Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods

Abstract

Nitrogen availability limits marine productivity across large ocean regions. Diazotrophs can supply new nitrogen to the marine environment via nitrogen (N2) fixation, relieving nitrogen limitation. The distributions of diazotrophs and N2 fixation have been hypothesized to be generally controlled by temperature, phosphorus, and iron availability in the global ocean. However, even in the North Atlantic where most research on diazotrophs and N2 fixation has taken place, environmental controls remain contentious. Here we measure diazotroph composition, abundance, and activity at high resolution using newly developed underway sampling and sensing techniques. We capture a diazotrophic community shift from Trichodesmium to UCYN-A between the oligotrophic, warm (25–29 °C) Sargasso Sea and relatively nutrient-enriched, cold (13–24 °C) subpolar and eastern American coastal waters. Meanwhile, N2 fixation rates measured in this study are among the highest ever recorded globally and show significant increase with phosphorus availability across the transition from the Gulf Stream into subpolar and coastal waters despite colder temperatures and higher nitrate concentrations. Transcriptional patterns in both Trichodesmium and UCYN-A indicate phosphorus stress in the subtropical gyre. Over this iron-replete transect spanning the western North Atlantic, our results suggest that temperature is the major factor controlling the diazotrophic community structure while phosphorous drives N2 fixation rates. Overall, the occurrence of record-high UCYN-A abundance and peak N2 fixation rates in the cold coastal region where nitrate concentrations are highest (~200 nM) challenges current paradigms on what drives the distribution of diazotrophs and N2 fixation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: N2 fixation rates and molecular sampling sites.
Fig. 2: Contribution of N2 fixation (NF) to marine production.
Fig. 3: Relative abundance of nifH OTUs recovered from community DNA in discrete samples collected near noon daily shown in Fig. 1b.
Fig. 4: Environmental properties, N2 fixation rates, diazotroph abundances, and nifH transcription patterns along the transect.
Fig. 5: Spearman’s rank correlation analyses between surface daily N2 fixation rates and environmental properties.
Fig. 6: Relations between quantitative diazotroph nifH gene abundances and various environmental properties.
Fig. 7: Evidence suggesting phosphorus limitation in diazotrophs.

References

  1. 1.

    Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature. 2008;451:293–6.

    CAS  PubMed  Google Scholar 

  2. 2.

    Sohm JA, Webb EA, Capone DG. Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol. 2011;9:499–508.

    CAS  PubMed  Google Scholar 

  3. 3.

    Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature. 1997;388:533–8.

    CAS  Google Scholar 

  4. 4.

    Ko YH, Lee K, Takahashi T, Karl DM, Kang S-H, Lee E. Carbon-based estimate of nitrogen fixation-derived net community production in N-depleted ocean gyres. Glob Biogeochem Cycles. 2018;32:1241–52.

    CAS  Google Scholar 

  5. 5.

    Deutsch C, Sigman DM, Thunell RC, Meckler AN, Haug GH. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Glob Biogeochem Cycles. 2004;18:GB4012.

    Google Scholar 

  6. 6.

    Falkowski PG. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature. 1997;387:272–5.

    CAS  Google Scholar 

  7. 7.

    Michaels AF, Karl DM, Capone DG. Element stoichiometry, new production and nitrogen fixation. Oceanography. 2001;14:68–77.

    Google Scholar 

  8. 8.

    Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science. 2010;327:1512–4.

    CAS  PubMed  Google Scholar 

  9. 9.

    Sañudo-Wilhelmy SA, Kustka AB, Gobler CJ, Hutchins DA, Yang M, Lwiza K, et al. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature. 2001;411:66–9.

    PubMed  Google Scholar 

  10. 10.

    Knapp AN, Casciotti KL, Berelson WM, Prokopenko MG, Capone DG. Low rates of nitrogen fixation in eastern tropical South Pacific surface waters. Proc Natl Acad Sci USA. 2016;113:4398–403.

    CAS  PubMed  Google Scholar 

  11. 11.

    Ward BA, Dutkiewicz S, Moore CM, Follows MJ. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol Oceanogr. 2013;58:2059–75.

    CAS  Google Scholar 

  12. 12.

    Wang W-L, Moore JK, Martiny AC, Primeau FW. Convergent estimates of marine nitrogen fixation. Nature. 2019;566:205–11.

    CAS  PubMed  Google Scholar 

  13. 13.

    Weber T, Deutsch C. Local versus basin-scale limitation of marine nitrogen fixation. Proc Natl Acad Sci USA. 2014;111:8741–6.

    CAS  PubMed  Google Scholar 

  14. 14.

    Mills MM, Ridame C, Davey M, La Roche J, Geider RJ. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature. 2004;429:292–4.

    CAS  PubMed  Google Scholar 

  15. 15.

    Luo YW, Lima ID, Karl DM, Deutsch CA, Doney SC. Data-based assessment of environmental controls on global marine nitrogen fixation. Biogeosciences. 2014;11:691–708.

    Google Scholar 

  16. 16.

    Moore CM, Mills MM, Achterberg EP, Geider RJ, LaRoche J, Lucas MI, et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat Geosci. 2009;2:867–71.

    CAS  Google Scholar 

  17. 17.

    Ratten J-M, LaRoche J, Desai DK, Shelley RU, Landing WM, Boyle E, et al. Sources of iron and phosphate affect the distribution of diazotrophs in the North Atlantic. Deep Sea Res Part II: Topical Stud Oceanogr. 2015;116:332–41.

    CAS  Google Scholar 

  18. 18.

    Straub M, Sigman DM, Ren H, Martínez-García A, Meckler AN, Hain MP, et al. Changes in North Atlantic nitrogen fixation controlled by ocean circulation. Nature. 2013;501:200–4.

    CAS  PubMed  Google Scholar 

  19. 19.

    Dugdale R, Menzel DW, Ryther JH. Nitrogen fixation in the Sargasso Sea. Deep Sea Res. 1961;7:297–300.

    CAS  Google Scholar 

  20. 20.

    Capone DG, Burns JA, Montoya JP, Subramaniam A, Mahaffey C, Gunderson T, et al. Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Glob Biogeochem Cycles. 2005;19:GB2024.

    Google Scholar 

  21. 21.

    Martínez-Pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:16163.

    PubMed  Google Scholar 

  22. 22.

    Delmont TO, Quince C, Shaiber A, Esen OC, Lee ST, Rappe MS, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol. 2018;3:804–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Tang W, Wang S, Fonseca-Batista D, Dehairs F, Gifford S, Gonzalez AG, et al. Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production. Nat Commun. 2019;10:831.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Cassar N, Tang W, Gabathuler H, Huang K. Method for high frequency underway N2 fixation measurements: flow-through incubation acetylene reduction assays by cavity ring down laser absorption spectroscopy (FARACAS). Anal Chem. 2018;90:2839–51.

    CAS  PubMed  Google Scholar 

  25. 25.

    Bruland KW, Rue EL, Smith GJ, DiTullio GR. Iron, macronutrients and diatom blooms in the Peru upwelling regime: brown and blue waters of Peru. Mar Chem. 2005;93:81–103.

    CAS  Google Scholar 

  26. 26.

    Raimbault P, Slawyk G, Coste B, Fry J. Feasibility of using an automated colorimetric procedure for the determination of seawater nitrate in the 0 to 100 nM range: examples from field and culture. Marine Biol. 1990;104:347–51.

    CAS  Google Scholar 

  27. 27.

    Strickland JD, Parsons T. A practical handbook of seawater analysis. Ottawa; 1972.

  28. 28.

    Cutter G, Andersson P, Codispoti L, Croot P, Francois R, Lohan M, et al. Sampling and sample-handling protocols for GEOTRACES cruises. GEOTRACES; 2010.

  29. 29.

    Lagerström M, Field M, Séguret M, Fischer L, Hann S, Sherrell R. Automated on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: application to the GEOTRACES program. Mar Chem. 2013;155:71–80.

    Google Scholar 

  30. 30.

    Berthelot H, Benavides M, Moisander PH, Grosso O, Bonnet S. High-nitrogen fixation rates in the particulate and dissolved pools in the Western Tropical Pacific (Solomon and Bismarck Seas). Geophys Res Lett. 2017;44:8414–23.

    CAS  Google Scholar 

  31. 31.

    Montoya JP, Voss M, Kahler P, Capone DG. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl Environ Microbiol. 1996;62:986–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Cassar N, Barnett BA, Bender ML, Kaiser J, Hamme RC, Tilbrook B. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry. Anal Chem. 2009;81:1855–64.

    CAS  PubMed  Google Scholar 

  33. 33.

    Craig H, Hayward T. Oxygen supersaturation in the ocean: biological versus physical contributions. Science. 1987;235:199–202.

    CAS  PubMed  Google Scholar 

  34. 34.

    Zehr J, Turner P. Nitrogen fixation: nitrogenase genes and gene expression. Method Microbiol. 2001;30:271–86.

    CAS  Google Scholar 

  35. 35.

    Turk KA, Rees AP, Zehr JP, Pereira N, Swift P, Shelley R, et al. Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic. ISME J 2011;5:1201–12.

    CAS  PubMed  Google Scholar 

  36. 36.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS  Google Scholar 

  38. 38.

    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods. 2013;10:996.

    CAS  PubMed  Google Scholar 

  39. 39.

    Church MJ, Jenkins BD, Karl DM, Zehr JP. Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean. Aquat Microbial Ecol. 2005;38:3–14.

    Google Scholar 

  40. 40.

    Robidart JC, Church MJ, Ryan JP, Ascani F, Wilson ST, Bombar D, et al. Ecogenomic sensor reveals controls on N2-fixing microorganisms in the North Pacific Ocean. The. ISME J. 2014;8:1175–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Sipler RE, Gong D, Baer SE, Sanderson MP, Roberts QN, Mulholland MR, et al. Preliminary estimates of the contribution of Arctic nitrogen fixation to the global nitrogen budget. Limnol Oceanogr Lett. 2017;2:159–66.

    Google Scholar 

  42. 42.

    Shiozaki T, Fujiwara A, Ijichi M, Harada N, Nishino S, Nishi S, et al. Diazotroph community structure and the role of nitrogen fixation in the nitrogen cycle in the Chukchi Sea (western Arctic Ocean). Limnol Oceanogr. 2018;63:2191–205.

    CAS  Google Scholar 

  43. 43.

    Needoba JA, Foster RA, Sakamoto C, Zehr JP, Johnson KS. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol Oceanogr. 2007;52:1317–27.

    CAS  Google Scholar 

  44. 44.

    Mulholland MR, Bernhardt PW, Widner BN, Selden CR, Chappell PD, Clayton S, et al. High rates of N2 fixation in temperate, Western North Atlantic coastal waters expand the realm of marine diazotrophy. Glob Biogeochem Cycles. 2019;32:826–40.

    Google Scholar 

  45. 45.

    Benavides M, Voss M. Five decades of N2 fixation research in the North Atlantic Ocean. Front Mar Sci. 2015;2:40.

    Google Scholar 

  46. 46.

    Townsend DW. Sources and cycling of nitrogen in the Gulf of Maine. J Mar Syst. 1998;16:283–95.

    Google Scholar 

  47. 47.

    Fennel K, Wilkin J, Levin J, Moisan J, O’Reilly J, Haidvogel D. Nitrogen cycling in the Middle Atlantic Bight: results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Glob Biogeochem Cycles. 2006;20:GB3007.

    Google Scholar 

  48. 48.

    Fuglister FC, Voorhis AD. A new method of tracking the Gulf Stream 1. Limnol Oceanogr. 1965;10:R115–24.

    Google Scholar 

  49. 49.

    Luo YW, Doney SC, Anderson LA, Benavides M, Berman-Frank I, Bode A, et al. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth System Science. Data. 2012;4:47–73.

    Google Scholar 

  50. 50.

    Bonnet S, Caffin M, Berthelot H, Moutin T. Hot spot of N2 fixation in the western tropical South Pacific pleads for a spatial decoupling between N2 fixation and denitrification. Proc Natl Acad Sci USA. 2017;114:2800–1.

    Google Scholar 

  51. 51.

    Ahmed A, Gauns M, Kurian S, Bardhan P, Pratihary A, Naik H, et al. Nitrogen fixation rates in the eastern Arabian Sea. Estuar Coas Shelf Sci. 2017;191:74–83.

    CAS  Google Scholar 

  52. 52.

    Gandhi N, Singh A, Prakash S, Ramesh R, Raman M, Sheshshayee M, et al. First direct measurements of N2 fixation during a Trichodesmium bloom in the eastern Arabian Sea. Glob Biogeochem Cycles. 2011;25:GB4014.

    Google Scholar 

  53. 53.

    Xu Y, Chant R, Gong D, Castelao R, Glenn S, Schofield O. Seasonal variability of chlorophyll a in the Mid-Atlantic Bight. Cont Shelf Res. 2011;31:1640–50.

    Google Scholar 

  54. 54.

    Moline MA, Frazer TK, Chant R, Glenn S, Jacoby CA, Reinfelder JR, et al. Biological responses in a dynamic buoyant river plume. Oceanography. 2008;21:70–89.

    Google Scholar 

  55. 55.

    Zehr JP, Mellon MT, Zani S. New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl Environ Microbiol. 1998;64:3444–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Langlois RJ, Hümmer D, LaRoche J. Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl Environ Microbiol. 2008;74:1922–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Benavides M, Moisander PH, Daley MC, Bode A, Arístegui J. Longitudinal variability of diazotroph abundances in the subtropical North Atlantic Ocean. J Plankton Res. 2016;38:662–72.

    CAS  Google Scholar 

  58. 58.

    Stenegren M, Caputo A, Berg C, Bonnet S, Foster RA. Distribution and drivers of symbiotic and free-living diazotrophic cyanobacteria in the western tropical South Pacific. Biogeosciences. 2018;15:1559–78.

    CAS  Google Scholar 

  59. 59.

    Chen M, Lu Y, Jiao N, Tian J, Kao S-J, Zhang Y. Biogeographic drivers of diazotrophs in the western Pacific Ocean. Limnol Oceanogr. 2019;64:1403–21.

    CAS  Google Scholar 

  60. 60.

    He R, Chen K, Fennel K, Gawarkiewicz GG, McGillicuddy DJ Jr. Seasonal and interannual variability of physical and biological dynamics at the shelfbreak front of the Middle Atlantic Bight: nutrient supply mechanisms. Biogeosciences. 2011;8:2935–46.

    CAS  Google Scholar 

  61. 61.

    Nixon SW, Ammerman JW, Atkinson LP, Berounsky VM, Billen G, Boicourt WC, et al. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry. 1996;35:141–80.

    CAS  Google Scholar 

  62. 62.

    Wu J, Sunda W, Boyle EA, Karl DM. Phosphate depletion in the western North Atlantic Ocean. Science. 2000;289:759–62.

    CAS  PubMed  Google Scholar 

  63. 63.

    Coles V, Hood R. Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean. Biogeosciences. 2007;4:455–79.

    CAS  Google Scholar 

  64. 64.

    Palter JB, Lozier MS, Sarmiento JL, Williams RG. The supply of excess phosphate across the Gulf Stream and the maintenance of subtropical nitrogen fixation. Glob Biogeochem Cycles. 2011;25:GB4007.

    Google Scholar 

  65. 65.

    Rijkenberg MJ, Middag R, Laan P, Gerringa LJ, van Aken HM, Schoemann V, et al. The distribution of dissolved iron in the West Atlantic Ocean. PLoS ONE. 2014;9:e101323.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Boatman TG, Oxborough K, Gledhill M, Lawson T, Geider RJ. An integrated response of Trichodesmium erythraeum IMS101 growth and photo-physiology to iron, CO2, and light intensity. Front Microbiol. 2018;9:624.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Parekh P, Follows MJ, Boyle EA. Decoupling of iron and phosphate in the global ocean. Glob Biogeochem Cycles. 2005;19:GB2020.

    Google Scholar 

  68. 68.

    Sedwick P, Bernhardt P, Mulholland M, Najjar R, Blumen L, Sohst B, et al. Assessing phytoplankton nutritional status and potential impact of wet deposition in seasonally oligotrophic waters of the Mid-Atlantic Bight. Geophys Res Lett. 2018;45:3203–11.

    CAS  Google Scholar 

  69. 69.

    Kustka A, Sañudo‐Wilhelmy S, Carpenter EJ, Capone DG, Raven JA. A revised estimate of the iron use efficiency of nitrogen fixation, with special reference to the marine cyanobacterium Trichodesmium spp.(Cyanophyta)1. J Phycol. 2003;39:12–25.

    CAS  Google Scholar 

  70. 70.

    Buck KN, Sohst B, Sedwick PN. The organic complexation of dissolved iron along the U.S. GEOTRACES (GA03) North Atlantic Section. Deep Sea Res Part II: Top Stud Oceanogr. 2015;116:152–65.

    CAS  Google Scholar 

  71. 71.

    Lopez JS, Lee L, Mackey KRM. The toxicity of copper to Crocosphaera watsonii and other marine phytoplankton: a systematic review. Front Mar Sci. 2019;5:511.

    Google Scholar 

  72. 72.

    Boyle EA, Huested SS, Jones SP. On the distribution of copper, nickel, and cadmium in the surface waters of the North Atlantic and North Pacific Ocean. J Geophys Res. 1981;86(C9):8048–66.

    CAS  Google Scholar 

  73. 73.

    Roshan S, Wu J. The distribution of dissolved copper in the tropical-subtropical north Atlantic across the GEOTRACES GA03 transect. Mar Chem. 2015;176:189–98.

    CAS  Google Scholar 

  74. 74.

    Semeniuk DM, Taylor RL, Bundy RM, Johnson WK, Cullen JT, Robert M, et al. Iron–copper interactions in iron-limited phytoplankton in the northeast subarctic Pacific Ocean. Limnol Oceanogr. 2016;61:279–97.

    Google Scholar 

  75. 75.

    Moffett JW, Tuit CB, Ward BB. Chelator-induced inhibition of copper metalloenzymes in denitrifying bacteria. Limnol Oceanogr. 2012;57:272–80.

    CAS  Google Scholar 

  76. 76.

    Tucker DL, Hirsh K, Li H, Boardman B, Sherman LA. The manganese stabilizing protein (MSP) and the control of O2 evolution in the unicellular, diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. Biochim Biophys Acta. 2001;1504:409–22.

    CAS  PubMed  Google Scholar 

  77. 77.

    Hood G, Ramachandran V, East AK, Downie JA, Poole PS. Manganese transport is essential for N2-fixation by Rhizobium leguminosarum in bacteroids from galegoid but not phaseoloid nodules. Environ Microbiol. 2017;19:2715–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Hulten Mv, Middag R, Dutay J-C, Baar Hd, Roy-Barman M, Gehlen M, et al. Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese. Biogeosciences. 2017;14:1123–52.

    Google Scholar 

  79. 79.

    Paytan A, McLaughlin K. The oceanic phosphorus cycle. Chem Rev. 2007;107:563–76.

    CAS  PubMed  Google Scholar 

  80. 80.

    Fonseca-Batista D, Li X, Riou V, Michotey V, Deman F, Fripiat F, et al. Evidence of high N2 fixation rates in the temperate northeast Atlantic. Biogeosciences. 2019;16:999–1017.

    CAS  Google Scholar 

  81. 81.

    Breitbarth E, Oschlies A, LaRoche J. Physiological constraints on the global distribution of Trichodesmium - effects of temperature on diazotrophy. Biogeosciences. 2007;4:53–61.

    CAS  Google Scholar 

  82. 82.

    Sohm JA, Capone DG. Phosphorus dynamics of the tropical and subtropical north Atlantic: Trichodesmium spp. versus bulk plankton. Mar Ecol Prog Ser. 2006;317:21–8.

    CAS  Google Scholar 

  83. 83.

    Lipschultz F, Owens NJ. An assessment of nitrogen fixation as a source of nitrogen to the North Atlantic Ocean. Biogeochemistry. 1996;35:261–74.

    CAS  Google Scholar 

  84. 84.

    Rivero-Calle S, Del Castillo CE, Gnanadesikan A, Dezfuli A, Zaitchik B, Johns DG. Interdecadal Trichodesmium variability in cold North Atlantic waters. Glob Biogeochem Cycles. 2016;30:1620–38.

    CAS  Google Scholar 

  85. 85.

    Rees AP, Tait K, Widdicombe CE, Quartly GD, McEvoy AJ, Al-Moosawi L. Metabolically active, non-nitrogen fixing, Trichodesmium in UK coastal waters during winter. J Plankton Res. 2016;38:673–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Pelegrí J, Csanady G. Nutrient transport and mixing in the Gulf Stream. J Geophys Res. 1991;96(C2):2577–83.

    Google Scholar 

  87. 87.

    Shiozaki T, Takeda S, Itoh S, Kodama T, Liu X, Hashihama F, et al. Why is Trichodesmium abundant in the Kuroshio? Biogeosciences. 2015;12:6931–43.

    Google Scholar 

  88. 88.

    Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Gérikas Ribeiro C, Lopes dos Santos A, Marie D, Pereira Brandini F, Vaulot D. Small eukaryotic phytoplankton communities in tropical waters off Brazil are dominated by symbioses between Haptophyta and nitrogen-fixing cyanobacteria. ISME J. 2018;12:1360–74.

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Harding K, Turk-Kubo KA, Sipler RE, Mills MM, Bronk DA, Zehr JP. Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic Ocean. Proc Natl Acad Sci USA. 2018;115:13371–5.

    CAS  PubMed  Google Scholar 

  91. 91.

    Collos Y, Vaquer A, Souchu P. Acclimation of nitrate uptake by phytoplankton to high substrate levels1. J Phycol. 2005;41:466–78.

    CAS  Google Scholar 

  92. 92.

    Harrison WG, Harris LR, Irwin BD. The kinetics of nitrogen utilization in the oceanic mixed layer: Nitrate and ammonium interactions at nanomolar concentrations. Limnol Oceanogr. 1996;41:16–32.

    CAS  Google Scholar 

  93. 93.

    Bombar D, Paerl RW, Riemann L. Marine non-cyanobacterial diazotrophs: moving beyond molecular detection. Trends in Microbiol. 2016;24:916–27.

    CAS  Google Scholar 

  94. 94.

    Knapp AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3.

  95. 95.

    Großkopf T, LaRoche J. Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle. Front Microbiol. 2012;3:236.

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Krupke A, Mohr W, LaRoche J, Fuchs BM, Amann RI, Kuypers MM. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A–haptophyte symbiosis. ISME J. 2015;9:1635–47.

    CAS  PubMed  Google Scholar 

  97. 97.

    Martiny AC, Coleman ML, Chisholm SW. Phosphate acquisition genes in Prochlorococcus ecotypes: Evidence for genome-wide adaptation. Proc Natl Acad Sci USA. 2006;103:12552–7.

    CAS  PubMed  Google Scholar 

  98. 98.

    Rouco M, Frischkorn KR, Haley ST, Alexander H, Dyhrman ST. Transcriptional patterns identify resource controls on the diazotroph Trichodesmium in the Atlantic and Pacific oceans. ISME J. 2018;12:1486–95.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the marine technicians and crew of the R/V Atlantic Explorer for their invaluable help during the cruise. We appreciate discussions with M. Susan Lozier (Duke University) on the analysis of physical supply of phosphorus. We would also like to thank NASA and NOAA for processing and distributing the Ocean Color, and World Ocean Atlas and ETOPO1 bathymetry data, respectively. This study has been conducted using E.U. Copernicus Marine Service Information (geostrophic velocity). WT would like to thank Yajuan Lin (Duke University) for suggestions on the analysis of nifH sequences. WT’s visit to National Oceanography Centre (Southampton) was funded by the Duke Graduate School and Duke Interdisciplinary Studies through The Dissertation Research Travel Award: International and the Graduate Student Training Enhancement Grant (GSTEG), respectively. NC, WT, and SW were supported by the NSF-CAREER grant (#1350710). NC, HP and HW were also funded by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19) and co-funded by a grant from the French government under the program “Investissements d’Avenir”. JR, MM and RoCSI development costs were supported by NERC grant NE/N006496/1 and AtlantOS (Horizon 2020).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Julie Robidart or Nicolas Cassar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Cerdán-García, E., Berthelot, H. et al. New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. ISME J 14, 2514–2526 (2020). https://doi.org/10.1038/s41396-020-0703-6

Download citation

Further reading

Search

Quick links