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Abstract
How diversity is structured has been a central goal of microbial ecology. In freshwater ecosystems, selection has been found
to be the main driver shaping bacterial communities. However, its relative importance compared with other processes
(dispersal, drift, diversification) may depend on spatial heterogeneity and the dispersal rates within a metacommunity. Still, a
decrease in the role of selection is expected with increasing dispersal homogenization. Here, we investigate the main
ecological processes modulating bacterial assembly in contrasting scenarios of environmental heterogeneity. We carried out
a spatiotemporal survey in the floodplain system of the Paraná River. The bacterioplankton metacommunity was studied
using both statistical inferences based on phylogenetic and taxa turnover as well as co-occurrence networks. We found that
selection was the main process determining community assembly even at both extremes of environmental heterogeneity and
homogeneity, challenging the general view that the strength of selection is weakened due to dispersal homogenization.
The ecological processes acting on the community also determined the connectedness of bacterial networks associations.
Heterogeneous selection promoted more interconnected networks increasing β-diversity. Finally, spatiotemporal
heterogeneity was an important factor determining the number and identity of the most highly connected taxa in the
system. Integrating all these empirical evidences, we propose a new conceptual model that elucidates how the environmental
heterogeneity determines the action of the ecological processes shaping the bacterial metacommunity.

Introduction

Determining the processes behind community assembly
across Earth’s ecosystems is a major research topic in

ecology [1–4]. The issue can be addressed using two
alternative views. On one hand, the traditional niche-based
theory states that deterministic processes, such as environ-
mental filters and species interactions, govern community
structure and determine species composition [5, 6]. On the
other hand, the neutral theory considers that all species are
ecologically equivalent and, therefore, the structure of each
community is a consequence of stochastic processes such as
birth, death, colonization, immigration, speciation, and
probabilistic dispersal [1, 7, 8]. Although these perspectives
are often considered contradictory, they are not mutually
exclusive and a debate exists over each relative importance
in shaping natural communities.

The metacommunity theory provides an adequate frame-
work to identify these processes considering multiple spatial
scales [9, 10]. Under this approach, communities are spatially
connected in a network by dispersal, and the processes
involved in their assembly are the result of the interplay
between local factors and regional dynamics.

Recently, Vellend [3, 11] proposed a conceptual frame-
work in which the structure of communities can be
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explained by the following four “high-level processes”:
selection, dispersal, ecological drift, and diversification.
These four processes are universally present across ecolo-
gical communities, and frame the low-level processes
involved in the community assembly (e.g., competition,
predation, succession, colonization, local extinction).
Selection consists in the deterministic factors that modify
the community structure due to fitness differences among
individuals. It can act under the so-called homogeneous or
heterogeneous environmental conditions, leading to more
similar or dissimilar structure among communities [12, 13].
When environmental conditions are homogeneous, selec-
tion leads to more similar communities (low community
turnover), a process known as “homogeneous selection.”
On the other hand, under heterogeneous conditions, selec-
tion promotes an increase in community turnover as
different taxa are selected, and this is referred as “hetero-
geneous selection” [11, 14]. Dispersal results from both
deterministic and stochastic factors that either favor or limit
organism movement (active or passive) and the establish-
ment of organisms in local communities. High dispersal
rates have a homogenizing effect (homogeneous dispersal)
leading to a low turnover within communities, whereas low
dispersal rates (dispersal limitation), coupled with drift or
weak selection, increase community turnover [12, 15]. Drift
influences changes in communities due to demographic
events of birth, death, and reproduction that occur at ran-
dom, independently of species fitness [16]. Finally, diver-
sification refers to the generation of new species by genetic
variation mainly due to stochastic factors, and larger tem-
poral scale with respect to the other processes is needed to
observe its effects [17].

The ecological rules governing bacteria metacommunity
assembly seem to be different in land than in water systems,
mainly due to the differences in environmental heterogeneity,
which is larger in land [18–22]. In addition, and within
aquatic ecosystems, the complexity of freshwater bodies is
relatively high in comparison with oceans [23] and, conse-
quently, larger differences in bacterial community composi-
tion are observed in freshwater ecosystems [24–29]. In these
ecosystems, deterministic processes (mainly selection) have
been found to be the main factors shaping bacterial commu-
nity structure [19, 27, 30–32]. However, it is not a general
rule and the relative importance of selection compared with
other processes may depend on the environmental hetero-
geneity and dispersion rates within the metacommunity
[24, 28, 30, 33, 34]. For example, in systems with low
environmental heterogeneity the stochastic processes seem to
be more relevant, because environmental filters are not strong
enough to act as selective forces exerting species sorting
[24, 33]. Thus, bacterial communities in isolated systems are
likely to be mainly structured by dispersal limitation, whereas
as environmental connectivity increases, homogeneous

dispersal as well as drift will become more important
[21, 24, 31, 32, 35–37]. Most of these previous results have
been generated from a snapshot of the metacommunity.
However, in complex network systems subject to hydro-
logical influence, the relative importance of the structuring
ecological processes is likely to change over time according to
the changes in the hydrological connectivity [29, 31, 37–42].

Another gap lies in understanding how the high-level
ecological processes influence the interactions between
taxa. Co-occurrence networks are an increasingly useful
tool to infer microbial interactions [43–50]. Under this
approach, interactive taxa are linked together either posi-
tively or negatively indicating mutualistic or antagonistic
co-occurrence patterns. Even if taxa correlations do not
necessarily reflect true interactions, network analyses allow
to capture and summarize information of highly diverse
communities [43–46].

Another useful feature of co-occurrence networks is that
they allow to identify the highly connected taxa (commonly
referred as hub taxa [44, 45, 51, 52]). These taxa play a
significant role within the community and confer stability
due to their high connectivity with other members. There-
fore, a better understanding of the mechanisms that influ-
ence highly connected taxa composition and structure may
provide an insight into the underlying response of the whole
community [44, 52–55].

The Paraná River floodplain constitutes a hydrological
network of linked environments, which can be considered a
metacommunity [40], being an ideal system to address these
issues. It is characterized by a wide range of temporal and
spatial heterogeneity mediated by irregular hydrological
fluctuations [56]. It comprises multiple shallow lakes, some of
which are permanently connected to the main river or to
secondary channels, whereas others remain isolated although
high-water phases connect most of the environments [57].
The floods have a homogenization effect on most environ-
mental features [58, 59], as observed for other large river
systems [60]. In contrast, the environmental characteristics
show a higher spatial heterogeneity during the low-water
phases due to the intensified influence of local factors [59].
Here, we investigated bacterial community structure through
16S amplicon sequencing, in contrasting environmental het-
erogeneity scenarios of this complex floodplain system in
order to (i) determine the relative importance of the high-level
processes structuring the bacterial metacommunity, (ii) detect
changes in bacterial co-occurrence networks, and (iii) identify
highly connected taxa.

We hypothesize that the influence of different ecological
processes shaping bacterioplankton metacommunities will
depend mainly on the system’s environmental hetero-
geneity, in turn determined by the degree of landscape
connectivity. To test this hypothesis, we first analyzed the
processes shaping bacterioplankton community structure
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using the approach based on phylogenetic and taxa turnover
proposed by Stegen et al. [12]. Then, we constructed co-
occurrence networks for each hydrological scenario to
explore how ecological processes affect putative interac-
tions between taxa. We predicted that as the extent
of hydrological connectivity increases and the system
becomes more homogeneous, nonselective processes will
have a larger relevance in structuring the bacterioplankton
metacommunity, promoting less interconnected network
associations.

Material and methods

Study site and sampling design

The Paraná River is the second largest river in South
America and fifth larger in the world (Fig. 1) [57]. The
middle stretch is composed by a main channel and a
floodplain that encompasses a high number of temporary

and permanent streams and lakes. The system is char-
acterized by a complex spatiotemporal dynamic influenced
by the hydro- and sedimentological regime. It has a fluc-
tuating hydrological functioning with pulses of floods and
drought that determine high- and low-water phases, which
alternate in variable frequency with extreme hydrological
phases [61]. During high-water phases, water drains the
floodplain, connecting the environments in different degrees
depending on the magnitude of the flood. The sediment
pulse that mainly depends on suspended solids coming
from the Bermejo Basin is not coupled with the hydro-
logical pulses, affecting most abiotic characteristics of
the environments connected with the main channel [62].
The dynamics of biological communities respond to a large
extent to the hydrological fluctuations, since they have a
direct influence not only on the environmental character-
istics, but also on the dispersal processes, and habitat
colonization [39–42, 63–65].

The temporal dynamics and the spatial heterogeneity of the
system were captured by sampling different hydrological

Fig. 1 The Paraná fluvial system. a The river location in South America showing the study area and b the environments sampled. c Daily water
level from 2013 to 2016 in the Paraná River. The sampled periods are indicated with arrows.
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phases and environmental types, characteristic of the flood-
plain river (Fig. 1, Supplementary Fig. S1). Four sampling
campaigns that lasted 10 days each were performed during a
low-water phase (LW, November–December 2013), a low-
water phase coupled with the sedimentological pulse (LWs,
March–April 2014), a high-water phase (HW, September
2105), and an extraordinary high-water phase (eHW, March
2016). Four representative environmental types with different
hydrological connectivity and morphological features were
selected (Fig. 1): the main channel and large secondary
channels (MC), minor secondary channels (SC), connected
lakes (CL), and isolated lakes and swamps (IL). Lentic
environments were classified as IL or CL according to their
hydrological connectivity degree during LW phase. Overall,
our dataset consists of 59 samples: 16 from LW, 17 from
LWs, 13 from HW, and 13 from eHW.

Environmental data collection

Besides depth and Secchi depth, water temperature, pH,
conductivity, and dissolved oxygen (DO) concentration
were measured in situ with a HANNA checkers. Subsurface
water samples (20 cm) were collected and transported
within 5 h in polypropylene containers to the laboratory
for turbidity, soluble reactive phosphorus (SRP), nitrate
(NO3

−), ammonium (NH4
+), chromophoric dissolved

organic matter (CDOM) concentration (A440), CDOM
molecular weight (S275–295), and chlorophyll-a analyses.
Technical details of the abiotic variable analyses are
described in Supplementary Methods.

Bacterial samples collection and sequencing

Subsurface water samples for DNA (100–140 ml) were
prefiltered with a 50 µm pore mesh, and then filtered
through 0.22 µm pore-size cellulose filters (GSWP0-Milli-
pore). The filters were frozen (−80 °C) until DNA extrac-
tion. Genomic DNA was extracted using a CTAB protocol
[66] as described in Supplementary Methods.

Tagged amplicons of the 16S rRNA gene (V3–V4
region) were obtained with the primers 341F and 805R [67]
and sequenced using Illumina MiSeq 2 × 250 paired-end
reads approach [68] by Macrogen (Seoul, South Korea).

Sequence data analysis

Raw sequences were processed using a modified version
of the pipeline proposed by Logares [69] (https://github.
com/ramalok), described in Supplementary Methods.
Operational taxonomic units (OTUs) were defined with
no clustering (zero-radius OTUs [zOTUs]) using the
UNOISE2 algorithm [70]. The zOTU table resulted in
10,253 zOTUs (2,560,053 reads). We constructed

zOTU rarefaction curves to evaluate richness saturation
(Supplementary Fig. S2).

A second zOTU table was generated discarding zOTUs
with <10 reads as well those assigned to the Archaea
domain or to chloroplasts. This table was normalized to an
equal sampling depth to generate the subsampled zOTU
table (rrarefy function, Vegan v.2.0.9 package [71] in the R
environment [72]), which consisted of 8927 OTUs and
average 18,747 reads per sample.

The sequence data obtained in this work were deposited
at the European Nucleotide Archive public database with
references ERS4228518–ERS4228576.

Environmental heterogeneity

Environmental heterogeneity was estimated by computing
the average dissimilarity between sites (Ed) [73] based on
nine abiotic variables: DO, turbidity, conductivity, pH,
SRP, NO3

−, NH4
+, CDOM concentration, and CDOM

molecular weight. For each hydrological phase (i.e., LW,
LWs, HW, eHW), we computed a Euclidean distance
matrix (Vegan package, R) and calculated the dissimilarity
between sites (Ed) as follows:

Ed ¼ Euc
Eucmax

� �
þ 0:001;

where Euc is the Euclidean distance between two sites and
Eucmax corresponds to the maximum Euclidean distance
considering all the pairwise distances in the overall dataset.
0.001 was added to account for zero similarity between sites
[73]. Then, we calculated the mean Ed (Ed) of each
computed similarity matrix and used it as an index of
environmental heterogeneity in each hydrological phase. In
addition, we calculated the coefficient of variation (CV%)
for each variable and hydrological phase, as the standard
deviation divided by the mean of each variable.

To test whether the environmental conditions in the four
hydrological phases differed significantly, we performed a
one-way permutational multivariate analysis of variance
(PERMANOVA) [74]. We first test for homogeneity of
multivariate dispersion (PERMDISP, [75]) with betadisper
function (Vegan package, R), which compares the within‐
group spread among groups using the average value of the
individual observation distances to the centroid of the own
group. Since groups account for heterogeneous dispersion
(Supplementary Table S2), we run a modified PERMA-
NOVA pseudo-F statistics (F2) implemented by Anderson
et al. [76] that solves permutation test sensitivity to differ-
ences in dispersion in unbalanced design. Differences in
environmental conditions were also analyzed with a two-
way PERMANOVA for testing the effects of hydrological
phases, type of environments, and their interaction (adonis
function in Vegan package, R).
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PERMANOVAs were based on Euclidean distance
matrix with 9999 permutations, and pairwise P value
comparisons were tested with Bonferroni post-hoc test
when significant differences were found.

Bacterial community structure and diversity

To describe a general view of bacterial community struc-
tures, we analyzed the taxonomic structure in each hydro-
logical phase and constructed rank abundance curves
(Supplementary Fig. S3). We characterized the “rare bio-
sphere” and the “abundant fraction” (zOTUs relative
abundances per sample <1% and >1%, respectively) [77].

The effect of hydrological conditions on bacterial meta-
community structures was assessed by calculating the
community turnover in each hydrological phase. We com-
puted a Bray–Curtis matrix on the basis of zOTU normal-
ized abundances for each hydrological phase to calculated
the dissimilarity (Xd) between the local communities as
follows:

Xd ¼ Bray
Braymax

� �
þ 0:001;

where Bray is the Bray–Curtis dissimilarity between two
communities and Braymax corresponds to the maximum
Bray–Curtis dissimilarity considering the overall dataset.
Then, we calculated the mean Xd Xd

� �
of each matrix

computed, which was used as a value of community
turnover.

To evaluate the significance of the effect of hydrological
conditions on bacterial turnover, we performed a PERMA-
NOVA with 9999 permutations on Bray–Curtis dissimilarity
matrices and Bonferroni post-hoc pairwise comparisons.
Since PERMDISP was significant (Supplementary Table S2),
we run the modified PERMANOVA proposed by Anderson
et al. [76]. We additionally calculated the Whittaker index to
explore the β-diversity (Past software V3). To visualize the
taxonomic similarity across local communities, a nonmetric
multidimensional scaling (NMDS) was performed using the
Bray–Curtis metric (Vegan package, R). zOTU richness and
Shannon–Weaver diversity (H′) indices were calculated from
the normalized bacteria zOTU table, and significant differ-
ences (P < 0.01) among hydrological phases were evaluated
with Kruskal–Wallis analyses and Mann–Whitney U post-hoc
tests (Past software V3).

Quantification of high-level process structuring the
bacterial metacommunity

To quantify the relative importance of ecological processes
in structuring the bacterial metacommunity, we used the
approach proposed by Stegen et al. [12]. This approach
analyzes the influence of environmental filtering on the

community, independently of the considered environmental
variables [12, 78], avoiding the problem of overestimating
the effect of stochastic processes due to unmeasured
environmental variables.

We first measured the influence of selection in each
hydrological phase, comparing observed phylogenetic
turnover to a random expectation using the βNTI Index
(β-nearest taxon [79–81]). This metric is defined as the
difference between the observed mean phylogenetic dis-
tance between each taxon and its closest relative in two
communities (βMNTD metric) with the βMNTD obtained
from the null distribution, divided by the standard deviation
of the phylogenetic distances from the null data. Absolute
βNTI values greater than 2 (|βNTI| > 2) indicate that coex-
isting taxa are more closely related than expected by
chance, so selection strongly influenced community com-
position [12, 82]. Next, we estimated the percentage of
homogeneous selection as the fraction of pairwise com-
parisons with a βNTI value of <−2 and heterogeneous
selection as the fraction of pairwise comparisons with a
βNTI value of >+2 [12].

As this approach considered that the habitat preferences
of closely related taxa are more similar than the habitat
preferences of distantly related taxa [12], we tested the
phylogenetic signal performing a Mantel correlogram ana-
lysis between zOTU niche and zOTU phylogenetic dis-
tances (see Supplementary Methods) [12, 24, 83–85].
Phylogenetic signals were detected over short phylogenetic
distances (Supplementary Fig. S4) consistent with previous
studies [12, 14, 24, 85, 86].

The communities that were not structured by selection
(i.e., |βNTI| < 2) were then analyzed in a second step,
where the action of dispersal and drift was calculated
based on the taxonomic (zOTU) turnover with the
Raup–Crick metric [87] using Bray–Curtis dissimilarities
(hereafter RCbray) [12]. RCbray compares the measured β-
diversity from a metacommunity against the β-diversity
obtained from a null model. RCbray values between –0.95
and +0.95 indicate significant departures from the degree
of turnover, occurring when drift is acting alone [12].
In addition, RCbray values >+0.95 indicate that the com-
munities are less similar than expected by chance as a
result of dispersal limitation combined with drift, and
RCbray values <−0.95 indicate that the communities are
more similar than expected by chance as a result of
homogeneous dispersion [12].

Phylogenetic and taxonomic turnovers were calculated in
the R environment, we used the Picante package [88] for
βNTI and the raup_crick_abundance function developed by
Stegen et al. [12] for RCbray.

To identify the features that imposed selection or dis-
persal limitation during each hydrological phase, we per-
formed a distance-based redundancy analysis (db-RDA) on
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the βNTI and RCbray matrices using spatial and environ-
mental explanatory variables following Stegen et al. [12].

The spatial relationships between sampling sites were
estimated using distance-based Moran’s eigenvector maps
(dbMEMs, formerly called principal coordinates of neigh-
bor matrices) [89]. A Euclidean distance matrix was gen-
erated from watercourse distances, a proxy of dispersal by
water, measured as the minimal distance from each envir-
onment to the nearest major channel using satellite images
(Google Earth Pro). dbMEM eigenvectors were computed
from the truncated Euclidean matrix just at the distance at
which IL become disconnected from the lotic influence
(8.44 km for LW, and 6.98 km for LWs), or at the distance
that keeps all the sites connected (for HW and eHW). The
truncation value was calculated as the maximum distance of
the minimum spanning tree [90].

The spatial eigenvectors and the nine measured abiotic
variables were combined in a principal component analysis
(PCA). The resulting PCA axes were used as independent
variables in the db-RDA with either βNTI or RCbray as the
dependent variables. Four separate sets of PCA axes and
db-RDA analyses were run for each hydrological phase.
Each βNTI and RCbray matrices were normalized adding the
absolute magnitude of the minimum (negative) value to all
values, and then dividing the resulting values by their
maximum. Stepwise forward model selection was carried
out on PCA axes evaluated using a P value significance
level of 0.05 (as determined by 999 permutations) and the
coefficient of determination R2 of the global model with all
explanatory variables [91].

The significantly selected PCA axes in the db-RDA
based on the βNTI characterized environmental variables
that imposed selection. The extent to which PCA axes were
related to abiotic variables or dbMEMs was evaluated by
examining PCA axis loadings. Abiotic variables that loaded
heavily on a significant PCA axis for βNTI were considered
as measured environmental variables that imposed Selec-
tion. PCA axes that loaded on a dbMEMs were considered
as an indicator of unmeasured spatially structured envir-
onmental variables (strong PCA loading with a dbMEM).
The PCA axes were not related to the βNTI but were sig-
nificantly selected in the db-RDA based on RCbray were
considered as a feature of Dispersal Limitation. dbMEMs
and db-RDA were performed with CANOCO software
V5.0 [90].

Co-occurrence networks

A bacterial meta-network was constructed considering all
the samples from the four hydrological phases. Further-
more, to infer whether bacterial associations were influ-
enced by the different ecological processes structuring the
metacommunity, one specific network association for each

hydrological phase was constructed considering zOTUs
with >50 reads and present in at least 50% of the samples.
As previous works have shown that the number of taxa and
samples have a strong impact on the network properties
[92], the networks were constructed from the same number
of taxa and samples randomly selected. Thus for each net-
work, the initial zOTU matrix consisted in 13 samples and
328 zOTUs.

The networks were constructed using the CoNet software
V1.1.1.beta [93] implemented in Cytoscape V3.7.1 [94].
Four measures were calculated: Bray–Curtis and
Kullback–Leibler nonparametric dissimilarity indices, and
Pearson and Spearman rank correlations. The combination
of their results allows the appropriateness of scoring mea-
sures to determine the statistical significance of correlations,
as stated by the authors [93]. The initial edge selection was
set to include the 2000 positive and 2000 negative edges
consistent across all four correlation measures. The sig-
nificance of the edges was calculated using the ReBoot
method [95] based on 1000 permutations with renormali-
zation and 1000 bootstrap iterations. Only edge supported
by at least three methods was considered. Then, edge-
specific P values were merged using Brown’s method [96],
followed by Benjamini–Hochberg for false discovery rate
correction, edges with merged P values below 0.05 were
kept [93].

In the microbial network, two taxa could be related
because of a true ecological association or alternatively,
because they are correlated to an abiotic or biotic environ-
mental factor [46, 93]. To explore indirect associations
driven by environmental factors, in the network construc-
tion, we included environmental information in an addi-
tional matrix containing the following variables: DO,
turbidity, conductivity, pH, SRP, NO3

−, NH4
+, CDOM

concentration, and CDOM molecular weight. No envir-
onmentally driven indirect edges (i.e., environmental node
—taxa node) were detected.

To validate the nonrandom co-occurrence patterns, we
evaluated networks against their randomized versions using
the Barabasi–Albert model available in the Randomnet-
works plugin in Cytoscape. NetworkAnalyzer tool [97] was
used to calculate four network topology properties: number
of nodes (bacterial zOTUs), number of edges (associations
between bacteria), network density, and clustering coeffi-
cient. These structural attributes were used to infer the
connectedness in bacterial networks [46, 92, 98, 99]. The
network density indicates the average connectivity of a
node in the network with values varying between 0 and 1
[92, 100]. Values close to 1 are expected when the con-
nectivity of the network increases [100]. The clustering
coefficient indicates how nodes are embedded in their
neighborhood and, thus, the degree to which they tend to
cluster together [92, 100, 101]. As a consequence, low
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values of this metric are interpreted as less interconnected
association networks. Mathematically, it is the average
clustering coefficient of all nodes in the graph. The clus-
tering coefficient of a node is the ratio between the numbers
of connections in its neighborhood to the number of pos-
sible connections. In graph theory, the neighborhood of a
node is the set of nodes that are connected to it. Thus, for
example, if the node has three neighbors, then it can have a
maximum of three connections among them. If all three
possible connections are realized, the clustering coefficient
of the node is 1 (3/3). Contrarily, if none of the possible
connections with the neighbors are realized, the local
clustering coefficient value is 0 (0/3).

Highly connected bacterial taxa

To identify highly connected taxa we used three centrality
metrics: node degree, closeness centrality, and betweenness
centrality [47, 51–54]. The degree is the number of edges
connecting each node to the rest of the network. Closeness
centrality measures the length of the shortest path between
two nodes, reflecting the importance of a node in dis-
seminating information. Betweenness centrality quantifies
how many steps away a particular node is from all the
others in the web, denoting the role of a node as a bridge
between the other components of a network [52, 54, 92].

For each network, we identified the highly connected
taxa as those nodes with a high degree (>20), closeness
centrality (>0.26), and low betweenness centrality (<0.06)
(NetworkAnalyzer tool in Cytoscape) [53, 54, 98]. These
metrics illustrate both the number of connections and how
important those connections are to the overall network
[53, 102, 103].

Redundancy analysis (RDA) was performed to evaluate
the effect of abiotic variables on the abundance of the
highly connected taxa (CANOCO software V5 [96]). The
environmental variables tested as explanatory variables
(DO, turbidity, conductivity, pH, SRP, NO3

−, NH4
+,

CDOM concentration, CDOM molecular weight) were
normalized as standard normal deviates. A forward selec-
tion procedure was run to find the subset of significant
explanatory variables using Monte Carlo Permutations.

Results

Environmental heterogeneity

The average environmental dissimilarity between sites (Ed)
as well as the CV% of the nine abiotic variables indicated a
clear trend to higher spatial homogenization from LW (low
hydrological connectivity) to HW (high hydrological con-
nectivity) phases (Fig. 2). Thus, the four hydrological

phases were significantly different according to their
environmental characteristics (PERMANOVA F2= 7.6799,
P= 0.001, Supplementary Tables S1 and S2, Fig. S5). The
two-way PERMANOVA showed a significant effect of
environmental type (F1= 2.06, P < 0.01) mainly due to IL,
besides the effect of hydrological phases (F1= 2.5, P <
0.01) (Supplementary Table S3).

Bacterial community structure and diversity

In the 59 samples analyzed, a total of 8927 zOTUs within
the bacterial domain were defined. The metacommunity was
mainly dominated by Proteobacteria (33%), Actinobacteria
(23%), Bacteroidetes (18%), and Verrucomicrobia (11%).
The community structure according to zOTUs abundance
varied with hydrological conditions with significant differ-
ences among phases (PERMANOVA, F2= 6.9265, P=
0.001, Supplementary Fig. S6, Table S3), except between
the two LW phases (LW and LWs). In the NMDS, the
samples were distributed following a clear gradient of
homogenization, from LW to HW phases (Fig. 3). In the
eHW phase, local communities were more similar grouped
in a distinct cluster. In contrast, those from LW phases were
more spread, mainly due to differences in the community
composition of IL (Fig. 3). The community turnover Xd

� �
varied markedly among hydrological phases, being sig-
nificantly lower (PERMANOVA, P < 0.005) in HW phases
(Xd: HW= 0.58; eHW= 0.29) than in LW phases (Xd:
LW= 0.76; LWs= 0.75). In line with this observation, the
highest values of ß-diversity were obtained in both LW

Fig. 2 Environmental heterogeneity in the Paraná fluvial system in
different hydrological phases. The environmental heterogeneity
is expressed as average environmental dissimilarity between sites (Ed,
gray bars) and the variability (coefficient of variation, CV%) of nine
selected abiotic variables among environments. LW low water, LWs
low water with sedimentological pulse, HW high water, eHW extra-
ordinary high water.
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phases (Whittaker: LW= 3.50; LWs= 3.27; HW= 1.97;
eHW= 1.95).

Species richness and Shannon diversity (H′) presented
similar average values in the different hydrological phases
(Kruskal–Wallis, P= 0.366, Fig. 3). However, differences
among local communities were pronounced in LW phases,
when IL had a higher variability showing lower values than
the mean (Fig. 3).

High-level process structuring the bacterial
metacommunity

Having demonstrated that bacterial community structure
was clearly linked to changes in environmental hetero-
geneity, we quantified the relative importance of selec-
tion, dispersal, and drift processes in structuring the
metacommunity.

The phylogenetic turnover analysis (βNTI) revealed that
selection was the most important structuring process

regardless of the hydrological phases. However, its relative
importance as well as the type of selection, changed
according to the hydrological conditions and hence, to
environmental heterogeneity. During both LW phases, het-
erogeneous selection had the major role in structuring the
metacommunity (76.66 and 84.55% of the community turn-
over for LW and LWs, respectively), whereas the role of
homogeneous selection and the nonselective processes was
less significant. In the HW phase, heterogeneous selection
was also the most important process (39.74% of the overall
community turnover), but the relative importance of homo-
genous selection and nonselective processes were twice as
high as in the LW phases (Fig. 4). In contrast, homogenous
selection was the most important process in eHW (88.46% of
the overall community turnover) (Fig. 4). Regarding non-
selective processes (RCbray), dispersal limitation combined
with drift had a prevalent role in all the hydrological phases,
except in eHW when homogeneous dispersion became more
important (Fig. 4).

Fig. 3 Bacterial community structure and diversity in the Paraná
fluvial system in different hydrological phases. a Sample ordination
in a nonmetric multidimensional scaling (NMDS) according to the
similarity in bacterial communities structure (zOTU relative abun-
dance) among the four hydrological phases (indicated with color) at
the different type of environments (indicated with symbols) of the

Paraná fluvial system. Stress value: 0.112. b, c Richness and
Shannon–Weaver diversity index H′ of local bacterial communities in
the four hydrological phases. LW low water, LWs low water with
sedimentological pulse, HW high water, eHW extraordinary high
water, IL isolated lake, CL connected lake, SC secondary channel, MC
main channel.
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In each of the four hydrological phases, selection was
imposed by a different set of environmental factors. In LW,
three PCA axes were significant for the βNTI model (PCA1,

PCA3, and PCA4; Table 1 and Supplementary Table S4).
Within PCA1 the major loading values were observed for
DO, pH, and CDOM molecular weight. Weak loading
values of the measured abiotic variables were observed in
the PCA3 and PCA4, indicating that these axes represent an
unmeasured, spatially structured environmental variable
that impose some degree of selection (Table 1 and Sup-
plementary Table S4). In the LWs phase, model selection
identified PCA1, PCA3, and PCA11, as significant axes.
The stronger loadings on these axes were due to environ-
mental features related with nutrient concentration (SRP
and NO3

−), CDOM molecular weight, pH, and an unmea-
sured, spatially structured environmental variable (Table 1
and Supplementary Table S4). In the HW phases, the βNTI
model selection identified one significant PCA axis (PCA1)
in HW, and three in eHW (PCA1, PCA5, and PCA6;
Table 1 and Supplementary Table S4). In the HW phase,
conductivity and CDOM molecular weight had the stron-
gest loading values on PCA1, whereas in the eHW phase
the environmental variables related were CDOM and SRP.

Regarding the features imposing dispersal limitations,
only in HW phase, the RCbray model selection identified
significant PCA axes (PCA2 and PCA3) that were not
retained in the βNTI model selection (Table 1 and Sup-
plementary Table S4).

Bacterial community associations

The bacterial meta-network consisted in 470 nodes (bac-
terial zOTUs) and 936 edges (associations between

Fig. 4 Relative importance of high-level processes structuring the
bacterial metacommunity of the Paraná fluvial system in different
hydrological phases. Values indicate percentage of community turnover
associated to each process: homogeneous selection (βNTI <−2), het-
erogeneous selection (βNTI >+2), homogeneous dispersal (RCbray <
−0.95), dispersal limitation combined with drift (RCbray >+0.95), and
drift (|RCbray| < 0.95). LW low water, LWs low water with sedimento-
logical pulse, HW high water, eHW extraordinary high water.

Table 1 Features that imposed
selection and dispersal limitation
in the Paraná fluvial system
during different hydrological
phases based on the model
selection for βNTI and RCbray

analysis.

Hydrological phase Features imposing selection Features imposing
dispersal limitation

Low water (LW) PCA1: DO, pH, CDOM
molecular weight

NA

PCA3: unmeasured abiotic variable

PCA4: unmeasured abiotic variable

Low water+ sedimentological
pulse (LWs)

PCA1: SPR, nitrate NA

PCA3: pH+ unmeasured abiotic
variable

PCA11: pH, CDOM molecular weight

High water (HW) PCA1: conductivity, DO, CDOM
molecular weight

PCA2

PCA3

Extraordinary high water (eHW) PCA1: CDOM molecular weight,
CDOM concentration

NA

PCA5: SPR

PCA6: SPR

The PCA axes retained during model selection for βNTI were considered as imposing selection and those
significant for RCbray as imposing dispersal limitation. Within each PCA significant for βNTI, strong loading
was considered as a measure or unmeasured variable imposing selection. Loading values for each PCA axes
are presented in Supplementary Table S4.

DO dissolved oxygen, SPR soluble reactive phosphorous, CDOM chromophoric dissolved organic matter,
NA indicated that nonsignificant PCA axes were retained in RCbray model selection.
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bacteria). It was mainly represented by taxa from Bacter-
oidetes, Betaproteobacteria, and Verrucomicrobia (which
together account for the 45% of the total nodes). The net-
work density was 0.008 and the coefficient of clustering
was 0.364. The majority of OTUs presented positive asso-
ciations (Supplementary Fig. S7).

The co-occurrence networks at each hydrological phases
(Fig. 5) varied in the number of edges, being the highest in
both LW phases, whereas the number of nodes did not vary
considerable. The connectedness of the networks appeared
to be higher during the dominance of heterogeneous
selection, as the network density was considerably higher in
both LW phases in contrast to HW phases, especially in the
HW (Fig. 5). In agreement, the same behavior was shown
by the clustering coefficient, indicating higher network

connectivity when heterogeneous selection had the major
role in structuring the metacommunity. Finally, the net-
works from HW phases presented a higher percentage of
positive edges compared to those from LW phases (Fig. 5).

Metacommunity highly connected taxa

The number as well as the taxonomic composition of the
highly connected taxa (i.e., those taxa that play a significant
role within the community) were notably different in the
four hydrological phases (Supplementary Table S5). In LW
and LWs, 54 and 44, respectively, zOTUs were defined as
highly connected taxa, while these were reduced to 10 in the
HW phases, and to 3 in the eHW. Most of these taxa were
exclusive of each hydrological phase and none was present

Fig. 5 Bacterial co-occurrence networks for each hydrological
phase of the Paraná fluvial system, arranged according to the
bacterial taxonomy (classes or orders). The size of each node is
proportional to the number of connections (degree). Gray dashed and

red solids lines represent positive and negative correlation, respec-
tively. The number of nodes, number of edges, positive edges per-
centage, network density, and clustering coefficient of the overall
network is indicated below each network.
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in all the four phases. The highly connected taxa were
recruited differentially from each phylum in each hydro-
logical phase, being Actinobacteria and Bacteroidetes the
more represented phyla (Supplementary Fig. S8).

The arrangement of highly connected taxa in the RDA
analysis was mainly related to the hydrological phase in
which they were defined (Supplementary Fig. S9). The first
two axes accounted for 28% of the variance (axis 1: 16.7%;
axis 2: 11.3%) being CDOM concentration (A440), CDOM
molecular weight (S275–295), DO, and nutrients (SRP and
NO3

−) the main explanatory variables (P < 0.01). The first
axis was mostly defined by the NO3

− concentration and
CDOM molecular weight (intraset correlation coefficients:
−0.59 and 0.57, respectively). The second axis was prin-
cipally associated with CDOM concentration and molecular
weight (intraset correlation coefficients: 0.58 and −0.45,
respectively). Taxa from the LW phases grouped together
by the left of the graph and were positively related to NO3

−

and inversely related to CDOM molecular weight. The taxa
from HW phases were mainly positioned toward the upper
part of the graph (Supplementary Fig. S9), more associated
with high CDOM molecular weight, SRP concentration,
and high CDOM concentration (A440).

Discussion

This study provides the first empirical evidence that selec-
tion is the most important process structuring the bacterial
metacommunity at both extremes of environmental hetero-
geneity and homogeneity. This finding challenges the gen-
eral view that selection is weakened by dispersal
homogenization [21, 36, 37]. In addition, we show that at
intermediary environmental heterogeneity stochastic pro-
cesses become more important.

Based on the underpinning of Vellend’s approach [3], we
predicted that the influence of nonselective processes would
increase as the system becomes more homogeneous. Con-
trarily, we found that selection was the main process
shaping the bacterial metacommunity at both high and low
environmental heterogeneity.

Several studies have found evidence of the pivotal role of
selection in determining bacterial community structure in
different environments, and a decrease in its relative
importance as dispersal rates increase and the systems
become more homogeneous in their environmental condi-
tions [14, 31, 32, 104]. Particularly, Wang et al. [24] in a
comparative survey of a broad range of ecosystems (i.e.,
soil, stream biofilm, and lake), observed a clearly dominant
role of deterministic processes controlling the assembly of
bacterial communities, whereas stochastic processes
became more relevant as environmental heterogeneity
decreased and dispersal rates increased. The authors

proposed a theoretical threshold of selective strength above
which communities should be mainly structured by deter-
ministic processes as a consequence of high environmental
heterogeneity and low dispersal rates.

However, these previous attempts considered only
variability in the spatial scale. To address the full scope of
the question, we extended these observations considering
the spatial and the temporal variability in a complex eco-
system. We summarize our findings in three possible sce-
narios: (i) With high environmental heterogeneity
characterized by low connectivity, the structure of the
bacterial assemblage was mainly driven by heterogeneous
selection (Fig. 6a). In this scenario, species with different
fitness may strongly be filtered by different selective forces
in each local community, leading to a high β-diversity,
whereas the influence of drift and dispersion became irre-
levant. (ii) At intermediate environmental heterogeneity,
both heterogeneous and homogeneous selections had simi-
lar weight and the relative influence of stochastic processes
increased (Fig. 6a). Here, the magnitude of ordinary floods
seems to be insufficient to thoroughly mix water among all
the floodplain, and some environments begin to homo-
genize their environmental filters while others retain their
identity [105]. Selection may act with similar strength both
homogenizing and segregating local communities, leading
to an overall reduction of community turnover and
β-diversity. Simultaneously, the metacommunity should be
relatively random due to intermediate dispersal rates. (iii)
At extreme environmental homogeneity, homogeneous
selection was the main ecological rule structuring the
metacommunity (Fig. 6a). Despite stochasticity is expected
to increase due to the high dispersal rates, the bacterial
species should strongly be filtered by common environ-
mental factors and the strength of homogeneous selection
may dampen the influence of drift and dispersion. For
instance, low community turnover and β-diversity are
expected. These evidences support the early assumptions
made by Stegen et al. [85] and Dini-Andreote et al. [14] and
provide a new view of bacterial community assembly in
which the action of selective and nonselective processes
both play a role.

The factors that impose selection changed in the different
hydrological phases. They were mainly related with inor-
ganic nutrient concentration, the quality and quantity of
CDOM, as well as conductivity and DO. This could be
explained by marked lateral gradient that characterize our
system, which changes according to the landscape con-
nectivity [59]. During the LW phases, and from the MC to
the IL, we observed a clear decreasing trend in pH, DO, and
SRP concentration, together with an increasing trend in
conductivity, NO3

−, and low molecular weight CDOM
concentration [59, 106]. During eHW phase, the effect of
the floods led to a reduction of the differences among
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environments, and the variables became more similar to
those in the MC. In addition, features that impose dispersal
limitation were only detected in the HW phase.

At this point, it is appropriate to mention that Stegen’s
approach is based on the assumption that phylogenetic
relatedness is indicative of shared environmental response
traits, setting aside the ecological traits that do not have a
strong phylogenetic signal. This may lead to an over-
estimation of the relative importance of dispersal limitation
as it could mask the effects of phylogenetically non-
conserved selection processes [12, 107]. In our study, the
results of the estimated quantitative processes were in
concordance with those from the identification of features
imposing selection and dispersal limitation, giving robust

support to our conclusions. More explicitly, even though in
our system the bacterial communities were heavily gov-
erned by selection, significant variables imposing dispersal
limitation were identified when this process showed the
major influence (i.e., in HW phase).

The understanding of the ecological processes acting on
the river floodplain metacommunity was extended studying
the bacterial co-occurrence patterns. Network analyses-
based approaches have the potential to infer intertaxa cor-
relations and can be applied to investigate structure com-
plexity [95, 108], and the ecological rules guiding
community assembly [29, 109]. Particularly, the influence
of ecological processes on bacterial associations is a poorly
explored field. Emerging studies in soil communities have

Fig. 6 Conceptual model that synthetizes how environmental het-
erogeneity determines the action of the ecological processes
assembling the bacterial metacommunity. Empirical evidence (a, b)
that support the proposed conceptual model (c). At high environmental
heterogeneity, community structure is mainly determined by hetero-
geneous selection. The heterogeneous selection promotes greater
β-diversity increasing divergence in local communities, and higher
interconnected bacterial co-occurrence network. At intermediate
values of environmental heterogeneity both heterogeneous and
homogeneous selection act with similar strength, and stochastic pro-
cesses reach more importance. In this scenario, the selection acting in

opposite ways does not allow homogenization or differentiation of
local community structure, leading to an overall reduction of turnover
and β-diversity. Simultaneously, the metacommunity will have a
relatively high randomness due to intermediate dispersal rates. As a
consequence, the association network would tend to be loosely inter-
connected. In extremely homogeneous environmental conditions, the
low diversity of niche habitats leads to an increase of homogeneous
selection, and local communities are strongly filtered by common
environmental factors. Homogeneous selection then leads to a low
turnover and β-diversity, promoting less interconnected associations.
ND network density.
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revealed that systems under organic farming harbor more
interconnected networks than conventional farming, mainly
associated to higher habitat heterogeneity [98]. In addition,
it has been demonstrated that greater microbial diversity
ensures greater association complexity [29, 109].

The networks’ topology was different according to the
weight of the ecological processes acting on the bacterial
community assemblage. At heterogeneous selection dom-
inance (LW and LWs phases), the network associations
seem to be more interconnected than HW phases (Fig. 6b).
We assign this finding to the fact that heterogeneous selec-
tion promotes a greater taxonomic β-diversity [29, 109].
Contrarily, homogeneous selection may be associated
to fewer interconnected networks as decreasing β-diversity.
In addition, under multiple ecological processes acting with
similar strength, the network tends to be less interconnected
(Fig. 6b).

The dominance of different ecological processes struc-
turing the community appeared to be especially important
for shaping the mutualistic and antagonistic co-occurrence
patterns. For instance, there were considerably more nega-
tive correlations when systems became more homogeneous,
compared with periods of low water. Several ecological
interpretations had been made about the extent to which we
can interpret negative and positive correlations according to
how the networks have been constructed (e.g., whether the
network represents one or more trophic levels, or if it results
in spatial or temporal associations) [44, 45, 48, 110]. At the
metacommunity level negative correlations may reflect
competition that it is expected to be more common under a
homogeneous scenario, as homogeneous selection favors
taxa with similar ecological requirements that will compete
for similar sources. Contrarily, the dominance of positive
correlations in our survey under the dominance of hetero-
geneous selection may reflect the coexistence of multiple
taxa in the metacommunity occupying multiple different
niches [44, 45, 48, 110]. Our analysis represents one of the
first studies that have empirically linked bacterioplankton
networks to community structuring processes. Future stu-
dies comparing networks for communities of different
systems, and also structured by different ecological pro-
cesses, will allow for a deepen exploration and generation
of new ecological hypotheses.

A useful feature of network analysis is that it allows to
identify the strongly connected taxa that have a core effect
on the community assemblage [53, 111] and are adequate
predictors of overall community changes [55]. Each
hydrological phase presented a particular set of highly
connected taxa that were determined by different environ-
mental factors. Since conditions significantly varied among
the hydrological phases this was not surprising (Fig. 1).
Perhaps the most interesting fact of our findings was the
huge number of highly connected taxa found under the

highest environmental heterogeneity, which could be attri-
bute to a higher niche segregation over this condition. As it
was mentioned above, a marked lateral hydrological gra-
dient (i.e., from the MC to IL) is observed in many variables
during LW phases. Remarkably, all the significant variables
in the RDA are related to quality and quantity of essential
resources for bacteria (i.e., N, P, and CDOM). Even though
caution is needed as these estimated taxa derive from a co-
occurrence approach [43–45], we found a concordance
between the factors imposing selection to the whole com-
munity, and those more related with the highly connected
taxa. These results spotted the spatiotemporal heterogeneity
as an important factor determining the number and identity
of the highly connected taxa (hubs) and support their
importance as target organisms for a better understanding of
the whole community. A challenge for future research will
be to elucidate ecological functions of hubs in the system.

Taking together, our results demonstrated that Stegen’s
framework, strengthened with co-occurrence network ana-
lyses, can provide relevant insights about the ecological
processes structuring microbial communities, although a
good understanding on the method’s limitations must be
exerted. Finally, we would like to highlight the importance
of incorporating temporal variability in order to understand
metacommunity assembly.

Concluding remarks

Integrating all the empirical evidence obtained here, we pro-
pose a conceptual model that synthetizes how environmental
heterogeneity determines the action of the ecological pro-
cesses assembling the bacterial metacommunity (Fig. 6c).
In systems with high environmental heterogeneity, hetero-
geneous selection plays the major role in structuring the
community, promoting a greater β-diversity, and more inter-
connected networks associations. At intermediate values of
environmental heterogeneity, the action of stochastic pro-
cesses reaches more importance and both, heterogeneous and
homogeneous selection, have similar contribution. This leads
to a decrease in β-diversity and to loosely interconnected
networks associations. In systems with low environmental
heterogeneity, the strength of homogeneous selection dam-
pens the influence of drift and dispersion, and local commu-
nities become more similar and the association networks less
interconnected. While this model was devised based on the
empirical evidence of a complex fluvial system, it certainly
would be needed to evaluate its robustness and limitation in
other types of environments.

A particular strength of this model is that it was conceived
relying on different metacommunity features (e.g., taxonomic
and phylogenetic turnover, network associations) but taking
into account the spatial and temporal variability scales.
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Furthermore, we used a step-forward analysis combining
different statistical inferences, which allowed us to take
advantage of the strengths of each method alone and in
synergy with the others. Therefore, the proposed model
represents a significant improvement on our knowledge of
bacterial community’s assembly across freshwater ecosystems
and provides a new framework to be tested in future studies in
other communities.
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