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Abstract
Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more
refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil
fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided
unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent
case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the
differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial
data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-
diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly
separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha
diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored
higher abundances of Xanthomonadaceae, Bacillaceae, Gibberella, and Fusarium oxysporum, the healthy soil microbiome
contained more Streptomyces Mirabilis, Bradyrhizobiaceae, Comamonadaceae, Mortierella, and nonpathogenic fungi of
Fusarium. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the
health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for
occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased
soil microbiome.

Introduction

Microbes are of paramount importance for the sustainability
of human health and the environment [1, 2]. Human gut
microbes directly influence human health [3], oceanic
microbes produce novel antibiotics [1, 4], while soil
microbes influence food quality, plant productivity [5, 6],
and the global climate through the cycling of carbon and
nitrogen [7–9]. The composition and functional capacity
of the soil microbiome is known to directly influence
agricultural productivity by shaping critical ecosystem
functions such as nutrient cycling and resistance to plant
pathogens [8, 10, 11]. In addition, agricultural soil amend-
ments, such as compost or compost-manure, have been
shown to alter the native soil microbiome with potential
impacts on plant disease or pathogen abundance [12].
Therefore, understanding the relationships between the soil
microbiome and soil-borne plant disease is a current grand
challenge in microbial ecology with applied consequences
for agricultural food production worldwide [13, 14].
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Caused by the fungal pathogen Fusarium oxysporum,
Fusarium wilt is one of the most destructive soil-borne plant
diseases [15], with broad host range in crop production
systems [16]. Fusarium oxysporum can be isolated and
identified from numerous native soils [17, 18]. Plant
infection initiates in root tips followed by longitudinal
growth into immature xylems, causing symptoms including
damping-off, root rot, and vascular wilt [19]. Over the past
decade, Fusarium wilt disease-suppressive soils, together
with their microbiomes, have been characterized by using
high-throughput sequencing (HTS) methods [20–23] and
hundreds of beneficial microbes with suppressive activity
against F. oxysporum have been isolated and tested [24].
In one study, a suppressive soil against strawberry wilt was
investigated and beneficial microbial groups, as well as their
active secondary metabolites, were identified [16]. Another
study on Fusarium wilt of vanilla found that healthy soil
harbored a more diverse fungal community with a greater
abundance of Mortierella [22], as compared to a high dis-
ease incidence soil. Soils suppressive to Fusarium wilt of
banana have been shown to harbor greater soil bacterial
diversity [25], with an enrichment of Pseudomonas and
Tumebacillus genera [26]. However, contrasting conditions
have also been identified, with higher diversity and richness
in both the fungal and bacterial communities within the
diseased soil [27, 28]. These contradictions may arise due to
site-specific characteristics, such as soil type, host plant,
crop rotation, fertilizer management, climate, and other
confounding factors [29–31], that result in a lack of a
consensus concerning global microbiome properties within
Fusarium infested soils.

Case studies have contributed an abundance of open-
access data which can be utilized to evaluate the microbial
world. Effectively merging and analyzing those data may
provide a means by which to identify global properties of
Fusarium wilt-diseased soils and their healthy counterparts
such as key microbial taxa or whether crop disease can be
predicted based on microbiome composition. However, the
integration of microbial community data garnered from HTS
in different studies is challenging [27]. “Microbial community
records and information can be incomplete, processing and
naming varies greatly between studies, over time, data storage
is inconsistent over time, and there are few curated databases
with high-quality data” [32]. As such, it may be difficult to
identify underlying signals that correspond to soil disease
status across studies, especially when site-specific character-
istics influence the composition of the soil microbiome.

Higher Fusarium wilt disease incidence is correlated to a
large increase in the population abundance of F. oxysporum
in bulk soils as studied with under the cultivation of banana,
cucumber, and other crops [33, 34]. While there is no
threshold of bulk soil pathogen abundances that can be used
to predict disease occurrence, it has been demonstrated

that disease incidence remained low in disease-suppressive
soils even after the addition of the pathogen in high
abundance [35, 36]. Analyses of disease-suppressive soils
have also indicated that members of the soil microbiome
appear to play important roles in the suppression of
F. oxysporum [27].

We hypothesize that there are common microbial char-
acteristics shared among Fusarium wilt diseased and soils
with on occurrence of disease. In this study we characterized
the bacterial and fungal communities of bulk soils with a
history of disease due to F. oxysporum infestation and
compared them with nondiseased soils by collecting open-
access microbial community data from independent studies,
taking methodological and technical biases into account, and
using a machine-learning approach. In this way, we attempt
to reveal the underlying microbial community patterns of
Fusarium wilt-diseased soils and thus, to constructs a model
to predict Fusarium wilt disease under field conditions.

Materials and methods

Data collection and description

Metadata related to Fusarium wilt disease occurrence in
healthy and diseased bulk soils from 9 countries or regions
were collected from 37 studies with 1105 bacterial samples
and 26 studies with 444 fungal samples by searching the
keywords “Fusarium wilt microbiome,” “Fusarium wilt
community,” and “Fusarium wilt structure” in Google
Scholar and the National Center for Biotechnology Infor-
mation (NCBI) SRA database. Here, a healthy soil is
defined as on that exhibited <15% Fusarium wilt plant
disease incidence while a diseased soil refers to a disease
incidence >15%. A total of 24 independent bacterial data
sets comprising 758 samples and 20 independent fungal
data sets comprising 279 samples were randomly selected,
and then separately merged to build a microbial classifier.
Another 13 independent bacterial data sets (347 samples)
and 6 independent fungal data sets (165 samples) were used
for prediction. Sequencing data were produced either with
Roche 454 technology (19.4%) or one of the Illumina
platforms (80.6%). For the bacterial community studies, 11
different primer pairs (515F:806R; 515F:907R; 338F:806R;
520F:802R; 799F:1193R; 27F:533R; 563F:802R;
341F:785R; 341F:805R; 27F:533R; and 27F:518R) were
identified from the metadata, accounting for 66% of sam-
ples, with the majority (72.7%) using the V4 or V3–V4
regions to produce amplicons. For fungal community stu-
dies, six different primer pairs were identified (ITS5F:
ITS4R; ITS1F:ITS2R; ITS1F:ITS1R; ITS7F:ITS4R; ITS2F:
ITS5R; and ITS3F:ITS4R), accounting for 66% of the
samples with clear primer information (34% of the samples
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with unclear primer information). All raw data were
obtained from two open-access nucleic acid databases: the
DNA Data Bank of Japan (5%) or the NCBI (95%). Details
of metadata are provided in Supplementary Files 1 and 2,
including sequence information such as crop type, location,
reference, database, sequencing platform, primers, etc.

Data processing

Processing data from databases

Sequence read quality was checked by FastQC v.0.11.5 [37]
and paired-end reads were joined by using the join_-
paired_ends.py script in QIIME 1.9.0 [38], and then trim-
med to a Phred score of at least 20 by using the
split_libraries_fastq.py script in QIIME. For each data set,
all reads were mapped to the full-length 16S rRNA or ITS
gene sequences using the usearch global algorithm imple-
mented in VSEARCH 2.1.3 [39] The closed-reference
workflow was a database-dependent approach employing a
predefined set of reference sequences with known tax-
onomy (the manually curated Greengenes database 13.8 or
the Unite database 7.2) to cluster sequences into OTUs and
assign taxonomy to reference sequences. This approach is
advantageous for comparing studies that target different 16S
rRNA or ITS gene regions since the underlying database is
comprised of full-length sequences.

The aligned results in usearch table format were directly
converted to Biological Observation Matrix (BIOM) format
using BIOM 2.1.5 [40]. The metadata were added to BIOM-
Format 1.3.1 using biom convert for downstream analysis
with QIIME. Summary information on the representation of
taxonomic groups was obtained by using summarize_taxa.
py script. Finally, all BIOM files of each data set were
merged using QIIME. The workflow of this study is shown
in Supplementary Fig. 1.

To address PCR biases (Supplementary Files 1 and 2)
and biases associated with rare taxa and some groups which
could be over amplified, we created a filtered subset of the
data incorporating two strategies: (1) deletion of OTUs that
only appeared in one-third of all samples; and (2) deletion
of OTUs that only appeared in less than half of the inde-
pendent data sets.

Machine-learning approach for model building

Comparison of machine-learning methods

In order to better distinguish the microbial communities of
Fusarium wilt-diseased and healthy soils, we applied three
well-established machine-learning algorithms; random for-
ests (RF) [41], support vector machines (SVM) [42], and
logistic regression (LR) [43], to construct models using the

relative abundance of OTUs as a candidate feature. A per-
formance evaluation of the classifier was established
through fivefold cross-validation within the training set. In
detail, the training set was randomly divided into five equal
portions; then, during each of the five iterations, the least
absolute shrinkage and selector operator [44] were chosen
as the feature selection method on 80% of the training data
to train the classifiers (1000 trees for RF, radial kernel for
SVM, other parameters set by default) with the selected
features. In addition, the trained classifiers were used for
prediction or validation with the remaining 20% of the
training data. After that, the predictions of all five iterations
were combined and compared to the actual health condition
according to the receiver operating characteristic curve
(ROC) and the area under curve (AUC) score [45]. Finally,
we built up the classifiers from the entire training set using
the best-performing algorithm (with the highest AUC)
identified through cross-validation and applied the best
classifiers to the test set in order to independently validate
the predictive power. Cross-validation was performed by
the rfcv() function for the selection of appropriate features.
The varImpPlot function was used to illustrate the impor-
tance of features in the classification, and the curves were
visualized by using the ggplot2 package in R v.3.6.1.

Modeling of bacterial metadata

We created a classification model using RF, a robust
machine-learning algorithm for classification and regression
that is suitable for microbial population data [46, 47]. Then,
to acquire the best discriminated performance with taxa
across wilt-diseased soils and soils free of Fusarium wilt,
we classified the relative abundances of bacterial taxa to the
phylum, class, order, family, genus, and OTU levels using
the RF package v.4.6–14 in R with default parameters [41].
For each taxon, two-thirds of all samples were randomly
selected for model building and the remaining one-third
were used for prediction. We carried out this process five
times to evaluate the accuracy of each taxon. Modeling of
bacterial taxa at the OTU level most clearly discriminated
the samples of diseased and healthy soils (Supplementary
Table 1), and therefore, further analysis was performed at
that level. The training set of metadata from 24 studies
(758 samples) using the random forest (importance=
TRUE, proximity= TRUE) function was utilized to gen-
erate the classification model for diseased and healthy soils.
A high degree of accuracy of 98.9% was achieved.

Modeling of fungal metadata

In order to acquire the highest discriminated separation of
fungal taxa among soils that did or did not give rise to
Fusarium wilted plants, we classified the relative abundances
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of taxa to the phylum, class, order, family, genus, and OTU
levels by using the R package v.4.6–14 in R with default
parameters. Model building and prediction were carried five
times in the same fashion as performed with the bacterial
metadata. As with bacterial taxa, modeling to the OTU level
most clearly distinguished between diseased and healthy soils
(Supplementary Table 1), and further analysis therefore was
performed at that level. The training set of metadata from
20 studies (279 samples) using the random forest (importance
=TRUE, proximity=TRUE) function was carried out to
generate the classification model for diseased and healthy
soils, yielding an accuracy of 96.4%.

Characterization of healthy and diseased soil
microbial communities

To exclude the effects of variable sample sizes from each
case study, we randomly selected 80 samples if the total
number of samples was >80. For alpha diversity analysis,
the minimum number of sequences was extracted randomly
from each sample to calculate Chao1, Shannon, and Pielou
evenness indices in QIIME using the alpha_diversity.py
script. The relative abundance was used to standardize the
OTU profiles by the normalize_table.py script before beta
diversity calculation and Bray–Curtis similarity matrices
were prepared with the beta_diversity.py script. The prin-
cipal coordinate analysis (PCoA) plots were generated from
Bray–Curtis similarity matrices by using R package ggplot2.

Significant correlations between the relative abundance of
bacterial or fungal OTUs were made using the sparse corre-
lations for compositional data algorithm implemented in the
SparCC python module [48] and co-occurrence networks
were plotted using the R package igraph [49]. Only the cor-
relations with “R-corr” absolute value > 0.4 and p value <
0.05 were plotted. In order to describe the topology of the
resulting network, a set of measures (that is, average node
connectivity, average path length, diameter, cumulative
degree distribution, clustering coefficient, and modularity)
were calculated [50]. All statistical analyses were carried out
in the R environment (http://www.r-project.org) using the
vegan [50] and igraph [49] packages. To assess nonrandom
patterns in the resulting network, we compared our network
against its randomized version using the igraph package.
Structural attributes of this network, such as the clustering
coefficient and characteristic path length, were compared with
those in the random network with equal nodes and edges.

Trained model validation

Soil sample collection

To further model validation, we collected soils (Supple-
mentary File 3) of banana, cucumber, watermelon, and lily

from Hainan, Guangdong, Beijing, and Jiangsu (China),
respectively, in late April of 2019. For diseased soil col-
lection, we selected plots under continuous cropping whose
plants suffered from wilt disease for at least five seasons.
Newly planted plots lacking wilt disease were sampled for
healthy soils. Healthy plots were selected near to the dis-
eased plots to avoid differences induced by geographical
and edaphic factors. For each soil sampling, twenty random
soil cores (5 cm diameter × 20 cm length) were obtained
from the 0- to 20-cm layer in an S-pattern in each plot and
combined as one soil sample. The freshly collected soils
were sieved through a 2-mm mesh to remove plant debris
and stored at −80 °C prior to DNA extraction.

DNA extraction, gene amplification, and sequencing

Total DNA from 0.5 g of soil was extracted with the Power
Lyzer PowerSoil DNA Isolation Kit (Qiagen, Germany)
following the manufacturer’s protocol. DNA quality and
quantity were evaluated with a 1% agarose gel and a
NanoDrop 2000 spectrophotometer (Thermo Scientific,
Waltham, MA, USA). For taxonomic profiling, PCR pro-
ducts that targeted the V4 region of the bacterial 16S rRNA
gene were amplified with the primers 515F: GTGYCAGC
MGCCGCGGTAA and 806R: GGACTACNVGGGTWT
CTAAT) [51] to yield an amplicon of 292 bp. For the
fungal communities, PCR targeting the ITS2 region was
carried out with the primers ITS3-F: GCATCGATGAAG
AACGCAGC and ITS4-R: TCCTCCGCTTATTGATAT
GC) [52]. The 50 μL reaction mixtures contained 25 μL 2×
Premix Taq (Takara Biotechnology, Dalian Co. Ltd, China),
1 μL each primer (10 μM), 3 μL DNA (20 ng/μL), and 25 μL
of sterilized ultrapure water. PCR amplification was per-
formed by using a BioRad S1000 (BioRad Laboratory, CA)
with the following cycles: 95 °C for 5 min, then 30 cycles of
94 °C for 30 s, 52 °C for 30 s, 72 °C for 30 s with a final
extension at 72 °C for 10 min. Products were run on a 1%
agarose gel and those with clear bands between 290 and
310 bp were combined for sequencing. PCR products were
mixed in equidensity ratios according to the GeneTools
Analysis Software (Version 4.03.05.0, SynGene) and the
mixture was purified with an EZNA Gel Extraction Kit
(Omega, USA). Sequencing libraries were generated using
the NEBNext® Ultra™ DNA Library Prep Kit for Illumina®
(New England Biolabs, USA) following the manufacturer’s
recommendations. Index codes were added and library
quality was assessed with a Qubit® 2.0 Fluorometer
(Thermo Scientific) and an Agilent Bioanalyzer 2100 sys-
tem. Finally, the library was sequenced on an Illumina
Hiseq 2500 platform and 250 bp paired-end reads were
generated, quality filtered to obtain high-quality clean
reads according to Trimmomatic (V0.33, http://www.usa
dellab.org/cms/?page=trimmomatic), and sequences were
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assigned to each sample based on its unique barcode.
All of the clean reads were processed using the pipelines
detailed above.

Statistical methods

For subsequent analyses, minimum numbers of sequences
were extracted at random from each sample to calculate an
alpha diversity index estimated in Qiime by the alpha_di-
versity.py script. A nonparametric t-test was used to deter-
mine if Shannon indices differed between Fusarium wilt-
diseased and healthy soils. Before calculation of beta diver-
sity, relative abundances were used to standardize the OTU
profiles and Bray–Curtis similarity matrices were prepared
using the beta_diversity.py script. Permutational multivariate
analysis of variance (PERMANOVA) (Adonis, transformed
data by Bray–Curtis, permutation= 999) was used to
determine if beta diversity differed between the two treat-
ments and PCoA plots were generated from Bray–Curtis
similarity matrices created using R package ggplot2.

Results and discussion

Diversity and taxonomic difference between
diseased and healthy soil

We randomly selected sequencing data from 24 individual
bacterial studies, 19 of which were published and 5 that
were available by open-access. (Fig. 1a and Supplementary
File 1). The resulting merged bacterial OTU table contained
data from 758 individual soil samples from six countries
with over 40,000 taxa (Supplementary Fig. 2).

In order to prevent a large number of samples within a
single study from dominating the analysis of microbial
community diversity, we randomly filtered the samples
when such case studies contained more than 80 samples.
Then, we rarefied (without replacement) the sequencing
reads of each sample to 3000 to calculate the Chao1,
Shannon, and Pielou evenness indices. The results of these
analyses revealed no clear differences in bacterial alpha
diversity between healthy and diseased soils (Fig. 2a), but
principal coordinates analysis (PCoA) with Bray–Curtis
distance showed that the bacterial communities differed
significantly between the two soil types (p= 0.001,
PERMANOVA by Adonis) (Fig. 2b). The diseased soils
harbored a higher relative abundance of Firmicutes, Bac-
teroidetes, Choroflexi, and Gemmatimonadetes, while the
healthy soils harbored higher relative abundances of Pro-
teobacteria, Actinobacteria, and Acidobacteria (Fig. 2c).
We also found that there were more unique bacterial OTUs
in the diseased soils (806) than in the healthy soils (120)
(Fig. 2d).

We also incorporated the sequencing data from 20
individual fungal studies related to Fusarium wilt into our
analyses (Fig. 1b and Supplementary file 1). All of these
soil samples had been amplicon-sequenced across the ITS
region (Supplementary file 1). Among the 20 studies,
sequencing data from 16 studies were published and 4 of
them were available by open access. The merged fungal
OTU table contained 279 individual soil samples and over
8000 taxa. We then rarefied (without replacement) the
sequencing reads of each sample to 3000 for alpha diversity
calculations of the Chao1, Shannon, and Pielou evenness
indices, which together indicated significantly greater
diversity in the healthy than the diseased soils (Fig. 2e).
Similarly, PCoA analysis with Bray–Curtis distance also
showed a clear (p= 0.001, PERMANOVA by Adonis)
difference between the fungal communities of healthy
and diseased soils (Fig. 2f). The relative abundance of
Ascomycota was higher in diseased soils, while that of
Mortierellomycota was greater in healthy soils (Fig. 2g and
Supplementary File 4; Wilcoxon test; adjusted p values <
0.05). We also found that there were more unique OTUs in
the fungal communities of the diseased soil (37) as com-
pared to the healthy soils (31) (Fig. 2h).

To highlight common features among the microbial
communities, we also filtered the bacterial and fungal OTUs
as above by deleting those that appeared in less than one-
third of all of the samples or in less than half of the inde-
pendent data sets. After filtering, the tables contained 1339
bacterial OTUs and 177 fungal OTUs for downstream
analysis, accounting for 37.7% of the total bacterial reads
and 49.9% of the total fungal reads (Supplementary Fig. 2).
The resulting alpha diversity of the bacterial community
was significantly higher in diseased than in healthy soil
samples (Supplementary Fig. 3), while no significant dif-
ference was found between diseased and healthy soil fungal
communities (Supplementary Fig. 4).

Both bacterial and fungal communities can be
biomarkers to distinguish diseased and healthy soils

To determine whether properties of the soil bacterial or
fungal communities could be used as biomarkers to distin-
guish between diseased and healthy soils, we built three
machine-learning models by random forest, SVM, and LR.
Consideration of the AUC and ROC curves derived from
the models revealed that the RF model exhibited the best
accuracy rate with which to predict the classification of
samples (Fig. 3c, d). Next, we established with the bacterial
and fungal data that the models trained at the OTU level
showed the highest levels of classification accuracy, 95%
and 92%, respectively, for both models.

For bacterial model validation, we analyzed 13 inde-
pendent data sets from the NCBI SRA database including
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26 diseased soil samples and 321 healthy soil samples. The
bacterial model showed 93.4% average accuracy for all
samples collected, with 89.6% accuracy for diseased sam-
ples and 95.4% for healthy samples (Supplementary
Table 2). At the same time, we used 6 independent fungal
data sets from the NCBI SRA database, including 21 dis-
eased soil samples and 144 healthy soil samples for fungal
model validation. The fungal model exhibited an 87.8%
average accuracy for all samples collected, with 95 %
accuracy for diseased samples and 78.9% for healthy sam-
ples (Supplementary Table 2).

As an additional test of the universality of the model,
field soil samples of 4 different crops, including 20 soil
samples, were collected for further verification. Our bac-
terial model showed 80% average accuracy for all samples,
with 90% accuracy for diseased samples and 70%
for healthy samples (Fig. 3i). The fungal model showed
87.2% average accuracy for all samples, with 90% accu-
racy for diseased soil samples and 84.2% for healthy soil
samples (Fig. 3i). Collectively, our results indicate

that both the bacterial and the fungal models in this study
can serve to reasonably predict whether Fusarium
wilt disease will occur (>15% incidence) or not in a
particular soil.

Microbial features recognition of diseased and
healthy soil

We carried out tenfold cross-validation with five repeats to
evaluate the importance of bacterial OTUs as potential
indicators. The cross-validation error curve stabilized
(Fig. 3g) at the 45 most relevant OTUs, which were defined
as biomarker taxa with relative abundance ranging from
0.16 to 4.84% (Fig. 4c). The most important OTU belonged
to the Gemmatimonadetes (Gemm-1, Fig. 4c) and was
enriched in diseased soils. Among all of the important
OTUs, 33 showed higher relative abundance in diseased
soils while 12 showed higher relative abundance in
healthy soils (FDR adjusted p < 0.05, Wilcoxon rank
sum test; Fig. 4b). The OTUs more abundant in diseased

Fig. 1 Merging of data from independent studies. The geographic
region, information about country and zones, primers, amplicon
region, and sequencing platforms used in this study are displayed.
a and b show the broad geographical distribution of the data sourced
from 24 individual bacterial studies and 22 individual fungal studies,
respectively. The color of points refers to the identity of the sampled

plants. The shape of point indicates locations of amplicons sequenced.
The four subplots below a and b show the proportion of samples
among crops, the proportion of samples among countries and zones,
the proportion of samples sequenced with different primers, and the
proportion of samples sequenced with different platforms.
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soils were classified as Proteobacteria (Alpha- and Beta-)
and Acidobacteria, followed by Sphingomonadaceae,
Koribacteraceae, Kaistobacter, and Xanthomonadaceae

(Supplementary Fig. 5, Supplementary File 5, and Fig. 4c).
The OTUs more abundant in healthy soils were classified
mainly as Actinobacteria and Proteobacteria (Alpha- and

Fig. 2 General descriptions of
the Fusarium wilt-diseased
and healthy soil microbial
(bacterial and fungal)
communities. a and e illustrate
the alpha diversity of soil
bacterial and fungal
communities, respectively. The
Chao1, Shannon, and Pielou
indices were calculated with all
OTUs (48521 bacterial and 8840
fungal) merged from 244
diseased (122 bacterial and 122
fungal) and 793 healthy
(636 bacterial and 157 fungal)
samples. The horizontal bars
within boxes represent the
median. The tops and bottoms of
boxes represent 75th and 25th
quartiles, respectively. All
outliers were plotted as
individual points. Asterisk “*”
represents a significant
difference between groups
(nonparametric t-test), and “ns”
indicates no significant
difference between groups.
b and f Show the principal
coordinates analysis (PCoA)
with Bray–Curtis dissimilarity
performed on the taxonomic
profile (at the OTU level) for
diseased and healthy microbial
(b: bacterial and f: fungal)
communities. R- and p values
were evaluated via Adonis test.
c and g Show the relative
abundance (%) of the major
phyla present in the microbial
(c: bacterial and g: fungal)
communities in diseased and
healthy soil samples. d and h:
Venn diagram of shared and
unique OTUs numbers observed
in diseased and healthy soil
microbial (d: bacterial; h fungal)
communities.
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Gamma-), followed by Streptomyces Mirabilis Bradyrhi-
zobiaceae, Comamonadaceae, and Chthoniobacteraceae
(Supplementary Fig. 5 and Supplementary File 5).

An identical method was used to evaluate the
importance of fungal OTU features. The cross-validation
error curve stabilized at 40 OTU features, which were

Fig. 3 The workflow of the machine-learning method for model
building and testing. a The samples (bacterial 758; fungal 279) used
in machine-learning process. b Three machine-learning methods
(random forest (RF), support vector machines (SVM), and logistic
regression (LR)) used to build the models. c, d The AUC and ROC
curves of models built with the three machine-learning methods at the
OTU level of microbial (c: Bacterial, d: Fungal) communities, with the
RF model showing the highest accuracy rate predicting the classifi-
cation of samples (AUC= 0.98). The RF method was used to build the
models with both soil bacterial (e) and fungal (f) samples at phylum,

class, order, family, genus, and OTU level, respectively. Green, blue,
and red lines represented the accuracy of healthy samples, diseased
samples, and total samples, respectively. The models built at the OTU
level show the highest classification accuracy for both bacterial and
fungal samples. The top 45 bacterial OTUs (g) and top 40 fungal
OTUs (h) identified by applying RF classification of the relative
abundance of diseased and healthy samples. i Prediction with samples
collected from China to the best classifier. Green indicates correct, and
red indicates incorrect, with five replicates for each of the diseased and
healthy soil samples.
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defined as biomarker taxa (Fig. 3h). Twenty-six of those
showed higher relative abundance in diseased soils,
and fourteen had higher relative abundance in healthy

soils. The Fusarium oxysporum and Mycothermus
thermophilus were proportionally enriched in diseased
soils, while Aspergillus fumigatus, Mortierella
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camargensis, and Neurospora terricola were proportion-
ally enriched in healthy soils (Supplementary Fig. 6,
Supplementary File 6, and Fig. 4f). Not surprisingly, the
relative abundance of F. oxysporum was greater in dis-
eased soils (7.8%) than in healthy soils (4.%). Other
Fusarium-OTUs were distributed between diseased and
healthy soils. For example, the OTU Fusarium kerato-
plasticum had a higher relative abundance in healthy soils
(Supplementary Fig. 7).

Co-occurrence network analysis of the features

Co-occurrence network analysis was used to assess inter-
actions across features, and only the significant correlations
(|R| > 0.4, p < 0.05) are shown in this analysis. The results
revealed a greater number of nodes and links in the healthy
microbial (both bacterial and fungal) feature networks
(Supplementary Table 3). Further insight into the bacterial
feature network illustrated higher average degree, cen-
tralization-closeness, and clustering coefficient values in
healthy than in diseased soil (Supplementary Table 4).
Some OTUs, such as those classified as Bacillaceae,
Hyphomicrobiaceae, Bradyrhizobiaceae, Comamonada-
ceae, Streptomycetaceae, and Chthoniobacteraceae (red in
the healthy feature network) contained more links and
higher relative abundances in the healthy bacterial network.
Other OTUs, such as Alicyclobacillaceae and Sphingomo-
nadaceae (red in the diseased feature network), contained
more links and higher relative abundances in the diseased
bacterial networks. OTUs 1111883 and 549433, classified
as Gemmatimonadetes that exhibited a high importance
through model recognition, contained more connections and
higher relative abundances in the diseased (Fig. 5a), com-
pared to the healthy bacterial network (Supplementary
Files 7, 8).

Unlike the bacterial feature networks, there were more
nodes and links, as well as higher average degree, cen-
tralization-closeness, and clustering coefficient values,
in the diseased than the healthy fungal feature network
(Supplementary Table 4). Three OTUs belonging to the
genera Aspergillus and Remersonia and the family
Stephanosporaceae showed greater closeness, center

degree, and betweenness in the diseased (Fig. 5c) than the
healthy fungal feature network (Fig. 5d and Supplementary
Files 9 and 10) while OTUs belonging to Chaetomiaceae
showed higher closeness, center degree, and betweenness
values in the healthy fungal feature network. Unlike in the
diseased feature network, no connection with F. oxysporum
was found in the healthy feature network (Supplementary
Files 9 and 10). Notably, fewer nodes and connections were
included in the healthy feature network than in the diseased
one, perhaps because the OTUs used there were derived
from a machine-learning process that focused mainly on
diseased soil microbial features.

Sequencing data used in this study varied with regard to
the primers used, the amplified gene regions and sequence
lengths. We aligned the sequencing reads to full-length 16S
rRNA gene or ITS gene sequences in Greengene or Unite
for merging disparate sequence data as a reasonable way to
integrate all sequence data before further analyses. Similar
methods were previously implemented by Adams et al. [53]
where 16S rRNA gene data sets from 23 studies were
combined by using a closed-reference OTU method and
Cornejo-Granados et al. [54] where environmental and host
factors shaping the structure and function of shrimp
microbiota were identified by using the same method.
Recently, it has been shown that disparate amplicon
sequence data could be combined at the taxonomy-based
level [32], but only with bacterial community amplicon
sequences. Another method, the de novo approach, was
reported to include more OTUs than the reference-based
method by retaining all of the sequences generated [55].
However, in studies that used the de novo approach
[56, 57], it did not work well for sequencing metadata with
multiple primers (Supplementary File 1 and 2) across dif-
ferent case studies. In this study, we succeeded in analyzing
both bacterial and fungal metadata related to Fusarium wilt
disease. However, the percentage of shared OTUs among
all studies we included in our analysis were only about
15%, indicating that the majority of OTUs were specific to
individual studies. This may be due to sampling bias, DNA
extraction bias, and sequencing biases [58], but even so, we
were still able to obtain common features of the bacterial
and fungal communities in Fusarium wilt-diseased soils.
The RF algorithm we utilized has been widely applied in
microbial ecology studies [56, 59, 60], such as to model the
difference between the microbiota of mice fed normal and
high-salt diets [61]. We also found that the RF model
showed excellent performance in distinguishing between
the microbial community characteristics of diseased and
healthy soils (Fig. 3c, d). The model can be built at any
taxonomic level, but in our study we found that the OTU
level provided the best results for both bacterial and fungal
communities (Fig. 3e, f). The model also can perform well
at other taxonomic levels, as when family-level random

Fig. 4 RF model to detect bacterial taxa that accurately
distinguish diseased and healthy samples. Top feature taxa
(45 bacterial OTUs and 40 fungal OTUs) are ranked in descending
order of importance to the accuracy of the bacterial (a) or fungal (d)
model. Color represents the phylum of OTUs classified. b, e The
relative proportion of the feature OTUs (b for bacterial, e for fungal)
in healthy and diseased samples are displayed. c, f Heatmap analysis
of the abundance of the top 45 bacterial OTUs (1339 bacterial
OTUs merged from 122 bacterial and 636 bacterial samples) and
40 fungal OTUs (177 fungal OTUs merged from 122 fungal and 157
fungal samples).
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forest classifiers were used to distinguish the root micro-
biomes of indica and japonica rice [47]. Collectively, the
RF algorithm appears to be a suitable choice for extracting
microbial features especially with metadata.

By merging global metadata, we found that the alpha
diversity of the fungal community was significantly greater
in healthy soils than in diseased soils, whereas there was no
difference in the alpha diversity of bacterial microbial
communities. Case studies have reported similar results
with vanilla and potato field soil samples [22, 62]. It is
thought that a large increase in the population of a fungal

pathogen within a soil will disrupt the inherent balance of
the soil fungal community, leading to a decrease in diversity
[22]. This is also reflected in the difference in the overall
composition of the microbial communities of our healthy
and diseased soils. The OTU classified as F. oxysporum was
the most important fungal community feature by which to
distinguish between diseased and healthy soils (Fig. 4d–f).
These results revealed that while specific features of the
healthy soil microbial community might be difficult to
distinguish, the principal feature of the diseased soil
microbial community was the high population of F.

Fig. 5 Co-occurrence networks of the top microbial features. a and
b show the diseased and healthy networks with 45 bacterial OTUs,
respectively. c and d Show the diseased and healthy networks with 40
fungal OTUs, respectively. Edges represent significant Spearman
correlations (ρ > |0.4|, p < 0.05). Light blue lines represent a significant

negative correlation and light red lines represent a significant positive
correlation. The size of the points represents the relative abundance of
OTUs in each microbial community. The red nodes represent the top
ten node values in each network.
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oxysporum [63]. Although the relative abundance of F.
oxysporum was high in the diseased soils, it has been shown
to vary greatly among studies. Thus, in similar studies
concerning the banana wilt soil microbiome, Shen et al.
identified 106 copies/g soil, while only 104 copies/g soil was
found by Wang et al. [64, 65]. As another example, the
relative abundance of Fusarium oxysporum in vanilla
Fusarium wilt soil was 0.1–0.45%, but 12–32% was found
in diseased banana soils [64, 66]. As such, it does not
appear that we can solely utilize the relative abundances of
specific members such as F. oxysporum alone to identify
whether a soil harbors the potential to cause Fusarium wilt
disease (Supplementary Fig. 7). Furthermore, within the
healthy soils there was greater diversity among other
members of the genus Fusarium and increased relative
abundance of other Fusarium species (nonpathogenic fungi
of Fusarium wilt disease) which do not cause Fusarium wilt
disease (Fig. 5c). Unexpectedly, the F. keratoplasticum,
nonpathogenic fungi of Fusarium wilt disease was pro-
portionally higher in healthy than in diseased soils and were
recognized to be an important characteristic of the fungal
communities by which to distinguish between them
(Fig. 5d, Supplementary Fig. 7, and Supplementary file 11).
Co-occurrence analysis also showed more connections with
F. keratoplasticum than with F. oxysporum in the healthy
feature network. Nonpathogenic Fusarium has been used as
a biocontrol agent of Fusarium wilt disease of many crops
[67, 68].

Among the bacteria, Xanthomonadaceae exhibited a
higher relative abundance in the diseased than in the healthy
soils (Supplementary Fig. 5). Coincidentally, Xanthomo-
nadaceae have been reported as phytopathogens [69, 70]
and recently were shown to be positively correlated with
Fusarium wilt disease [71]. In another report, monoculture
of Pseudostellaria heterophylla increased the population
size of Xanthomonadaceae in soil [72], suggesting that the
bacteria might function to aid Fusarium wilt disease.
Moreover, we also found Gemmatimonadetes in greater
relative abundance and with more connections in the dis-
eased network. These results implicate Gemmatimonadetes
as a diseased-related microbial group, as also indicated in an
earlier study of rhizosphere samples from Fusarium wilt-
diseased lily [73].

We also identified some potential beneficial bacteria
among the microbes with higher relative abundance and
position in the healthy soil co-occurrence network. Among
these were Streptomyces (micabili, Fig. 5), of which many
strains are known to suppress F. oxysporum and promote
plant growth [74–77]. Overall, the features that emerged
from the models built to separate healthy and diseased soils
provided convincing evidence of conserved features among
the microbial communities associated with diverse Fusar-
ium wilt-diseased crops from various soil types.

Our analysis, the first of its kind, yielded results that
potentially can be used to distinguish if a soil is (or not)
conductive to Fusarium wilt-diseased of a susceptible plant
is grown in it. We set up the threshold value of disease
incidence at 15%, to indicate that soils in which plants are
grown with less than 15% disease incidence may be
recognized as “health soils.” Interestingly, our models
were built excluding data from the soils collected from lily
plots in China, but they were highly accurate in predicting
the nature of the microbial communities present (Fig. 3i).
We also recognize that our analysis did not include all
possible studies, and that our future studies should be
extended to include additional reports with different crops.
In this regard we have built a website tool (https://wenta
omicro.shinyapps.io/foc_16s/) to enable, from sequence
data, the prediction of Fusarium wilt disease in susceptible
plants and to improve the models by including new
sequences. Furthermore, combining the bacterial and
fungal sequencing data to construct a single model ulti-
mately will be more convenient for researchers to compare
with their own data, though we currently support the use of
the separate bacterial and fungal models. It should
be noted that our models are based on the sequencing
data from soils those without drastic factitious disturbance,
such as antimicrobial compounds application, that would
likely affect the composition of the microbial community
and impact the \predictive accuracy of the model. For
example, the treatment of a soil with fungicides may
result in a lack of disease incidence with a concomitant
alteration in the composition of the fungal community.
The loss of a proportion of the functional fungal com-
munity would likely result in aberrant model predictions.
In this study, we combined global bacterial and fungal
HTS data of Fusarium wilt disease soil samples from
multiple independent sources for the detection of microbial
patterns of disease and the identification of microbial
community characteristics that can be used to predict
soil health in relation to Fusarium wilt disease.
Common microbial characteristics of Fusarium wilt dis-
ease were revealed among various crops. The 45 bacterial
and 40 fungal OTUs selected through the RF method
as models for the prediction can be considered as
Fusarium wilt disease-associated core microorganisms.
The abundance and diversity of Fusarium species and
Streptomyces species are important for soil health [67, 78]
and undisputedly, the higher relative abundance of F.
oxysporum is clearly evident in the diseased soil. Our
study provides a list of microbes that potentially take
a pivotal role in the process of Fusarium wilt disease.
Further studies on the interactions among these core
microbes are needed to better understand the Fusarium wilt
disease-associated microbial community and to control
crop disease.
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