Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Variable inter and intraspecies alkaline phosphatase activity within single cells of revived dinoflagellates


Adaptation of cell populations to environmental changes is mediated by phenotypic variability at the single-cell level. Enzyme activity is a key factor in cell phenotype and the expression of the alkaline phosphatase activity (APA) is a fundamental phytoplankton strategy for maintaining growth under phosphate-limited conditions. Our aim was to compare the APA among cells and species revived from sediments of the Bay of Brest (Brittany, France), corresponding to a pre-eutrophication period (1940’s) and a beginning of a post-eutrophication period (1990’s) during which phosphate concentrations have undergone substantial variations. Both toxic marine dinoflagellate Alexandrium minutum and the non-toxic dinoflagellate Scrippsiella acuminata were revived from ancient sediments. Using microfluidics, we measured the kinetics of APA at the single-cell level. Our results indicate that all S. acuminata strains had significantly higher APA than A. minutum strains. For both species, the APA in the 1990’s decade was significantly lower than in the 1940’s. For the first time, our results reveal both inter and intraspecific variabilities of dinoflagellate APA and suggest that, at a half-century timescale, two different species of dinoflagellate may have undergone similar adaptative evolution to face environmental changes and acquire ecological advantages.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Sampling area and the six dinoflagellate strains revivifed from the sediment core.
Fig. 2: Examples of the six strains of dinoflagellates having alkaline phosphatase activity (APA).
Fig. 3: Variability of the alkaline phosphatase activity (APA) for two strains of Scrippsiella acuminata (SC-47–1; SC-92–1) as a function of time.
Fig. 4: Difference in the maximum alkaline phosphatase activity (APA) of the Scrippsiella acuminata (SC) and Alexandrium minutum (AM) strains.


  1. 1.

    Gobler CJ, Doherty OM, Hattenrath-Lehmann TK, Griffith AW, Kang R, Litaker W. Ocean warming has expanded niche of toxic algae. Proc Natl Acad Sci USA. 2017;114:4975–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Olivieri ET. Colonization, adaptations and temporal changes in diversity and biomass of a phytoplankton community in upwelled water off the Cape Peninsula, South Africa, in December 1979. South Afr J Mar Sci. 1983;1:77–109.

    Google Scholar 

  3. 3.

    Irwin AJ, Zoe V, Finkel ZV, Müller-Karger FE, Troccoli, Ghinaglia L. Phytoplankton adapt to changing ocean environment. Proc Natl Acad Sci USA. 2015;112:5762–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Chivers W, Walne A, Hays G. Mismatch between marine plankton range movements and the velocity of climate change. Nat Commun. 2017;8:14434.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gisselson L, Granéli E, Pallon J. Variation in cellular nutrient status within a population of Dinophysis norvegica (Dinophyceae) growing in situ: single - cell elemental analysis by use of a nuclear microprobe. Limnol Oceanogr. 2001;5.

  6. 6.

    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Núñez-Milland DR, Baines SB, Vogt S, Twining BS. Quantification of phosphorus in single cells using synchrotron X-ray fluorescence. J Synchrotron Radiat. 2010;17:560–6.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Berthelot H, Duhamel S, L’Helguen S, Maguer JF, Wang S, Cetinić I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651–62.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Štrojsová A, Vrba J. Short-term variation in extracellular phosphatase activity: possible limitations for diagnosis of nutrient status in particular algal populations. Aquat Ecol. 2009;43:19–25.

    Google Scholar 

  10. 10.

    O’Donnell DR, Hamman CR, Johnson EC, Kremer CT, Klausmeier CA, Litchman E. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob Change Biol. 2018;24:4554–65.

    Google Scholar 

  11. 11.

    Jin P, Agustí S. Fast adaptation of tropical diatoms to increased warming with trade-offs. Sci Rep. 2018;8:17771.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, et al. Extinction risk from climate change. Nature. 2004;427:145–8.

    CAS  PubMed  Google Scholar 

  13. 13.

    Urban MC. Accelerating extinction risk from climate change. Science. 2015;348:571–3.

    CAS  PubMed  Google Scholar 

  14. 14.

    Kottuparambil S, Jin P, Agusti S. Adaptation of Red Sea Phytoplankton to experimental warming increases their tolerance to toxic metal exposure. Front Environ Sci. 2019;7.

  15. 15.

    Flores-Moya A, Costas E, Lopez-Rodas V. Roles of adaptation, chance and history in the evolution of the dinoflagellate Prorocentrum triestinum. Naturwissenschaften. 2008;95:697–703.

    CAS  PubMed  Google Scholar 

  16. 16.

    Flores-Moya A, Rouco M, García-Sánchez MJ, García-Balboa C, González R, Costas E, et al. Effects of adaptation, chance, and history on the evolution of the toxic dinoflagellate Alexandrium minutum under selection of increased temperature and acidification. Ecol Evol. 2012;2:1251–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Martiny AC, Ustick LA, Garcia C, Lomas MW. Genomic adaptation of marine phytoplankton populations regulates phosphate uptake. Limnol Oceanogr. 2019.

  18. 18.

    Ribeiro S, Berge T, Lundholm N, Andersen TJ, Abrantes F, Ellegaard M. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat Commun. 2011;2:311.

    PubMed  Google Scholar 

  19. 19.

    Delebecq G, Schmidt S, Ehrhold A, Latimier M, Siano R. Revival of ancient marine dinoflagellates using molecular biostimulation. J Phycol. 2020;56:1077–89.

    CAS  PubMed  Google Scholar 

  20. 20.

    Ribeiro S, Berge T, Lundholm N, Ellegaard M. Hundred years of environmental change and phytoplankton ecophysiological variability archived in coastal sediments. PLoS ONE. 2013;8:e61184.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Klouch KZ, Schmidt S, Andrieux Loyer F, Le Gac M, Hervio-Heath D, Qui-Minet ZN, et al. Historical records from dated sediment cores reveal the multidecadal dynamic of the toxic dinoflagellate Alexandrium minutum in the Bay of Brest (France). FEMS Microbiol Ecol. 2016;92:1–16.

    Google Scholar 

  22. 22.

    Lundholm N, Ribeiro S, Godhe A, Rostgaard Nielsen L, Ellegaard M. Exploring the impact of multidecadal environmental changes on the population genetic structure of a marine primary producer. Ecol Evol. 2017;7:3132–42.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, et al. Processes and patterns of oceanic nutrient limitation. Nat Geosci. 2013;6:701–10.

    CAS  Google Scholar 

  24. 24.

    Labry C, Herbland A, Delmas D. The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay. J Plankt Res. 2002;24:97–117.

    CAS  Google Scholar 

  25. 25.

    Girault M, Arakawa H, Hashihama F. Phosphorus stress of microphytoplankton community in the western subtropical North Pacific. J Plankt Res. 2013;35:146–57.

    CAS  Google Scholar 

  26. 26.

    Ramos JBE, Schulz KG, Voss M, Narciso Á, Müller MN, Reis FV, et al. Nutrient-specific responses of a phytoplankton community: a case study of the North Atlantic Gyre. Azores J Plankt Res. 2017;39:744–61.

    Google Scholar 

  27. 27.

    Lin S, Litaker RW, Sunda WG. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J Phycol. 2016;52:10–36.

    CAS  PubMed  Google Scholar 

  28. 28.

    Lomas MW, Swain A, Shelton R, Ammerman JW. Taxonomic variability of phosphorus stress in Sargasso Sea phytoplankton. Limnol Oceanogr. 2004;49:2303–10.

    Google Scholar 

  29. 29.

    Wang D, Huang B, Liu X, Liu G, Wang H. Seasonal variations of phytoplankton phosphorus stress in the Yellow Sea Cold Water Mass. Acta Oceano Sin. 2014;33:124–35.

    Google Scholar 

  30. 30.

    Cembella AD, Antia NJ, Harrison PJ. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part I. CRC Crit Rev Microbiol. 1984;10:317–91.

    CAS  Google Scholar 

  31. 31.

    Cooper A, Bowen ID, Lloyd D. The properties and subcellular localization of acid phosphatases in the colourless alga Polytomella caeca. J Cell Sci. 1974;15:605–18.

    CAS  PubMed  Google Scholar 

  32. 32.

    Duhamel S, Björkman KM, Van Wambeke F, Moutin T, Karl DM. Characterization of alkaline phosphatase activity in the North and South Pacific Subtropical Gyres: Implications for phosphorus cycling. Limnol Oceanogr. 2011;56:1244–54.

    CAS  Google Scholar 

  33. 33.

    Kang W, Wang ZH, Liu L, Guo X. Alkaline phosphatase activity in the phosphorus-limited southern Chinese coastal waters. J Environ Sci. 2019;86:38–49.

    Google Scholar 

  34. 34.

    Girault M, Beneyton T, Pekin D, Buisson L, Bichon S, Charbonnier C, et al. High-content screening of plankton alkaline phosphatase activity in microfluidics. Anal Chem. 2018;90:4174–81.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Anderson RA, Berges RA, Harrison PJ, Watanabe MM. Appendix A - recipes for freshwater and seawater media; enriched natural seawater media. In Andersen RA, editor. Algal culturing techniques. San Diego, USA: Academic; 2005. p. 429–538.

  36. 36.

    Guillard RL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol. 1962;8:229–39.

    CAS  PubMed  Google Scholar 

  37. 37.

    Duffy DC, McDonald JC, Schueller OJ, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem. 1998;70:4974–84.

    CAS  PubMed  Google Scholar 

  38. 38.

    Girault M, Hattori A, Kim H, Arakawa H, Matsuura K, Odaka M, et al. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution. Sci Rep. 2017;7:40072.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Girault M, Odaka M, Kim H, Matsuura K, Terazono H, Yasuda K. Particle recognition in microfluidic applications using a template matching algorithm. JPN J Appl Phys. 2016;55.

  40. 40.

    Urvoy M, Labry C, Delmas D, Creac’h L, L’Helguen S. Microbial enzymatic assays in environmental water samples: impact of Inner Filter Effect and substrate concentrations. Limnol Oceanogr Methods. 2020;18:728–38.

    Google Scholar 

  41. 41.

    Huang Z, Terpetschnig E, You W, Haugland RP. 2-(2′-phosphoryloxyphenyl)-4-(3H)-quinazolinone derivatives as fluorogenic precipitating substrates of phosphatases. Anal Biochem. 1992;207:32–39.

    CAS  PubMed  Google Scholar 

  42. 42.

    Girault M, Hattori A, Kim H, Matsuura K, Odaka M, Terazono H et al. Algorithm for the precise detection of single and cluster cells in microfluidic applications. Cytom Part A. 2016.

  43. 43.

    Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–36.

    CAS  Google Scholar 

  44. 44.

    Hoppe HG. Phosphatase activity in the sea. Hydrobiologia. 2003;493:187–200.

    CAS  Google Scholar 

  45. 45.

    Golda-VanEeckhoutte RL, Roof LT, Needoba JA, Peterson DT. Determination of intracellular pH in phytoplankton using the fluorescent probe, SNARF, with detection by fluorescence spectroscopy. J Microbiol Methods. 2018;152:109–18.

    CAS  PubMed  Google Scholar 

  46. 46.

    Kruskopf MM, Du Plessis S. Induction of both acid and alkaline phosphatase activity in two green-algae (chlorophyceae) in low N and P concentrations. Hydrobiologia. 2004;513:59–70.

    CAS  Google Scholar 

  47. 47.

    Štrojsová A, Vrba J, Nedoma J, Komárková J, Znachor P. Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. Eur J Phycol. 2003;38:295–306.

    Google Scholar 

  48. 48.

    Skelton HM, Parrow MW, Burkholder JM. Phosphatase activity in the heterotrophic dinoflagellate Pfiesteria shumwayae. Harmful Algae 2006;5:395–406.

    CAS  Google Scholar 

  49. 49.

    Nedoma J, Štrojsová A, Vrba J, Komárková J, Simek K. Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environ Microbiol. 2003;5:462–72.

    CAS  PubMed  Google Scholar 

  50. 50.

    Young EB, Tucker RC, Pansch LA. Alkaline phosphatase in freshwater Cladophora-epiphyte assemblages: regulation in response to phosphorus supply and localization. J Phycol. 2010;46:93–101.

    CAS  Google Scholar 

  51. 51.

    Díaz-de-Quijano D, Felip M. A comparative study of fluorescence-labelled enzyme activity methods for assaying phosphatase activity in phytoplankton. A possible bias in the enzymatic pathway estimations. J Micro Meth. 2011;86:104–7.

    Google Scholar 

  52. 52.

    Ou L, Huang B, Lin L, Hong H, Zhang F, Chen Z. Phosphorus stress of phytoplankton in the Taiwan Strait determined by bulk and single-cell alkaline phosphatase activity assays. Mar Ecol Prog Ser. 2006;327:95–106.

    CAS  Google Scholar 

  53. 53.

    Huang B, Ou L, Wang X, Huo W, Li R, Hong H, et al. Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent harmful algal bloom occurrences. Aquat Micro Ecol. 2007;49:195–206.

    Google Scholar 

  54. 54.

    Ivančić I, Pfannkuchen M, Godrijan J, Djakovac T, Pfannkuchen DM, Korlević M, et al. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions. Prog Oceanogr. 2016;146:175–86.

    Google Scholar 

  55. 55.

    González-Gil S, Keafer B, Jovine JMR, Aguileral A, Lu S, Anderson DM. Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Mar Ecol Prog Ser. 1998;164:21–35.

    Google Scholar 

  56. 56.

    Dyhrman ST, Ruttenberg KC. Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnol Oceanogr. 2006;51.

  57. 57.

    Flynn K, Jones KJ, Flynn KJ. Comparisons among species of Alexandrium (Dinophyceae) grown in nitrogen- or phosphorus-limiting batch culture. Mar Biol. 1996;126:9–18.

    CAS  Google Scholar 

  58. 58.

    Perry MJ. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Mar Biol. 1972;15:113–9.

    CAS  Google Scholar 

  59. 59.

    Dyhrman ST, Palenik B. Phosphate stress in cultures and field populations of the dinoflagellate prorocentrum minimum detected by a single-cell alkaline phosphatase assay. Appl Environ Microbiol. 1999;65:3205–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Mulholland MR, Floge S, Carpenter EJ, Capone DG. Phosphorus dynamics in cultures and natural populations of Trichodesmium spp. Mar Ecol Prog Ser. 2002;239:45–55.

    CAS  Google Scholar 

  61. 61.

    Thomson B, Wenley J, Currie K, Hepburn C, Herndl GJ, Baltar F. Resolving the paradox: Continuous cell-free alkaline phosphatase activity despite high phosphate concentrations. Mar Chem. 2019;214:103671.

    CAS  Google Scholar 

  62. 62.

    Foster RA, Sztejrenszus S, Kuypers MMM. Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry. J Phycol. 2013;49:502–16.

    CAS  PubMed  Google Scholar 

  63. 63.

    Dyhrman ST, Palenik B. Characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi. J Plankton Res. 2003;25:1215–25.

    CAS  Google Scholar 

  64. 64.

    Oh SJ, Yamammoto T, Kataoka Y, Matsuda O, Matsuyama Y, Katani Y. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fish Sci. 2002;68:416–24.

    CAS  Google Scholar 

  65. 65.

    Jauzein C, Labry C, Youenou A, Quéré J, Delmas D, Collos Y. Growth and phosphorus uptake by the toxic dinoflagellate Alexandrium catenella (Dinophycea) in response to phosphate limitation. J Phycol. 2010;46:926–36.

    CAS  Google Scholar 

  66. 66.

    Elgavish A, Halmann M, Berman T. A comparative study of phosphorus utilization and storage in batch cultures of Peridinium cinctum, Pediastrum duplex and Cosmarium sp., from Lake Kinneret (Israel). Phycologia. 1982;21:47–54.

    CAS  Google Scholar 

  67. 67.

    Flynn K, Franco JM, Fernandez P, Reguera B, Zapata M, Wood G, et al. Changes in toxin content, biomass and pigments of the dinoflagellate Alexandrium minutum during nitrogen refeeding and growth into nitrogen or phosphorus stress. Mar Ecol Prog Ser. 1994;111:99–109.

    CAS  Google Scholar 

  68. 68.

    Ou L, Wang D, Huang B, Hong H, Qi Y, Lu S. Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters. J Plankton Res. 2008;30:1007–17.

    CAS  Google Scholar 

  69. 69.

    Droop MR. The nutrient status of algal cells in continuous culture. J Mar Biol Ass UK. 1974;54:825–55.

    CAS  Google Scholar 

  70. 70.

    Bechemin C, Grzebyk D, Hachame F, Hummert C, Maestrini S. Effect of different nitrogen/phosphorus nutrient ratios on the toxin content in Alexandrium minutum. Aquat Micro Ecol. 1990;20:157–65.

    Google Scholar 

  71. 71.

    Labry C, Erard–Le Denn E, Chapelle A, Fauchot J, Youenou A, Crassous MP, et al. Competition for phosphorus between two dinoflagellates: A toxic Alexandrium minutum and a non-toxic Heterocapsa triquetra. J Exp Mar Biol Ecol. 2008;358:124–35.

    CAS  Google Scholar 

  72. 72.

    Chapelle A, Labry C, Sourisseau M, Lebreton C, Youenou A, Crassous MP. Alexandrium minutum growth controlled by phosphorus An applied model. J Mar Syst. 2010;83:181–91.

    Google Scholar 

  73. 73.

    Sakshaug E, Granéli E, Elbrächter M, Kayser H. Chemical composition and alkaline phosphatase activity of nutrient-saturated and P-deficient cells of four marine dinoflagellates. J Exp Mar Biol Ecol. 1984;11:241–54.

    Google Scholar 

  74. 74.

    Lirdwitayaprasit T, Okaichi T, Montani S, Ochi T, Anderson DM. Changes in cell chemical con~position during the life cycle of Scrippsiella trochoidea (Dinophyceae). J Phycol. 1990;26:299–306.

    CAS  Google Scholar 

  75. 75.

    Qi H, Wang J, Wang Z. A comparative study of maximal quantum yield of photosystem II to determine nitrogen and phosphorus limitation on two marine algae. J Sea Res. 2013;80:1–11.

    Google Scholar 

  76. 76.

    Simon N, Cras AL, Foulon E, Lemée R. Diversity and evolution of marine phytoplankton. C R Biol. 2009;332:159–70.

    PubMed  Google Scholar 

  77. 77.

    Rengefors K, Kremp A, Reusch TBH, Wood AM. Genetic diversity and evolution in eukaryotic phytoplankton: revelations from population genetic studies. J Plankton Res. 2017;39:165–79.

    Google Scholar 

  78. 78.

    Bendif EM, Nevado B, Wong ELY, Wong EL, Hagino K, Probert I, et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat Commun. 2019;10:4234.

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Thornton DCO. Individuals clones or groups? Phytoplankton behaviour and units of selection. Ethol Ecol Evol. 2002;14:165–73.

    Google Scholar 

  80. 80.

    Gerecht A, Romano G, Lanora A, d’Ippolito G, Cutignano A, Fontana A. Plasticity of Oxylipin metabolism among clones of the marine diatom Skeletonema marinoi (Bacillariophyceae). J Phycol. 2011;47:1050–6.

    CAS  PubMed  Google Scholar 

  81. 81.

    Lim PT, Leaw CP, Usup G, Kobiyama A, Koike K, Ogata T. Effects of light and temperature on growth, nitrate uptake, and toxin production of two tropical dinoflagellates: Alexandrium tamiyavanichii and Alexandrium minutum (Dinophyceae). J Phycol. 2006;42:786–99.

    CAS  Google Scholar 

  82. 82.

    Van Mooy BA, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature. 2009;458:69–72.

    PubMed  Google Scholar 

  83. 83.

    Galbraith AD, Martiny AC. Simple mechanism for marine nutrient stoichiometry. Proc Natl Acad Sci USA. 2015;112:8199–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Berge T, Daugbjerg N, Hansen PJ. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH. Harmful Algae. 2012;20:101–10.

    CAS  Google Scholar 

Download references


We thank the Syndicat de bassin d’Elorn for providing the historical data of nitrate and phosphate concentrations. MG, JCB and YDA acknowledge financial support of a Marie-Curie Individual Fellowships (IF) MAPAPAIMA (797007). JCB acknowledges the financial support of the Region Nouvelle Aquitaine and from the French state in the frame of the ‘investment for the future’ (Programme IdEx Bordeaux, ANR-10-IDEX-03–02). Revived cultures and culture experiments were carried out in the frame of the project PALMIRA part of the project PALMIRA (Palaeoecology of Alexandrium minutum dans la Rade de Brest–Marché n°2017–90292) financed by the Région Brittany. We are grateful to all members of the crew of the N/O Thalia ship of Ifremer for providing technical expertise in sediment core collection and to Emulseo for providing the surfactant used in this study. We thank Prof. Josh D. Neufeld and anonymous reviewers for their valuable comments and insights that considerably helped to improve the manuscript.

Author information




MG, JCB and RS conceived and designed the study (MG, JCB microfluidics; MG, RS microbiology). Experiments were performed by MG (APA experiments, microfluidics), CL (phosphate concentrations measurements) and ML (cultivation and preparation of cells) under the supervision of RS and JCB. MG, LB and TB contributed analytical tools (MG, LB microfluidic platform and instrumentation; MG, TB microfluidic chips, MG image processing). MG, CL, CJ, YDA and JCB contributed to data analysis. MG, JCB and RS wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Raffaele Siano or Jean-Christophe Baret.

Ethics declarations

Conflict of interest

JCB is a co-founder of Emulseo whose surfactant formulation was used in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Girault, M., Siano, R., Labry, C. et al. Variable inter and intraspecies alkaline phosphatase activity within single cells of revived dinoflagellates. ISME J 15, 2057–2069 (2021).

Download citation


Quick links