionales and Desulfobacterales showed highest relative
abundances up to 14% to the overall microbial community
only at the carbonates from the Norfolk Canyon, Washing-
ton Canyon and Blake Ridge, all located in the Atlantic
Margin. The remaining carbonates harbored SRBs with low
relative abundances of <4% or were completely absent
(Fig. 2). Only two exceptions, Norfolk and Washington
Canyons, had a considerably high relative abundance of
ANME, up to 27%, while SRB communities ranged
between 10 and 14%. In most instances, ANME made up to
16% relative abundance of the microbial communities in
carbonates samples that hosted <4% SRBs (Fig. 2).

The detection of methane-oxidizing archaea, especially
relatives of the ANME2 might be lacking or be under-
represented due to the potential bias in EMP primer as
recognized in a recent study [53]. ANME-2d cluster, which
includes the members of the Candidatus Methanoper-
edenaceae which are capable of utilizing nitrate, nitrite, and
manganese and do not need a bacterial partner [49, 52, 92]
might be potentially lacking in the 16S rRNA dataset due to
a primer bias [53]. However, nitrate-dependent AOM has
mostly been described in freshwater systems and not been
widely discussed in deep-sea ecosystems.

mcrA-based analyses revealed a diverse community
of methane-oxidizing archaea

In order to offset any potential primer biases caused by only
analysis of the 16S rRNA gene [53], we separately ampli-
fied the functional gene for methane generation and oxi-
dation, methyl-coenzyme reductase A, mcrA. A large
diversity of mcrA-like sequences were seen across all
samples (Fig. 3a). At this point, it is unknown what sub-
strates in addition to methane these may act upon. As such,
we focus on known euryarchaeotal clades that also includes
novel clades within this group (Fig. 3b). Analysis of the
mcrA genes revealed the presence of nine distinct clades of
sequences supported with high bootstrap values (>80%)
potentially affiliated to the former ANME-1 and ANME-2
clades, the Methanomicrobiales, the Methanosarcinales,
Candidatus Methanoperedenaceae (Methanosarcinales),
Candidatus Argoarchaeum (Methanosarcinales) and three
novel clades (Fig. 3b).

Most sites contained diverse mcrA gene types, with the
lowest diversity seen in samples from Washington Canyon,
while the highest diversity was seen in samples from Balti-
more Canyon, Norfolk Canyon and Pea Island seeps.
Sequences closely related to the Candidatus Methanoper-
edenaceae were detected at all carbonate sites via mcrA gene
analysis, but had not been observed in 16S rRNA gene ana-
lyses (Fig. 3b). Earlier investigations reported the dominance
of ANME-1a-b and ANME-2a-c cluster oxidizing methane in
syntrophy with SRB in carbonate habitats [46, 47, 53] and
several studies concerning marine environmental AOM sys-
tems are described supplying sulfate as electron acceptor [24].
Sulfate-dependent AOM has the lowest free energy yield
needed for ATP generation among the possible electron
acceptors thriving at the energetically limit for sustaining life,
with estimates of Gibbs free energy yields between −16 and
−35 kJ mol−1 operating close to its thermodynamic equili-
brium with an increase in enzymatic back flux of methane and
sulfate [90, 93–95]. However, coupling AOM with nitrate and
nitrite reduction yields significantly more energy even at
lower dissolved methane concentrations and at a less apparent
enzymatic back flux [90, 91]. Microbial nitrate reduction
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potentially utilizes nitrate from the bottom and sediment
surface water where elevated nitrate concentrations were
detected (Supplementary Fig. 1, Supplementary Table 1).
Considering the wide diversity of Candidatus Methanoper-
edenaceae seen via mcrA sequencing, and the apparent dis-
connect between methane-oxidizing archaea and SRB seen by
16S rRNA gene sequencing, this suggests the presence of
partnership and electron flux scenarios of anaerobic methane-

oxidizing archaea beyond the canonical partnership with
sulfate reducers.

Metagenomic analysis of the microbial community

To further investigate the metabolic pathways in carbonate
samples, we reconstructed metagenome assembled genomes
(MAGs) from metagenomic datasets generated for

Fig. 2 Microbial community composition. Bacterial and archaeal
community composition from carbonate samples of the Atlantic (A)
and Pacific Margin (B) based on 16S rRNA gene sequencing. Colors

indicate members of different orders that account for at least 1% of the
overall microbial abundance. Bar lengths represents relative abun-
dance of the order in each sample.
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carbonates from the Atlantic (Norfolk Canyon) and Pacific
(Queen Charlotte Fault) margins. These sites were chosen
due to the diversity determined via 16S rRNA analysis
(Fig. 2). We successfully binned 23 MAGs from both seep
sites, with completeness >50% (median= 75.11) and low
contamination levels <7% (median= 3.475) (Supplemen-
tary Table 2). Overall, MAG coverages were low (average
= 16x, lowest= 6x and highest= 47x), which hindered the
recovery of MAGs with higher completion levels. However,
these MAGs have a sufficient quality to address the main
purpose of this study.

A total of six MAGs showed phylogenetic affiliations to
anaerobic methane oxidizers (ANME cluster 1 and 2) (Sup-
plementary Fig. 2; Supplementary Table 2). Three out of the
six MAGs contain the gene encoding for mcrA. The phylo-
genetic analysis of the detected mcrA genes showed that they
were closely related to ANME-1 and ANME-2 (Fig. 3). We
explored the spectrum of final electron acceptors potentially
used by the recovered MAGs with an emphasis on the ones
belonging to ANME-1 and ANME-2. We employed a HMM
search tool to screen a custom database representing the key
genes involved in the aerobic and anaerobic respiration
mechanisms including the ones targeting different oxidized
nitrogen and sulfur species (Fig. 4). Overall, the majority of
the recovered MAGs showed the potential to anaerobically
respire different oxidized nitrogen (nitrate, nitrite, nitrous and
nitric oxides) and sulfur (sulfate, sulfite, thiosulfate) species.

The capacities to perform complete dissimilatory sulfate and
sulfite reduction to sulfide (sat, aprAB, dsrAB, asrABC) were
found in ~70% of the recovered MAGs.

The phylogenetic analysis of the functional protein DsrA
recovered from the MAGs grouped into two separate clades;
one clade closely related to dsrA sequences belonging to
members affiliated to the Gammaprotebacteria and the other
clade, composed of the dsrA sequences recovered from the
ANME archaeal bins, grouped in a separate clade closely
related to Hydrothermoarchaeota sequences (Supplementary
Fig. 3). The true affiliations of the DsrA proteins to the
ANME bins were confirmed following this approach [96]:
(1) the coverage values of the contigs encoding for the dsrA
proteins were calculated and plotted in relation to the GC%.
This showed that dsrA encoding contigs fall within the same
coverage and GC% ranges of the rest of the contigs in the
same MAG (Supplementary Fig. 4); (2) We located DNA
polymerase subunit B (DNA pol B) in the same scaffold
encoding for dsrA in Norfolk_bin_005. A phylogenetic tree
of the DNA pol B was constructed and showed a close
relation of the Norfolk_bin_005 DNA pol B sequence to
DNA pol B sequences belonging to Methanophagale-
s_ANME1 group. On the other hand, dsrA encoding scaf-
fold in QCF_bin022_004 was considerably short (1008 bps
only) and encoding for two proteins (dissimilatory sulfite
reductase and rubrerythrin family protein), none of them
could be reliably used to evaluate the taxonomic position of

Fig. 3 mcrA phylogenetic trees. A Maximum likelihood phylogenetic
trees of mcrA gene sequences and mcrA-like-sequences deriving from
amplicon and metagenomic sequencing from different carbonates
sampled across the Atlantic and Pacific Margin. BMagnification of the

Euryarchaeota ANME clades (Tree A) including the mcrA sequences
from the Queen Charlotte Fault (QCF, green dots) and Norfolk Can-
yon (NC, pink dots) MAGs.
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the scaffold. Therefore, we used the coverage and GC%
criteria only to confirm the affiliation of the scaffold to the
QCF_bin022_004 MAG.

On the other hand, the full potential to perform complete
reduction of oxidized nitrogen species including nitrate,
nitrite and nitrous oxide (narGHI, napAB, nirBD, nirS,
nrfAH, nosDZ) were encoded by limited number of MAGs
affiliated to the Gammaproteobacteria, Alphaproteobacteria,
and Chloroflexi lineages (Fig. 4). However, sporadic genes
encoding for one or more proteins involved in the reduction
of the different oxidized nitrogen species were observed in
other lineages including MAGs belonging to ANME-1 and
ANME-2 clusters. The incompleteness of the pathway within
the ANME-1 and ANME-2 MAGs may be due to the lack of
the function within these organisms or due to genome
incompleteness. It is possible that ANME lineages inhabiting
carbonate sites may be capable of mediating methane and
other short-chain alkane oxidations independently using
oxidized sulfur species as the terminal electron acceptor or in
partnership with organisms capable of oxidized nitrogen
species respiration (e.g., Gammaproteobacteria).

Local in situ environment rather than seafloor depth
dictates microbial community structure in
carbonates

The dissimilarity between microbial community structures
detected in different carbonate samples is dictated by multiple

factors including prevalent geochemical and environmental
conditions and the quality of the available carbon substrates
and electron acceptors. We tested the dissimilarity between
the microbial communities in different carbonate samples and
identified potential conditions driving such differences. Our
results based on 16S rRNA gene sequencing suggest sig-
nificant differences between microbial community structures
in the carbonate sites at the Atlantic and Pacific Margins
(72.89% dissimilarity, SIMPER analysis). The carbonate
microbial community composition originating from Queen
Charlotte Fault of the Pacific Margin was significantly distinct
in comparison to the microbial communities from the carbo-
nate samples collected from the USAM (ANOSIM, Baltimore
Canyon p= 0.0068, Norfolk Canyon p= 0.0062, Washing-
ton Canyon p= 0.024, Pea Island Seep p= 0.023, Blake
Ridge p= 0.0056) with the exception of Chincoteague Seep
(ANOSIM p= 0.066). The most prominent difference in the
community structure of the Queen Charlotte Fault carbonates
was partially explained through the high abundances of bac-
terial members affiliated with Alpha– and Gammaproteo-
bacteria with a relative abundance of up to 46% and 48%,
respectively (Fig. 2). Both classes explained 43.77% of the
dissimilarity compared to the carbonates of the Atlantic
Margin with mainly Uncultured Rhodospirillaceae (Rhodos-
pirillales), Uncultured Rhodobacteraceae (Rhodobacterales),
Uncultured Sphingomonadaceae (Sphingomonadales),
Pseudoalteromonas tetraodonis (Alteromonadales), Halomo-
nas venusta, Halomonas hydrothermalis, Alcanivorax

Fig. 4 Functional genes within MAGs. The potential capacity of the
Carbonate MAGs to utilize different oxidized substrates as terminal
electron acceptors (A) oxidized nitrogen species (B) oxidized sulfur
species. In the heatmap, the recovered MAGs were clustered along the
X-axis based on presence/absence profiles of the targeted genes, while

biogeochemical cycles and energy metabolism related genes are listed
on the Y-axis. The clustering was performed using Jaccard distance
and complete linkage methods. **denotes a MAG that is ANME and
contains a gene for mcrA.
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venustensis, Cobetia sp. (Oceanospirillales), Thiogranum sp.,
Thiohalophilus sp. (Chromatiales) accounting for 40.90% of
the dissimilarity (SIMPER analysis). The microbial commu-
nities from the carbonates collected from the Baltimore
Canyon, Norfolk Canyon, Washington Canyon, Chincotea-
gue Seep, Pea Island and Blake Ridge sites were not sig-
nificantly different (T-test, p > 0.3).

ANMEs were detected in almost all carbonate sites at the
Pacific and Atlantic Margin (Fig. 2), ANME-1b contributed
up to 7.8% of the dissimilarity of the overall microbial
community composition and 64.67% of the dissimilarity
(SIMPER analysis) of the total ANME representatives from
all sites. The depth of the sampling site did not impact the
microbial community (ANOSIM p > 0.1). However, the
availability of carbon (e.g., total organic carbon, total
inorganic carbon) potentially influences the microbial
community structure (Fig. 5). The dissimilarity in microbial
community structure between the carbonates from the
Atlantic and Pacific Margin might be potentially due to
differences in the available TOC, TIC, CaCO3, δ13C and
δ18O (Fig. 5) suggesting a strong biogeographic partitioning
present in the carbonate system based on these variables.

Despite methane, other potential carbon sources were
previously reported in marine cold seeps including ther-
mogenic hydrocarbons like short-chain alkanes and aro-
matic compounds providing alternative sources of carbon
and electron for the microbial community. Various archaeal
lineages are capable of utilizing short-chain alkanes, longer
chain alkanes and aromatic hydrocarbons [97, 98]. Hence,
the mcrA diversity seen in these samples is likely due to

their wide metabolic functions targeting different hydro-
carbons including methane as well as other short and long
chain alkanes, and support novel partnerships (i.e., other
than SRB) in environments that promote authigenic carbo-
nate precipitation.

Conclusion

This is the first study to conduct a comparative investigation
of microbial community composition of methane-derived
authigenic carbonates from seep sites along the Atlantic and
Pacific Margins. These surveys showed a broad biogeo-
graphy across all sites, suggesting the presence of core
microbiomes that dominate most of the authigenic carbo-
nates and the variations within the communities mainly
driven by the surrounding geochemical conditions. Also, we
noted a large diversity via the mcrA gene-based survey.
Functionally diverse methanotrophic archaea exist across
the carbonates from the Atlantic and Pacific Margins,
potentially capable of utilizing a broad range of electron
acceptors. These potential alternative electron acceptors
include oxidized nitrogen compounds, which could be
abundant as part of a cryptic nitrogen cycle and fuel
methane oxidation at cold seeps, and are suggested by the
distribution of Candidatus Methanoperedenaceae across
most sites. Metagenomic analysis revealed that ANME1
may not require partners and many other sulfate and
nitrogen oxidizing bacteria exist as potential partners. These
findings significantly extend our current views regarding the

Fig. 5 Amplicon data and geochemical features. RDA plot of bac-
terial and archaeal 16S rRNA gene amplicons dataset comparing seven
different carbonate seeps (highlighted in different colors) covering
21 sample locations (squares) distributed along the Atlantic and Pacific

Margin and illustrating the relationship to the different phyla (gray
dotted lines with capital letters) and geochemical parameters (δ13C,
δ18O, TOC, TIC, TC, CaCO3; black arrows).
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ANME physiology and the spectrum of electron acceptors
and partners facilitating methane oxidation at cold seeps
from different margin settings.

Data availability

Sequencing data are deposited at the NCBI Sequence Read
Archive under accession numbers (PRJNA637917,
PRJNA637905, PRJNA664522).
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