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Abstract
During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and
microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different
decomposition patterns from plant-derived C. However, current Earth System Models do not simulate this microbially
derived C pool separately. Here, we incorporated the microbial necromass pool to the first-order kinetic model and the
Michaelis–Menten model, respectively, and validated model behaviors against previous observation data from the
decomposition experiments of 13C-labeled necromass. Our models showed better performance than existing models and the
Michaelis–Menten model was better than the first-order kinetic model. Microbial necromass C was estimated to be 10–27%
of total SOC in the study soils by our models and therefore should not be ignored. This study provides a novel modification
to process-based models for better simulation of soil organic C under the context of global changes.

Introduction

The pool size of global soil organic carbon (SOC) to 1 m
depth is estimated to be 1417–1469.5 Pg C [1, 2], which is
much larger than the amounts of carbon (C) in plants and
atmosphere. The uncertainty of current process-based
models in estimating global SOC size is 50% [3], mean-
ing that about 630–735 Pg C still cannot be accurately
simulated. Measures have been proposed to improve Earth
System Models, such as consideration of nitrogen con-
straints [4, 5], or incorporation of density-dependent

formulation of microbial turnover [6]. Although other
sources besides our understanding of the potential processes
may also contribute to the model uncertainty such as error
in observation data given the low precision of soil carbon
measurement, uncertainty in initial conditions, and uncer-
tainty in parameters due to the limited available data for
constraining model parameters, it is still important to
incorporate the mechanisms already confirmed in observa-
tion experiments into process-based models for better
simulation and prediction of C cycling and climate changes.

SOC pools in process-based models are usually divided
into different parts based on their decomposition rates, such
as the slow pool and the fast pool. However, SOC is
composed of a very complex mixture of polymers of
microbial and plant residues and degradation products [7],
and different compounds not only differ in decomposition
rate, but also differ in decomposition pattern. For example,
plant-derived organic N and microbially derived organic N
have been found to have different decomposition curves [8].
In addition, the microbial necromass pool (i.e., mass from
the cell death and subsequent lysis and fragmentation of soil
microbes) may interact with soil minerals more easily than
the plant residues [9], making it necessary to simulate the
microbial necromass pool separately from the plant residue
pool. Although the living microbial biomass in the soil is a
relatively small C pool, microbially derived SOC may
accumulate to form a large proportion pool if microbial
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biomass turnover rate is higher than plant litter input rate
[10], or the chemical nature of microbial necromass is not
labile or microbially derived SOC is protected by the soil
mineral matrix [11–14]. Recently, a variety of methods have
been used to estimate the contribution of microbial necro-
mass C to SOC in different soils, and a range of 24–80%
was determined [11, 15–17]. Therefore, the role of micro-
bial necromass in the formation of organic matter may have
been seriously underestimated, and should be considered in
models [18].

In most process-based models, the decomposition of
SOC is expressed by the first-order kinetic equation [19].
The decomposition coefficient is generally determined by
the environmental factors [20], and the roles of the micro-
bial community play in the decomposition of organic matter
have not been well represented in these models [5].
Recently, the Michaelis–Menten equation was used to
describe the decomposition rate of organic matter in many
models, such as the MEND [21–23], GER [24], AWB
[25, 26], MIMICS [27], RESOM [28, 29], CORPSE [30],
ORCHIMIC [5] models. These models consider the
microbial biomass carbon (MBC) pool separately and have
been found to provide better simulation results than the
first-order kinetic models [3, 31]. However, the microbial
necromass pool has not been considered as a separate pool
with a different decomposition pattern from plant residue in
these models. We propose a conceptual four-pool model
including MBC and microbial necromass pools (Supple-
mentary Fig. 1) because once MBC pool is separated, it is
undoubtedly logical to separate the necromass pool to better
represent the formation process of microbially derived SOC.

Recent findings have made it possible to realize the
conceptual model because the decomposition pattern of
microbial necromass has been observed [8] and the
responses of the microbial necromass pool to environmental
factors have been studied [32]. In addition, although fungi,
gram-positive bacteria (including Actinomycetes), and
gram-negative bacteria have different molecular structures,
their turnover rates were found to be similar, and the quality
of microbial necromass was found to have no significant
effect on their decomposition rates [33], suggesting that the
same decomposition rate can be used for different groups of
microbial necromass in the model.

In this study, we established a new model accounting for
the microbial necromass pools, and demonstrated its validity
and feasibility using observation data from previous experi-
ments of the decomposition of 13C-labeled microbial necro-
mass [33–35]. Two archetypal models were selected [24–26]
and the microbial necromass pools were added into these two
models and we named these two models as the
Michaelis–Menten necromass decomposition (MIND) model
and the first-order necromass decomposition (FOND) model
(Fig. 1). The aims of this study were: (1) to evaluate the

necessity of incorporating the microbial necromass pool into
ESMs and to compare the performance of MIND and FOND
models; (2) to investigate the decomposition rate of microbial
necromass C in different soils; and (3) to estimate the con-
tribution of microbial necromass C to soil organic C under
steady state. Our results suggest that microbial necromass C is
an essential, but overlooked part of stable SOC, and model
performance is improved by representing the microbially
derived organic carbon pool in process-based models.

Method

Model structure

The model structures are shown in Fig. 1. In MIND model,
the Michaelis–Menten equation was used to describe the
nonlinear variation of substrate decomposition rate with
microbial biomass. The FOND model assumed that the
variation of the decomposition rate was controlled by
environmental factors and in our simulations the decom-
position rate did not change because we used incubation
experiment data under controlled environment. In both
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Fig. 1 The structure of the two newly proposed models with the
microbial necromass pools. A The Michaelis–Menten necromass
decomposition model (MIND); B the first-order necromass decom-
position model (FOND). The red dotted line represents the paths
involved when 13C-labeled microbial necromass is added to the sys-
tem. The valve symbol and black dashed line represent the regulation
of the size of MBC pool on the processes according to
Michaelis–Menten kinetics. CP plant-derived carbon, CB microbial
biomass carbon, CNF fast pool of microbial necromass carbon, CN-

MAOM mineral-associated pool of microbial necromass carbon, CDP

plant-derived dissolved organic carbon, CDN microbially derived dis-
solved organic carbon (color figure online).
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models, after the death of soil microorganisms they are
transferred to the fast pool and the mineral-associated pool
of microbial necromass proportionally. We minimized the
number of additional C pools to avoid introducing more
parameters and overfitting.

MIND was expressed by the following equations:

dCP

dt
¼ I � Vmax;P � CB � CP

KM;P þ CP

� �
ð1Þ

dCB

dt
¼ CUEP � Vmax;P � CB � CP

KM;P þ CP

� �
þ CUEN � Vmax;N � CB � CNF

KM;N þ CNF

� �

þCUEN � RMAOM�F � Vmax;N � CB � CN�MAOM

KM;N þ CN�MAOM

� �
� kB � CB

ð2Þ

dCNF

dt
¼ fBNF � kB � CB � Vmax;N � CB � CNF

KM;N þ CNF

� �
ð3Þ

dCN�MAOM

dt
¼ ð1� fBNFÞ � kB � CB � RMAOM�F

� Vmax;N � CB � CN�MAOM

KM;N þ CN�MAOM

� � ð4Þ

dCN

dt
¼ dCNF

dt
þ dCN�MAOM

dt
ð5Þ

where CP, CB, CNF, CN-MAOM, and CN are pool sizes (mgC g−1

soil) of plant-derived organic carbon, microbial biomass
carbon (MBC), microbial fast necromass carbon, microbial
mineral-associated necromass carbon, total microbial necro-
mass carbon (MNC), respectively; I is the annual average
carbon input rate (mg C g−1 soil h−1) to soil from plant-
derived litter, which was calculated based on litterfall minus
litter heterotrophic respiration (g Cm−2 s−1) and then con-
verted to mg C g−1 soil h−1 using bulk density (0–15 cm) data;
Vmax,P, Vmax,N are maximum assimilation rate (mg Cmg−1

MBC h−1) of CP and CN, respectively; KM,P, KM,N are half-
saturation for assimilation (mg C g−1 soil) of CP and CN,
respectively; CUEP, CUEN are carbon use efficiency (unitless)
of CP and CN, respectively; kB is average mortality rate of the
microbial community (h−1); fBNF is proportion of fast pool in
MBC (unitless); RMAOM-F is ratio of the decomposition rate of
the mineral-associated pool to that of the fast pool of microbial
necromass (unitless).

When the 13C-labeled microbial necromass C was added
to the system, we can get the following equations:

dCu
P

dt
¼ I � Vmax;P � ðCu

B þ Cl
BÞ � Cu

P

KM;P þ Cu
P

� �
ð6Þ

dCu
B

dt
¼ CUEp � Vmax;P � ðCu

B þ Cl
BÞ � Cu

P

KM;P þ Cu
P

� �
þ CUEN

� Vmax;N � ðCu
B þ Cl

BÞ � Cu
NF

KM;N þ Cu
NF

� �
þ CUEN � RMAOM�F

� Vmax;N � ðCu
B þ Cl

BÞ � Cu
N�MAOM

KM;N þ Cu
N�MAOM

� �
� kB � Cu

B

ð7Þ

dCu
NF

dt
¼ fBNF � kB � Cu

B �
Vmax;N � ðCu

B þ Cl
BÞ � Cu

NF

KM;N þ Cu
NF

� �
ð8Þ

dCu
N�MAOM

dt
¼ ð1� fBNFÞ � kB � Cu

B � RMAOM�F

� Vmax;N � ðCu
B þ Cl

BÞ � Cu
N�MAOM

KM;N þ Cu
N�MAOM

� � ð9Þ

dCu
N

dt
¼ dCu

NF

dt
þ dCu

N�MAOM

dt
ð10Þ

dCl
B

dt
¼ CUEN � Vmax;N � ðCu

B þ Cl
BÞ � Cl

NF

KM;N þ Cl
NF

� �
þCUEN � RMAOM�F

� Vmax;N � ðCu
B þ Cl

BÞ � Cl
N�MAOM

KM;N þ Cl
N�MAOM

� �
� kB � Cl

B

ð11Þ

dCl
NF

dt
¼ fBNF � kB � Cl

B �
Vmax;N � ðCu

B þ Cl
BÞ � Cl

NF

KM;N þ Cl
NF

� �
ð12Þ

dCl
N�MAOM

dt
¼ ð1� fBNFÞ � kB � Cl

B � RMAOM�F

� Vmax;N � ðCu
B þ Cl

BÞ � Cl
N�MAOM

KM;N þ Cl
N�MAOM

� � ð13Þ

dCl
N

dt
¼ dCl

NF

dt
þ dCl

N�MAOM

dt
ð14Þ

dCO2
l

dt
¼ ð1� CUENÞ � Vmax;N � ðCu

B þ Cl
BÞ � Cl

NF

KM;N þ Cl
NF

� �
þð1� CUENÞ

�RMAOM�F � Vmax;N � ðCu
B þ Cl

BÞ � Cl
N�MAOM

KM;N þ Cl
N�MAOM

� � ð15Þ

where superscript u stands for “unlabeled” and l stands
for “labeled” pool; the size of a pool was the sum of
labeled proportion and unlabeled proportion. For example,
total MBC was the sum of labeled MBC and
unlabeled MBC.
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The analytical steady-state solutions of MIND were as
follows:

CB ¼ CUEP � I

ð1� CUENÞ � kB
ð16Þ

CP ¼ I � KM;P

ðVmax;P � CB � IÞ ð17Þ

CNF ¼ fBNF � kB � KM;N

ðVmax;N � fBNF � kBÞ ð18Þ

CN�MAOM ¼ ð1� fBNFÞ � kB � KM;N

ðRMAOM�F � Vmax;N � ð1� fBNFÞ � kBÞ
ð19Þ

CN ¼ CNF þ CN�MAOM ð20Þ

SOC ¼ CP þ CB þ CN ð21Þ

FOND was expressed by the following equations:

dCP

dt
¼ f � I þ fDP � kDP � CDP � kP � CP ð22Þ

dCDP

dt
¼ ð1� f Þ � I þ fP � kP � CP � kDP � CDP � kuptake � CDP

ð23Þ

dCDN

dt
¼ fN � ðkNF � CNF þ RMAOM�F � kNF

�CN�MAOMÞ � kDN � CDN � kuptake � CDN

ð24Þ

dCD

dt
¼ dCDP

dt
þ dCDN

dt
ð25Þ

dCB

dt
¼ CUE� kuptake � ðCDP þ CDNÞ � kB � CB ð26Þ

dCNF

dt
¼ fBNF � kB � CB � kNF � CNF ð27Þ

dCN�MAOM

dt
¼ ð1� fBNFÞ � kB � CB þ kDN

�CDN � RMAOM�F � kNF � CN�MAOM

ð28Þ

dCN

dt
¼ dCNF

dt
þ dCN�MAOM

dt
ð29Þ

where CD is dissolved organic carbon pool (DOC, mg C g−1

soil), which is the sum of plant-derived DOC (CDP) and
microorganism-derived DOC (CDN); f is the fraction of
inputs into CP (unitless); kP, kDP, kDN, and kNF are the

decomposition rate (mg Cmg−1 C h−1) of CP entering CDP,
CDP entering CP, CDN entering CN-MAOM, CNF entering CDN,
respectively; fP, fDP, and fN are fraction (unitless) of CP

entering CDP, CDP entering CP, CN entering CDN, respec-
tively; kB is turnover rate constant of CB (h−1); kuptake is
uptake rate constant of CD (mg C g−1 DOC h−1); CUE is
carbon use efficiency (unitless); fBNF is proportion of fast
pool in MBC (unitless); RMAOM-F is the decomposition rate
ratio of the mineral-associated pool to that of the fast pool
(unitless).

When 13C-labeled microbial necromass C was added to
the system, we can get the following equations:

dCl
DN

dt
¼ fN � ðkNF � Cl

NF þ RMAOM�F � kNF � Cl
N�MAOMÞ

�kDN � Cl
DN � kuptake � Cl

DN

ð30Þ
dCl

B

dt
¼ CUE� kuptake � Cl

DN � kB � Cl
B

ð31Þ

dCl
NF

dt
¼ fBNF � kB � Cl

B � kNF � Cl
NF

ð32Þ

dCl
N�MAOM

dt
¼ ð1� fBNFÞ � kB � Cl

B þ kDN � Cl
DN

�RMAOM�F � kNF � Cl
N�MAOM

ð33Þ

dCl
N

dt
¼ dCl

NF

dt
þ dCl

N�MAOM

dt
ð34Þ

dCOl
2

dt
¼ ð1� CUEÞ � kuptake � Cl

DN þ ð1� fNÞ
�ðkNF � Cl

NF þ RMAOM�F � kNF � Cl
N�MAOMÞ

ð35Þ

The analytical steady-state solutions of FOND were as
follows:

CDP ¼ ð1� f Þ � I þ fP � f � I

kDP þ kuptake � fP � fDP � kDP
ð36Þ

CDN ¼ fN � CUE � kuptake � CDP

kDN þ kuptake � fN � kDN � fN � CUE � kuptake

ð37Þ

CP ¼ f � I þ fDP � kDP � CDP

kP
ð38Þ

CB ¼ CUE � kuptake � CD

kB
ð39Þ

CNF ¼ fBNF � kB � CB

kNF
ð40Þ
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CN�MAOM ¼ ð1� fBNFÞ � kB � CB þ kDN � CDN

RMAOM�F � kNF
ð41Þ

CD ¼ CDP þ CDN ð42Þ

CN ¼ CNF þ CN�MAOM ð43Þ

SOC ¼ CP þ CD þ CB þ CN ð44Þ

The mean residence time (MRT) for the necromass 13C
in FOND model was calculated according to the following
equation according to literatures [32, 36]:

MRT ¼ fBNF � 1
kNF

þ ð1� fBNFÞ � 1
RMAOM�F � kNF

ð45Þ
Models MIND-O and FOND-O had the same structure as

MIND and FOND except that the MNC pool was not
considered (Supplementary Fig. 2). The equations for
MIND-O and FOND-O models are listed in the figure
legend of Supplementary Fig. 2.

Observation data

We searched the Web of Science for observation data on the
decomposition of 13C-labeled microbial necromass and
found three articles [33–35] and four data sets (named
studies 1–4; Supplementary Tables 1 and 2 and Supple-
mentary Fig. 3). In short, soil microorganisms were cultured
in a matrix with resources enriched in 13C. The micro-
organisms used 13C as their carbon sources and were then
killed to form 13C-enriched microbial necromass. The 13C-
enriched microbial necromass was then put into soil for lab
incubation in studies 1 and 2 and for in situ decomposition
experiments in studies 3 and 4. Studies 1 and 2 used 13C-
labeled E. coli necromass, and studies 3 and 4 used 13C-
labeled microbial groups including fungi, gram-positive
bacteria (including Actinomycetes), and gram-negative
bacteria. The soils in studies 1 and 2 were from temperate
farmland and forests ecosystems, respectively, and the soils
in studies 3 and 4 were incubated in temperate and tropical
forest ecosystems, respectively.

Parameter estimation

The model parameterization was based on the 13C
recovery data from each observation study. Some para-
meters had fixed values from previous findings, while
most parameters were given a range first, within which the

parameter had uniform distribution (Supplementary
Table 3). Then these parameters without reference values
were estimated using the nonlinear least squares method.
We first used the ODE45 solver to calculate the integra-
tion of the differential equations y= f(t,y) from t0 to tn,
with an initial condition of y0. The ODE45 solver was
based on an explicit Runge–Kutta (4,5) equation (the
Dormand–Prince pair). It is a single-step solver, which
needs only the solution at the immediate preceding time, y
(tn–1) [37, 38]. Then, the lsqnonlin function was used to fit
estimated 13C recovery to measured data to get the best
combination of parameters.

The lsqnonlin function uses nonlinear least squares to fit
the data and solve the problems with constraints of para-
meters within the given ranges. The lsqnonlin function uses
the trust-region-reflective algorithm [39, 40] by default to
adapt to the problem that Levenberg–Marquardt algorithm
[41] cannot constrain the ranges of parameters.

Model validation

We used the leave-one-out cross-validation (LOOCV)
[42], which is for model validation of small sample size
like our data. The learning algorithm was applied once for
each instance, using all other instances as a training set
and then the selected instance was used as a single-item
test set. This step continued until each sample was treated
as a validation.

We also tested the model with the recovery of 13C in
respired CO2 values in each observation study, as well as
SOC and MBC values under steady-state conditions from
each observation studies. Linear regression was performed
between estimated data and measured data.

In the four studies on the decomposition of 13C-labeled
necromass, the units of the decomposition rates of microbial
necromass in their calculations were different from those in
our study and therefore cannot be compared to our values.
Therefore, we compared the ratio of the decomposition rate
of the mineral-associated pool to that of the fast pool
(RMAOM-F) of microbial necromass and the proportion of fast
pool in MBC (fBNF) of modeled results to those originally
estimated in their studies because these are unitless values.
The exponential model was used to calculate the decom-
position rates of the fast and mineral-associated pools of
necromass in studies 1 and 2 [34, 35]. In studies 3 and 4, the
initial decomposition rate and the final decomposition rate
were given, which approximately corresponded to the
decomposition rate of fast and mineral-associated pools in
our study, respectively [33]. Since fBNF was not given in
studies 3 and 4, we only compared it with the values in
studies 1 and 2.
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Slope, R2, root mean squared error (RMSE), and mean
absolute error (MAE) were calculated to quantify the
accuracy of the model estimates, following equations:

R2 ¼ 1�
Pn

i¼1 ðŷi � yiÞ2Pn
i¼1 ðyi � yiÞ2

ð46Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðŷi � yiÞ2
n

s
ð47Þ

MAE ¼
Pn

i¼1 ŷi � yij j
n

ð48Þ

where ŷ is simulation value, y is observations value, y is
average value, n is number of observations.

Uncertainty analysis

The Lsqnonlin function starts from the initial value y0, and
iteratively finds the minimum value of the sum of squares of
the function between the measured value and the modeled
value. Because the Lsqnonlin function depends on the set-
tings of initial values and iteration intervals, it was a local
optimal solution instead of global optimal solution. Thus, it
is possible that the best solution was missed. We used the
Monte Carlo random sampling method to extract sub-
intervals and initial values randomly within the parameter
range for 1000 times. The distribution of the parameter was
selected when R2 between modeled results and observation
data was >0.9.

The Box–Cox transformation was used to normalize the
data when mean of the parameter distribution was not in the
center of the interval, and the data did not obey the normal
distribution:

Wi ¼ Yλ
i ; λ ≠ 0

Wi ¼ lnðYiÞ; λ ¼ 0
ð49Þ

where Yi is the initial value, λ is the transformation
parameter.

The uncertainty of the parameter was presented as the
95% confidence interval of the normal distribution.

Sensitivity analysis

Sensitivity analysis was performed by changing from the
lower end to the higher end of 95% confidence interval of
the parameter distribution and analyzing the changes in the
sizes of different carbon pools in the model. The sensitivity
was expressed as follows Allison et al. [25]:

log10 High outputj j � log10 Low outputj jj j
log10 High parameterj j � log10 Low parameterj jj j ð50Þ

Global scale estimation

Global microbial necromass C under steady state was esti-
mated using Eqs. (18)–(20). We used our data of the linear
relationships between microbial carbon use efficiency
(CUE) and mean annual temperature (MAT) and mean
annual precipitation (MAP) to estimate microbial CUE of
plant residue (CUEp) in different areas (Eq. (51)): [43]

CUEP ¼ �1:6� 10�2 �MATð �CÞ þ 1:3� 10�5 �MAPðmmÞ þ 0:41

ð51Þ

Microbial CUE of microbial necromass (CUEN) was
assumed to be 0.1 higher than CUEp because the C:N ratio
of microbial necromass is lower than that of plant residue
[44–46]. We established linear relationships between fBNF,
RNSF, kB and MAT or MAP based on the four observation
studies (Eqs. (52)–(54)) and extrapolated these parameters
to global estimates:

fBNF ¼ 2:74� 10�2 �MATþ 0:35 ð52Þ

RNSF ¼ �3:49� 10�6 �MAPþ 6:59� 10�3 ð53Þ

kB ¼ �3:63� 10�4 �MATþ 1:06� 10�2 ð54Þ

Vmax,N, KM,N were estimated according to the Arrhenius
equations (Eqs. (55)–(57)) using soil temperature (T)
according to literatures [21, 25]:

Vmax;N ¼ Vmax;0 � f ðTÞ ð55Þ

KM;N ¼ KM;0 � f ðTÞ ð56Þ

f ðTÞ ¼ e
�Ea
R ð1T� 1

TrefÞ ð57Þ

The decomposition rate of microbial residues was esti-
mated by soil moisture, soil pH, and soil clay content
according to literatures [5, 20, 47, 48]:

dCN

dt
¼ �f ðθÞ � f ðpHÞ � f ðClayÞ � Vmax;N � CN � CB

KM;N þ CN

ð58Þ

f ðθÞ ¼ max½0:25;minð1;�1:1� θ2 þ 2:4� θ � 0:29Þ�
ð59Þ

f ðpHÞ ¼ e
�ðPH�PH2optÞ

PH2sen
ð60Þ

f ðClayÞ ¼ 1� 0:75� Clay ð61Þ
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where T is the soil temperature (K); Tref is the reference
temperature, set as 285.15 K; Ea is the activation energy of
substrate decomposition (kJ mol−1) and was 50 and 30 kJ
mol−1 for Vmax,N and KM,N, respectively [30, 49]. R is the
ideal gas constant (0.008314 kJmol−1 K−1); Vmax,0 and KM,0 are
the pre-exponential coefficient, respectively, and were estimated
to be 240 (mgCmg−1 MBC day−1) and 300 (mgC g−1 soil),
respectively, based on the four observation studies. θ is soil
moisture (%); pHopt is the optimal pH for substrate decom-
position and was set as 6 [21]. pHsen is the sensitivity parameter
of substrate decomposition and was set as 1.66 according to the
average value in a previous study [48]. Clay is the soil clay
content (%). MAT is the mean annual temperature (°C). MAP
is the mean annual precipitation (mm).

Data sources

Input rate I was from the community land model (CLM)
spatial output data, and CLM5.0 data, which is from the
National Center for Atmospheric Research (NCAR)
(https://www.earthsystemgrid.org). The file of monthly lit-
terfall rate was clm50_r270_1deg_GSWP3V1_iso_-
newpopd_hist.clm2.h0.LITFALL.185001-201412.nc and
the file of monthly litter heterotrophic respiration was
clm50_r270_1deg_GSWP3V1_iso_newpopd_hist.clm2.h0.
LITTERC_HR.185001-201412.nc. We chose the subset
between 2000 and 2014 to obtain the mean annual data.

Climate data MAT and MAP were from the worldclim
database (http://www.worldclim.org) [50]. Soil moisture
data were from the gap-free global annual soil moisture
for 1991–2018 [51]. Soil temperature was derived from

NCEP/NCAR 40 years reanalysis data [52]. Soil pH, soil
clay content, and soil bulk density were obtained from
harmonized data set of derived soil properties for the world
(WISE30sec) [53]. SOC content was from a global 3D soil
information system [54], and the average value of the top
0–15 cm was used. Global biomes were based on the clas-
sification by Olson and Dinerstein [55], with the associated
spatial data available at http://maps.tnc.org/files/shp/terr-
ecoregions-TNC.zip. All data were resampled to a spatial
resolution of 0.125° × 0.125° for calculation.

Results

Model simulation

Generally, the decomposition curve of 13C-labeled
microbial necromass C can be well simulated by both
MIND and FOND models (Fig. 2 and Supplementary
Fig. 4). The R2 of the regression of the recovery in soil 13C
of the MIND simulation results with observations was
>0.9, the RMSEs were between 0.88 and 2.66, while the
R2 of the regression of FOND simulation results with
measured data was >0.68, and the RMSEs were between
1.90 and 4.93 (Table 1).

MIND model showed that the recovery of 13C in MBC
experienced a rapid growth stage at the beginning, and then
gradually declined for the four data sets (Fig. 3 and Sup-
plementary Fig. 5). Additionally, 10–25% of the microbial
necromass C was quickly transferred to MBC (Fig. 3), and
then was transferred to the mineral-associated pool of
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Fig. 2 Comparison of modeled (lines) and observed (dots) recovery
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using data from four decomposition experiments of 13C-labeled
microbial necromass. A–D and E–H represent the simulation results

of MIND and FOND using data sets 1–4, respectively. Shaded areas
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microbial necromass gradually as microbes died. In con-
trast, the FOND model showed that the recovery of 13C in
MBC of four data sets increased only slightly and <5% of
the MNC was transferred to MBC (Fig. 3).

In all the four studies, the fast pool of MNC (CNF) was
simulated to be quickly decomposed within 100 days
(Fig. 3). The difference among different studies was that the
proportion of MBC transferred to the fast and mineral-
associated pools of necromass was different (Table 2). The
MIND model simulated that the recovery of 13C in CNF still
had a little at the later stage, while the FOND model
simulated that the recovery of 13C in CNF was almost 0 at
50–100 days of decomposition (Fig. 3).

The temporal variation of simulated mineral-associated
pool of labeled MNC (CN-MAOM) was relatively small in
all four studies (Fig. 3). Because of a new round of microbial
biomass turnover, MIND model simulated that the recovery
of 13C in CN-MAOM exhibited a slightly increasing trend,
while FOND model simulated that the recovery of 13C in
CN-MAOM did not change much with decomposition time.

Both models estimated that CN-MAOM had very slow
decomposition rate, and the decomposition rate of the fast
pool of microbial necromass C was at least 1000 times
faster than that of the mineral-associated pool of microbial
necromass C (Table 2, RMAOM-F being 1.08 × 10−7 to 8.26 ×
10−3 for MIND model, and 6.14 × 10−5 to 1.89 × 10−3 for
FOND model), which were different from the original
estimations in these four studies.

Because CORPSE model is the only model that simu-
lates “dead microbes” in current process-based models, we
compared our estimated parameters to theirs (Supplemen-
tary Table 4) and found that the mean residence time of the
mineral-associated microbial necromass estimated by our
models (24–67 years) were similar to theirs (45–75 years)
except for study 4.

Table 1 Comparison of modeled recovery of 13C in soil with measured
data in four studies using four different models.

Study Model Slope R2 RMSE MAE

1 MIND 0.99 0.99 0.88 0.54

FOND 1.00 0.94 2.33 2.05

MIND-O 1.07 0 16.11 14.43

FONM-O 1.14 0 13.31 11.23

2 MIND 1.00 0.99 1.01 0.81

FOND 1.00 0.95 1.90 1.63

MIND-O 1.08 0 10.08 7.75

FOND-O 1.02 0.90 2.61 2.52

3 MIND 1.02 0.94 2.42 2.03

FOND 1.00 0.78 4.52 3.26

MIND-O 1.05 0 22.61 20.51

FOND-O 1.07 0.71 5.18 3.68

4 MIND 1.00 0.91 2.66 2.38

FOND 0.90 0.68 4.93 3.82

MIND-O 0.86 0.80 3.84 3.32

FOND-O 1.84 0 20.86 12.06

Models with the lowest value of RMSE or MAE were the best. The
model structure of MIND-O and FOND-O was the same as that in
MIND and FOND, except that MIND-O and FOND-O did not have
the microbial necromass pool.

RMSE means squared error, MAE means absolute error.
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About 44–99% of the microbial necromass C was
transferred to the fast necromass C pool simulated by
MIND model (Table 2, fBNF). About 35–88% of the
microbial necromass C was transferred to the fast necro-
mass C pool simulated by FOND model. Because a portion
of microbial necromass C was transferred to DOC in FOND
model, but remained in CNF and CN-MAOM in MIND model,
it was reasonable that this fBNF was less estimated by FOND
than by MIND model.

Model validation

Based on LOOCV and observed recovery of 13C in respired
CO2, modeled and observed SOC pool and MBC pool at
steady state in four studies, we found that both models had
relatively high accuracy (Figs. 4 and 5 and Supplementary
Figs. 6 and 7). The validation results of short-term studies
studies 1 and 2 based on MIND and FOND were basically
consistent. For the long-term studies study 3 and 4, their
errors were greater than those of short-term ones, and the
errors of FOND were larger than those of MIND. This result
suggested that MIND had better simulation ability and our
model had larger errors when simulating long-term obser-
vation data (Figs. 4 and 5). However, it is also possible that
the observation data themselves had larger errors in the
long-term experiments due to the changes in soil char-
acteristics after long-term incubation. SOC was better
simulated by both models than MBC (Supplementary
Fig. 6).

In the four studies simulated by the two models, the
percentage of MBC out of total SOC was between 1 and
1.6%, and the percentage of MNC out of total SOC was
between 10 and 27% (Table 3 and Supplementary Table 5)
at steady state. MIND and FOND models estimated dif-
ferent values for the proportion of MNC for study 1, but
estimated similar values for the rest three studies.

Long-term and large-scale simulation results

Both models showed that the remaining microbial necro-
mass 13C was within 0.15% after 1000 years of decom-
position, and remaining microbial necromass 13C was
within 20% after 100 years of decomposition (Fig. 6 and
Supplementary Fig. 8). FOND model estimated that the
averaged mean residence time (MRT) of necromass C was
11.1, 23.7, 21.6, and 64.5 years for studies 1–4,
respectively.

We estimated the average MNC content (0–15 cm) of 13
biomes and calculated the proportion of MNC out of total
SOC content (Supplementary Table 6). “Montane grass-
lands and shrublands” had the highest MNC/SOC (51%)
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and “Tropical and subtropical broadleaf forests” had the
lowest MNC/SOC (2%). Overall, the proportion of MNC in
SOC decreased from the cold areas to the tropical areas
(Supplementary Table 6).

Comparison of simulation results between models
with and without the microbial necromass pool

In order to evaluate if the addition of the microbial necro-
mass pool in the models improved models’ performance, we
used another two models without the microbial necromass
pool (MIND-O and FOND-O corresponding to MIND and
FOND, respectively) to simulate recovery of 13C in soil
using data of the four studies. Results showed that MIND-O
and FOND-O had very poor performance and the

uncertainties were extremely high which cannot be pre-
sented in the figure (Supplementary Fig. 9 and Supple-
mentary Table 7). Based on the four indexes of R2, RMSE
and MAE, FOND and MIND models were generally better
than the other two models (Table 1).

Sensitivity of model parameters

Sensitivity analysis showed that Vmax,P, KM, P were the two
dominant parameters of the decomposition of organic
matter in MIND model; CNF was most sensitive to Vmax,N,
KM,N, fBNF, and kB; CN-MAOM was most sensitive to RMAOM-F

because it determines the amount of microbial carbon input
to the mineral-associated pool (Supplementary Table 8).

In FOND model, CP was most sensitive to kP; CD was
most sensitive to kuptake; CNF was most sensitive to fBNF and
kNF because they determine the proportion of microbial
necromass input to CNF and the decomposition rate of CNF,
respectively (Supplementary Table 8).

Discussion

Representation of the microbial necromass pool in
process-based models

We found our newly proposed models representing the
microbial necromass pool more effectively simulated the four
experimental data set of the decomposition of 13C-labeled
microbial necromass than models without the microbial
necromass pool (Table 1). In models without the microbial
necromass pool, microbial necromass was considered as a
part of total soil organic matter and had the same decom-
position pattern as plant-derived organic matter. Plant residues
are mainly composed of polysaccharides and lignin, aliphatic
biopolymers and tannins; while the cell walls of microbes are
mainly composed of homopolysaccharides and hetero-
polysaccharides [56]. Some fungal cell walls also contain
relatively high proportion of proteins, lipids and melanin [56].
Therefore, due to the difference in molecular structures of
plant-derived and microbially derived organic matter, the
decomposition pattern and rate are also expected to be dif-
ferent. Although the average decomposition rate of microbial
necromass in soil was found to be faster than that of plant
residues [8], some component of microbial necromass such as
some glucosamine, galactosamine, or sorbic acid may accu-
mulate for a long term in soil [56]. For example, melanin has
been found to inhibit the decomposition of microbial cell wall
[57], and more peptidoglycans in bacterial cell walls usually
result in slower decomposition rates [56]. In addition, because
microbes generally live on the surface of a particle in soil
[11, 58, 59], microbial necromass is easily protected by
minerals [11, 32, 60–62]. Once the necromass interacts with

Table 3 Proportion of microbial biomass carbon (MBC) and microbial
necromass carbon (MNC) out of total soil organic carbon (SOC)
under steady state simulated by MIND and FOND models using
the four experiment data sets (studies 1–4) and the comparison to
observation data.

Study 1 2 3 4

MBC/SOC

MIND (%) 1.58 1.08 1.04 1.01

FOND (%) 1.03 1.01 1.02 1.00

Observation 0.74 1.04 0.43 1.25

MNC/SOC

MIND (%) 12.37 10.12 26.95 10.88

FOND (%) 12.12 13.05 12.84 10.85
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soil minerals, they can become inaccessible to microbes and
have very slow decomposition rates [63, 64]. Microbial
necromass has been found to bind to clay particles and pro-
mote the formation of micro-aggregates with <50 μm [65],
and could be more tightly bound in soil matrix than plant
debris [9, 66]. Therefore, the unprotected parts of microbial
necromass (i.e., fast pool of microbial necromass) could be
decomposed much more rapidly than the protected parts (i.e.,
mineral-associated necromass pool) [67, 68], showing dif-
ferent pattern from plant residues. The mineral-associated
pool of microbial necromass had at least 1000 times slower
decomposition rate than the fast pool in our simulation results,
which supported this viewpoint. By adding the microbial
necromass pool and dividing the pool into fast and mineral-
associated components, process-based models can better
simulate the decomposition pattern of SOC. Sulman et al.
[30], in their model CORPSE, integrated two compartments
of microbial necromass, called “unprotected dead microbe C”
and “protected dead microbe C.” However, because the
“protected dead microbe C” pool was not differentiated from
“protected plant residue” and they had the same decomposi-
tion pattern and rates, we believe our model is the first attempt
to realize this purpose of separately simulating microbial
necromass C from plant-derived organic C decomposition
processes. Between the two models representing the microbial
necromass pool, the MIND model performed better than the
FOND model. The reason was because microbial controls on
SOC decomposition was better simulated in MIND model
due to the consideration of microbial biomass effect on
decomposition [3, 5, 21, 22, 69]. The Michaelis–Menten
model has been found to better simulate the response of soil
respiration to the drying-rewetting cycle than the first-order
kinetic model because the consumption of SOC depends on
microbial biomass [31]. We believe that by adding the
microbial necromass pool to the Michaelis–Menten model,
the paradoxical role of soil microbes in regulating SOC as
both consumers of (via the Michaelis–Menten equation) and
contributors to (via the necromass pool) SOC can be better
represented and more accurately simulated. Furthermore, the
Michaelis–Menten model may be more sensitive to dis-
turbance such as warming and raising CO2 [3, 30]. Therefore,
under the context of global changes, we believe MIND model
considering microbial controls on SOC decomposition could
be more effective in the long term.

Temporal variations of 13C recovery in MBC were better
simulated by MIND model than by FOND model (Fig. 3)
because 13C recovery in MBC was estimated to be 6.8–7%
at day 224 by MIND model in study 1, which is similar to
the PLFA measurement results of 11 ± 9% in the original
study [60]. The 13C recovery in MBC only increased a little
in FOND simulation results and remained very low in
models without the necromass pool (Fig. 3), both of which
seemed unrealistic.

Analysis of model parameters

In order to incorporate our model in Earth System Models,
we need to know more on the major model parameters
newly introduced in our model such as the decomposition
rate of microbial necromass and the microbial CUE of
microbial necromass. The Vmax and KM of the
Michaelis–Menten equation for SOM decomposition given
in previous studies were 0.01 mg Cmg−1 MBC h−1 and
250 mg C g−1 soil, respectively [6, 26]. In MIND model,
our results showed that Vmax,P was generally lower than 0.01
and Vmax,N was higher than 0.01 mg Cmg−1 MBC h−1.
Moreover, the KM,P and KM,N in MIND model were above
and below previous estimation, respectively, except in study
4 (Table 2). We believe these results are reasonable because
SOM is a mixture of plant-derived and microbially derived
organic matter and the values of Vmax and KM for the whole
SOM should be between the values for plant residue and
those for microbial necromass. Vmax is the maximal reaction
rate and decreases with decreasing substrate quality and
quantity [70]. KM is an indicator of the affinity of an enzyme
has for its substrate [71] and an increase in KM indicates a
decrease in overall enzyme function [24]. Vmax and KM for
microbial necromass should be higher and lower than Vmax

and KM for plant residue, respectively, because most com-
ponents of microbial necromass are faster than plant resi-
due. In the first-order kinetic model, the decomposition rate
of SOC was reported to be 5.6 × 10−6 mg Cmg−1 C h−1 in
previous studies [6, 26]. In FOND model, we found the
decomposition rate of plant residue was approximately
equal to this number but the decomposition of the fast pool
of microbial necromass was higher than this value and the
decomposition of the mineral-associated pool of microbial
necromass was much lower than this value (Table 2, kP and
kNF). This result further agrees with the viewpoint discussed
above that the fast part of microbial necromass can be
quickly used while the mineral-associated part of microbial
necromass may accumulate for a very long period. RMAOM-F

was the most sensitive parameter for the CN-MAOM pool
(Supplementary Table 8), suggesting the importance of this
parameter and should be studied in different soils and under
different conditions in the future.

Additionally, we also compared other major parameters
existing in previous models. The decomposition rate of
microbially derived DOC (kDN) in our models was estimated
to be 0.003–0.005 mg Cmg−1 C h−1 (Table 2) and it is
similar to the decomposition rate constant of DOC (kD) in
other models, which was estimated to be 0.001 mg Cmg−1

C h−1 in previous studies [6, 26]. It was slightly larger in our
study, probably because that DOC from microbial necro-
mass is easier to be protected by soil minerals than plant-
derived DOC [9]. The turnover rate constant of microbial
biomass (kB) was estimated to be 0.16–3.15 year−1 in our
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study (Table 2) and it was 2.45 year−1 in the previous
modeling studies [6, 26] and 0.2–20 year−1 in previous
observation studies [72, 73]. The fraction of fast content in
microbial biomass (fBNF) was estimated to be 0.53 in FOND
for study 1 and 0.52 in their original estimation [34]. Very
few previous studies estimated this parameter, and the only
available study estimated that the average fBNF was 0.51
based on their modeling of temperature sensitivity of
microbial respiration [74]. In a different study, the propor-
tion of microbial necromass C transferred to DOC was
estimated to be 0.172 [62], which is lower than our esti-
mation because our fast pool of microbial necromass con-
tains not only DOC, but also other compounds whose
decomposition rates may be lower than DOC.

Our estimation of the mean residence time of mineral-
associated microbial necromass was 24–67 years for studies
1–3, which is similar to CORPSE model estimates (45–75
years) (Supplementary Table 4), suggesting the stability of
microbial necromass once it is protected by soil minerals.
For study 4, our estimates of the mean residence time of
mineral-associated microbial necromass was very high (533
years), which was because that the protection rate of MNC
was very low (kP in Supplementary Table 4, i.e., only a very
small amount of microbial necromass entered the mineral-
associated pool because the study was conducted in tropical
areas). Therefore, although the decomposition rate of this
pool was very low in study 4, the long-term accumulation
(proportion) of MNC in SOC was comparable to other
studies (Table 3). Overall, our estimated parameters were all
within the reasonable range and future studies should be
focused on how these parameters vary with temperature and
moisture for model development.

Implication for long-term and large-scale modeling

After running the models for 1000 years, some 13C still
remained in the soil (Fig. 6 and Supplementary Fig. 8) and
the average MRT of microbial necromass was 11.1–64.5
years, suggesting the stabilization of microbial necromass.
Although this result seems to be surprising, it is consistent
with recent observation on microbial necromass decom-
position, which found 33.1–39.5% of labeled necromass N
remained in soil after 2.2 years of decomposition [8]. Under
steady-state conditions, the estimated microbial necromass
C accounted for 10–27% of the total SOC, which is at the
lower end range of previous estimations, which were
24–80% [11, 15–17]. Some previous studies used the con-
tent of amino sugars in soil to estimate microbial necromass
content and found microbial necromass C accounted for
23.6–58.3% of total SOC [16, 17]. However, the conversion
factors used to convert amino sugar to necromass are still
under debate. Other previous studies used the relative
abundance of fatty acids and amino acids in microbial

biomass and estimated the fraction of necromass C to SOC
to be about 40% [11]. Fatty acids and amino acids exist not
only in microbial necromass, but also in living microbial
cells, plant cells, and root exudates [75, 76], and the fraction
of necromass C to SOC was probably overestimated based
on this method and therefore higher than our estimations.
Sulman et al. [30] estimated that “dead microbe carbon”
was 0.34% of total SOC based on CORPSE model, but their
“dead microbe carbon” pool corresponds to our labile MNC
pool because once microbial carbon enters the “protected
carbon” pool (which is the sum of chemical resistant car-
bon, simple carbon, and dead microbe carbon), they are no
longer counted as “dead microbe carbon” in their model.
Our labile MNC pool was 0.01–0.06% of total SOC, which
is comparable to their estimation.

Alternatively, it is possible that the different findings
among different studies were due to site difference because
the contribution of microbial necromass to soil organic C is
affected by many factors, such as soil pH, salinity, clay
content, fungal bacterial ratio, environmental stress, ecolo-
gical type, land use change, soil C:N, microbial C:N, and
nutrient status [16, 61, 77]. But it should be noted that of
13C-labeled necromass decomposition studies [33–35] used
for our models only contain ~20 isolates, and therefore the
necromass C decomposition rate for the whole microbial
community should be examined in future studies.

Our estimation of the proportion of MNC out of total
SOC content in 13 biomes suggested that “montane grass-
lands and shrublands” and “tundra” biomes had highest
proportion of necromass C in SOC (31–51%, Supplemen-
tary Table 6), which is close to an estimation based on soil
amino sugar content in the Tibet Plateau [78]. Generally,
these areas have high altitude and low temperature, and the
plant productivity is low [79, 80]. Due to the higher
microbial CUE [81] and the better adaptability of microbes
than plants under extreme conditions, it is reasonable that
the proportion of microbial necromass out of total soil
organic matter is high. In tropical areas, plant productivity is
high and microbial CUE is low [81], microbial necromass C
was estimated to be <14% of SOC by our models (Sup-
plementary Table 6). Previous experiments also found that
the contribution of microbial residues to SOC decreased
from tropical to boreal forests [82]. Although these results
at the large spatial scale are preliminary because the esti-
mates of some parameters were based on four observation
studies, it can still shed light on the importance of microbial
necromass pool and the variations among different biomes.

A very interesting phenomenon is: century-scale pro-
jection using MIND showed some oscillation compared to
FOND (Fig. 6). Usually more C pools in Michaelis–
Menten-based microbial models would reduce such oscil-
lation [26], and Georgiou et al. [6] reduced this oscillation
by considering the turnover of microorganisms at the
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population level. We hope the addition of the necromass
pool could also realize it and found that changes in carbon
input, temperature and microbial CUE [6, 26] could still
induce oscillation of SOC simulation results for both MIND
and FOND models although the addition of necromass pool
alleviated such oscillation. The amplitude and period of the
oscillation depended on microbial CUE, Vmax and KM [83].
Future studies considering the turnover of microorganisms
at the population level [6] may reduce the oscillation and
further improve model performance.

Limitations and future studies

At present, only four sets of observation data based on the
decomposition experiments of the 13C-labeled microbial
necromass were available to calibrate our models. Although
the four studies were conducted in different ecosystems and
somewhat represent different conditions, more experiments
are needed for better parameterization of the models. In
addition, the four observation data were based on both lab
incubation experiments (studies 1 and 2) and field experi-
ments (studies 3 and 4) and whether or not the experiments
were conducted in the field is important. In the future, more
field-based microbial necromass decomposition studies are
needed to better parameterize the model and better under-
stand the behavior of microbial necromass decomposition.
Especially, experiments under the changing environment
are needed to test whether model behavior under climate
change is consistent with observation and this will be the
immediate next step of our work.

The number of observation on some parameters like
microbial CUE has increased tremendously in recent 5 years
[46, 84]. More direct measurements of the decomposition
parameters for the microbial necromass pool (i.e., the
decomposition rate of microbial necromass, the turnover
rate of microbial biomass, etc.) will substantially increase
the effort of parameterization. Previous studies suggested
that the decomposition rates of microbial necromass nitro-
gen from different microbial groups were not significantly
different [8, 32], suggesting that substrate quality may not
influence the decomposition rates of microbial necromass.
However, soil properties such as soil temperature, soil
moisture, and soil clay content may influence these para-
meters and more experiments are needed to estimate these
parameters under different conditions.

Nevertheless, our study provides an independent model
estimation of microbial necromass C contribution to stable
SOC, supplementary to previous model estimations
[15, 85, 86]. Although slighter lower than previous esti-
mations, this significant contribution ratio further proved
that it is necessary to incorporate the microbial necromass
pool in Earth System Models to better simulate carbon
cycling under the context of global changes.

Data availability

The data used can be found in Supplementary Information.

Code availability

Code used to model runs is available at https://github.com/
fanlei21/fanlei21.github.io.
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