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Abstract
The taxonomic composition of microbial communities can vary substantially across habitats and within the same habitat
over time. Efforts to build quantitative and predictive models of microbial population dynamics are underway, but
fundamental questions remain. How different are population dynamics in different environments? Do communities that share
the same taxa also exhibit identical dynamics? In vitro communities can help establish baseline expectations that are critical
towards resolving these questions in natural communities. Here, we applied a recently developed tool, Dissimilarity–Overlap
Analysis (DOA), to a set of experimental in vitro communities that differed in nutrient composition. The Dissimilarity and
Overlap of these communities are negatively correlated in replicate habitats, as one would expect if microbial population
dynamics were on average strongly convergent (or “universal”) across these replicate habitats. However, the existence of
such a negative correlation does not necessarily imply that population dynamics are always universal in all communities.
Even in replicate, identical habitats, two different communities may contain the same set of taxa at different abundances in
equilibrium. The formation of alternative states in community assembly is strongly associated with the presence of specific
taxa in the communities. Our results benchmark DOA, providing support for some of its core assumptions, and suggest that
communities sharing the same taxa and external abiotic factors generally (but not necessarily) have a negative correlation
between Dissimilarity and Overlap.

Introduction

Microorganisms grow and thrive in all habitats throughout
the biosphere [1–4]. This includes the human body, where

they form rich ecological communities made of large
numbers of interacting species [5–8]. The taxonomic com-
position of these communities can vary substantially
between body sites, reflecting their different ecological,
physical, and biochemical conditions [9]. Even for the same
body site, community composition may vary widely
between individuals, as well as within the same individual
over time [10, 11]. In order to understand how microbiomes
change longitudinally and over the lifespan of an organism,
and to design effective strategies that enable us to manip-
ulate microbiomes towards desirable states, it is critical to
develop predictive quantitative models of microbial popu-
lation dynamics [12].

Models of dynamic ecosystems vary in their level of
description, which is typically chosen to capture the spe-
cific phenomena under study. A detailed population
dynamics model of microbial communities would have to
include mechanistic microbial interactions (due to cross-
feeding [13, 14], direct secretion of substances such as
bacteriocins, antibiotics, or extracellular enzymes [15, 16],
or competition for the same nutrient), spatial structure of
the particular habitat [17], and environment–microbiome or
host–microbiome interactions. Building such detailed
models can be daunting due to (i) a huge number of model
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parameters which need to be inferred from experimental
data; and (ii) many environmental variables (such as the
concentrations of bacteriocins and nutrients) which are
hard to measure in real time.

To avoid those difficulties, an alternative modeling fra-
mework focuses on exploring the impact that any given
microbial species has on the abundance of other microbial
species [18]. In this phenomenological modeling frame-
work, one only needs to consider a simple population
dynamics model written as a set of ordinary differential
equations: dX(t)/dt= f(X(t),Θ). Here, f is a nonlinear func-
tion characterizing the population dynamics of the microbial
community, X(t)= (x1(t),… , xi(t),… , xN(t)) is an N-
dimensional vector with xi(t) denoting the abundance of the
i-th microbial species at time t, and Θ captures all the
ecological parameters (such as intrinsic growth rates, intra-
and inter-species interaction strengths, etc.). Note that those
ecological parameters depend on environment- or host-
independent factors, such as biochemical processes and
microbial metabolic pathways; as well as environment- or
host-specific ones, such as pH, temperature, nutrient intake,
host genetic make-up, etc. Hence, environmental or host
factors are not explicitly considered in this modeling fra-
mework but are absorbed in the ecological parameters [18].

Generally, the ecological parameters estimated from a
given habitat with certain characteristic environmental
conditions do not necessarily map to other habitats with
different environmental conditions. One can ask, however,
whether those parameters (Θ) are strongly similar (“uni-
versal”) for microbiomes that assemble in similar habitats.
Addressing this fundamental question has important con-
sequences for the applicability and predictive power of
quantitative models of microbial community dynamics. If
the interaction parameters were highly similar across habi-
tats of a certain type, such as the guts of different human
subjects, this will facilitate the development of generic
microbiome-based therapeutics. By contrast, if the ecolo-
gical parameters and microbial dynamics are strongly host-
specific, we must design truly personalized interventions,
which need to consider not only the highly personalized
microbial composition of each individual but also the
unique dynamics of the underlying microbial ecosystem.

Directly addressing the above question would require
one to infer all of the ecological parameters and fit the
population dynamics f(X(t),Θ) from the microbiome data of
each local community or host. Doing this for a large col-
lection of communities is both logistically and computa-
tionally challenging. Recently, an indirect method called
Dissimilarity–Overlap Analysis (DOA) was proposed [18].
DOA relies on two mathematically independent measures
between any two local communities: Overlap (O), which is
defined as half of the sum of relative abundances of the
shared species; and Dissimilarity (D), which is defined as

the divergence between the renormalized abundance pro-
files of the shared species (Methods) [18]. DOA is based on
the following two assumptions. First, the abundance profiles
of the microbiome samples represent the steady states X* of
the microbial ecosystem and hence the fixed points of the
underlying population dynamics that satisfy f(X*,Θ)= 0.
Second, if any two local communities that have the same
species collection also have the same abundance profile
(steady state), i.e., O= 1 and D= 0, then the two commu-
nities should share universal microbial dynamics f(X,Θ)
characterized by the same set of ecological para-
meters Θ. Mathematically, this means that if X* satisfies
both f(X*,Θ(1))= 0 and f(X*,Θ(2))= 0, given the large
number of species and all the other levels of complexity in
their interactions (encoded in the highly nonlinear function
f), we conclude that generically Θ(1)=Θ(2). In general, since
D is mathematically not constrained by any value of O > 0,
any constraints of D by O observed from real data deserve
ecological interpretations. In particular, even if we do not
have any steady state pair satisfying O= 1 and D= 0
(which is the typical case for host-associated microbial
communities, such as the human gut microbiome, due to
highly personalized microbial compositions), as long as
steady state pairs with higher O tend to have lower D, i.e.,
there is a negative slope in the high-Overlap region of the
Dissimilarity–Overlap Curve (DOC). This particular statis-
tical constraint of D by O is consistent with the hypothesis
of universal dynamics across all habitats in the sample, and
it is a foundation of DOA [18]. It is also consistent with
alternative hypotheses, such as communities assembling in
environmental gradients, or situations when only a small
fraction of the habitats have highly similar interaction
parameters [19]. The former is a particularly important
scenario, and was recognized in the original study by
Bashan et al. In many instances enough is known about the
habitats to exclude from the analysis factors that can lead to
environmental heterogeneity [18].

A negative slope in the high-Overlap region of the DOC
has been found in the gut microbiome samples collected
from different healthy individuals [18]. Yet, the complete
set of selective pressures experienced by microorganisms in
the same habitat (e.g., the same body site of different
individuals), and their variation across a host group cannot
be known exactly. Hence, one cannot account for all the
potential factors that may conceivably influence the
microbial communities assembled in the same habitat, and
so cannot provide an entirely conclusive answer regarding
the universality of the underlying microbial dynamics. In
other words, we cannot unambiguously attribute the nega-
tive slope of the DOC to universal dynamics and completely
rule out the alternative explanation of environment or host
factors. A more definitive demonstration would require a
comparison between experimental communities assembled
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in well-controlled replicate habitats to those assembled in
nonidentical habitats.

Benchmarking DOA against well-controlled in vitro
communities, ideally assembled in multiple replicates of
habitats that are either identical to each other, or different
from each other in well-understood ways, would be
necessary to understand the limitations and potential of
DOA for its application to natural communities [20]. To
address this need, here we perform DOA for a large set of
in vitro communities that meet these requirements: close to
300 independent enrichment communities assembled in
multiple, replicate synthetic habitats on three different
limiting nutrient conditions, and assembled to equilibrium
under periodic serial dilution cycles [13].

Results

Data Set

In a recent study [13], we reported the assembly of a total of
276 enrichment communities in three different synthetic
environments: M9 minimal medium with either glucose,
citrate, or leucine as the only carbon source. These enrichment
communities were assembled from twelve different environ-
mental sources (including various soil samples and plant
matter collected near Yale University in New Haven, CT).
Seven or eight biological replicates of each inoculum were
propagated in each of the three nutrient environments, under
serial dilution with transfers every 48 h with a dilution factor
of 125×. A diagrammatic summary of the experiment is
presented in Fig. 1a. As reported in [13], communities were
initially very diverse (N= 110–1290 unique Exact Sequence
Variants, or ESVs). They typically converged to an approxi-
mately stable composition (containing N= 2–22 ESVs) after
50–60 generations, suggesting that communities were close to
a steady state. Metabolic cross-feeding was found to be
widespread and critical for the coexistence of multiple species
on a single limiting resource [13].

Communities assembled in identical environments
exhibit a negative correlation between Dissimilarity
and Overlap

We first addressed the question of whether communities
assembled in identical environments do indeed give rise to a
negatively sloped DOC at high Overlap. To test this pre-
diction, we took all pairs of communities that had been
assembled in the same nutrient-limited habitats, by pooling
together every possible pair of glucose communities, as well
as every pair of citrate (and of leucine) assembled com-
munities. We then measured the Dissimilarity and Overlap
for each pair. Applying the same type of statistical analysis

used in the original study by Bashan et al. (Robust LOW-
ESS regression; see “Methods” for details [18]), we find
that the DOC (but not the controls; Fig. S1) does indeed
exhibit a negative slope at high values of Overlap (Fig. 1b),
and this is also confirmed by a standard linear regression
(D=D0+mO; m=−0.56, p < 0.002 by Bootstrapping;
Methods) applied to the points with higher than median O
(Fig. 1b, inset; Methods). The same is true when we analyze
each of the three nutrient environments separately (Fig. 1c),
and it also holds when we separate those communities
assembled from either the same or different inoculum
(Fig. 1d, e). In contrast, a statistically significant negative
correlation between Dissimilarity and Overlap is not
observed for community pairs that are assembled in dif-
ferent environments (e.g., one in citrate medium, one in
glucose medium) (Fig. S2).

An expectation of DOA is that communities that contain
the same taxa in identical habitats should have them at
highly similar equilibrium abundances, as the underlying
population dynamics would be strongly similar. By con-
trast, communities assembled in different nutrient habitats
are not expected to have similar species abundances even
when they happen to share a large proportion of common
species (high Overlap), as we do not necessarily expect their
dynamical equations to be similar. Consistent with the first
hypothesis, we find that, in identical nutrient conditions, the
majority of our high-Overlap (O > 0.98) communities have
low Dissimilarity (Fig. 1f, see S1 for comparison to null)
(Mean= 0.188, Median= 0.132, IQR= 0.23). To test the
second hypothesis, we considered “mixed” pairs of com-
munities, where each community in the pair was assembled
in a different environment. For instance, we find that
glucose–citrate pairs (which exhibit no correlation between
D and O (Figs. S2 and 3)) have a similar Overlap dis-
tribution to glucose–glucose and citrate–citrate pairs
(Fig. 1g). Yet, the distribution of Dissimilarities for these
high-Overlap pairs (O > 0.98) is shifted up compared to
glucose–glucose pairs (t=−12.79, p value < 0.002 by
Bootstrapping; Methods) and citrate–citrate pairs (t=
−11.965, p value < 0.002, by Bootstrapping; Methods)
(Fig. 1h). This shift persists even if we only consider
communities assembled from the same inoculum (Fig. S4)
and is robust to the Overlap threshold chosen (Fig. S5)).

This last finding is consistent with the idea that popula-
tion dynamics and equilibria are strongly convergent when
the environments are identical, but not necessarily when the
environments are different. This lends support to the null
assumption that species interactions with the environment
and with each other are different in different environments,
but strongly convergent in identical environments. Our
results support the prediction that identical environments
will generate a negative statistical correlation between D
and O, whereas different environments will not.
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Fig. 1 Communities assembled in the same environment show a
negative correlation between Dissimilarity and Overlap. a Sche-
matic description of the experiments in ref. [13]. b DOC of all
microbial community pairs that have been assembled in the same
environment (n= 276 Samples). Shaded regions indicate the 95%
confidence interval (Methods). The vertical dotted red line represents
the median Overlap (0.543). The inset shows a linear regression for
communities above the median Overlap. We repeat this regression
over the same region, subsetting the data to consider (c) each nutrient
environment separately; (d) subsets of pairs that have been assembled
from the same inoculum (e); subsets of the pairs that have been
assembled different inoculum. For each regression, we report m (slope
of the linear regression) and a p value calculated as the fraction of
bootstrap realization in which this slope is negative (see Methods).

f Distributions for community pairs assembled in the same environ-
ment (both in glucose, both in citrate, or both in leucine) with high
Overlap (O > 0.98). The dotted red line is at half the maximum pos-
sible dissimilarity

ffiffiffiffiffiffiffi
log 2ð Þ

p
2 . g Histogram showing distributions of Over-

laps for community pairs where one has been assembled on glucose
and the other on citrate. The dotted lines give the frequency polygon
for glucose–glucose community pairs and citrate–citrate community
pairs (blue and yellow, respectively). We use the same binwidth (0.04)
for both histograms and frequency polygons so the two are compar-
able. h Glucose–citrate communities with high-Overlap (O > 0.98)
have significantly higher mean dissimilarity than glucose–glucose
communities or citrate–citrate communities in the same Overlap range
(O > 0.98). Displayed p values are computed by bootstrapping (see
Methods).
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Specific taxa can be strongly associated with high
Dissimilarity in replicate habitats

As can be visually appreciated in Fig. 1, when environments
are identical and Overlap is high the Dissimilarity in our
experimental communities is generally small. However there
are numerous deviations from this rule, and we find multiple
community pairs with high Overlap that still show high levels
of Dissimilarity. Considering only communities with an
Overlap > 0.98, we find that 12% of glucose pairs, 9% of
citrate pairs, and 17% of leucine pairs have Dissimilarity >ffiffiffiffiffiffiffiffiffi

log 2ð Þ
p

2 (which is half of the maximum possible Dissimilarity,
calculated through the root Jensen–Shannon divergence)
(Fig. 1f). Similar values are also obtained if we only consider
communities assembled from the same inoculum, (14% of
glucose pairs, 9% citrate pairs, 8% of leucine pairs)
(Fig. S4A). In sum, we find that communities can be domi-
nated by the same set of ESVs in identical habitats, yet these
ESVs, may exist at very different abundances.

We set out to investigate whether communities that
deviate from the average trend captured by the DOC could
be associated with the presence of specific taxa. To that end,
we first selected pairs of glucose communities with high
Overlap (higher than the median of 0.98) that were
assembled from the same initial pool of species (for a
similar analysis in citrate or leucine, see Tables S1 and S2).
We then tested whether any of the ten most commonly
observed ESVs (corresponding to ESVs found in at least 18
of the 92 glucose communities), were statistically associated
with high Dissimilarity. Four of these ESVs had higher
Dissimilarity than expected by chance (p < 0.05, by Boot-
strapping, Methods). Of these, an ESV of the genus
Citrobacter had the largest effect (Table 1).

To further investigate this point, we split all pairs of
communities by whether both contain this Citrobacter ESV
(group I), only one contains it (group II), or none does
(group III) (Fig. 2a). The mean Dissimilarity is higher for
group I than group II (0.427 vs 0.175, p < 0.003, by Boot-
strapping; Methods), and for group II than group III (0.175
vs 0.088, p= 0.06 by Bootstrapping; Methods) Fig. 2b. As
shown in Fig. S6, our results are robust to our choice of a
“High-Overlap” threshold of 0.98. If Citrobacter ESV was
indeed associated with alternative dynamical states (either
through multistability, or through their contribution to
alternative dynamical equations when they are part of the
community), we would also expect the DOC to flatten for
glucose–glucose communities that contain it, relative to
those that do not. That is indeed the case, as shown in
Fig. 2c, d, see Fig. S7 for controls).

Similar results were found for citrate communities and
leucine communities, where we found a Raoultella ESV and
a Pseudomonas ESV associated with higher Dissimilarity
respectively (Supp Tables S1, S2, and Figs. S8, S9). Our
results thus reveal that the presence of a single ESV in a
community may be strongly associated with alternative
states in community assembly, even amongst communities
that are assembled in the same environment from the same
regional pool and contain highly overlapping sets of taxa.

Discussion

The first part of this paper tests two fundamental predictions
of DOA. First, using publicly available data from a recent
experiment we show that community assembly in identical
environments does lead to a negative correlation between
Dissimilarity and Overlap and a negatively sloped DOC.

Table 1 Specific taxa are
strongly associated with high
Dissimilarity in replicate
habitats.

ESV N Difference in mean T-statistic P value

Citrobacter 25 0.319974235 9.632238 <0.002

Yersinia 19 0.289481747 7.3186745 0.00209205

Enterobacteriaceae 38 0.248081124 6.6420427 0.005988024

Pseudomonas 57 0.175009032 6.5060298 0.003992016

Pseudomonas.2 41 0.131673553 3.716131 0.093812375

Raoultella 45 0.103170657 3.2164266 0.081836327

Pseudomonas.3 18 −0.002248539 −0.0671654 0.55228806

Pseudomonas.1 24 −0.031053732 −0.969162 0.638722555

Pseudomonas.4 27 −0.044317786 −1.6107989 0.756487026

Klebsiella 65 −0.281428827 −7.4501771 0.98997996

For each of the ten most commonly observed ESVs on Glucose we performed one-tailed t-tests to determine
whether pairs of highly overlapping communities (O > 0.98) both containing that ESV had higher
Dissimilarity than pairs where at least one community did not contain the ESV. In this table, we report the
identity of the ESV, the number of communities in which that ESV is found (N) the difference in mean
Dissimilarity, the T-statistic and the p value (obtained by bootstrapping, see Methods). See Tables S1 and S2
for a similar analysis applied to leucine and citrate communities.
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Second, we show that, as expected, communities assembled
in identical environments that also contain highly over-
lapping sets of taxa have them at strongly convergent

abundances. This is consistent with what one would expect
if their dynamics were describable by the same equations.
Likewise, we would not expect identical dynamical

Fig. 2 A Citrobacter ESV is associated with dynamical dissimilarity
in communities assembled in replicate environments. a Dissim-
ilarity and Overlap of microbial community pairs assembled from the
same regional pool on M9+ glucose with above-median Overlap (O >
0.98). b Dissimilarity of the same set of communities. For (a) and (b)
we label communities by whether Citrobacter ESV is found in both
communities (dark blue), only in one community (light blue) or in
neither community (yellow). c DOC of all pairs of microbial com-
munities assembled on glucose that contain Citrobacter ESV (n= 25).
d DOC of all pairs of microbial communities assembled on glucose
that do not contain Citrobacter (n= 67). e Population dynamics for
one pair of glucose communities with high Overlap (O= 0.98) and

high Dissimilarity (D= 0.56) (highlighted in (a) with the red circle).
Structure of the two communities at the ESVlevel at every transfer.
f Phase portraits illustrate the dynamics of the most abundant Enter-
obacteriaceae and Pseudomonadaceae ESV within those two com-
munities. That black line corresponds to the top community in (e) and
the red line corresponds to the bottom community in (e). FC and FP2
represent the fraction of the Citrobacter and Psuedomonas.2 ESVs in
the population, whereas FEnt and FPseud represent the fractions of the
Enterobacteriaceae and Psuedomonoadacea families. Dynamics are
highly convergent until the third transfer, after which the communities
diverge to alternative states.

2510 J. C. C. Vila et al.



equations in different nutrient habitats. Consistent with this
expectation, we found that communities assembled in dif-
ferent nutrient habitats do not have convergent species
abundances, even when they happen to share a high number
of taxa. This is reflected in the data by a shift in the Dis-
similarity to higher values for those communities with very
large Overlap.

Our results also indicate the existence of specific taxa that
are associated with high Dissimilarity in replicate habitats. In
glucose communities, we find an ESV of the genus Citro-
bacter, which not only predicts high Dissimilarity between
community pairs when it is present in at least one of the
communities, but it also flattens the DOC. Intriguingly, these
results are in line with one of the main findings of the Bashan
study, which was that microbiomes disrupted by C. difficile
infection did not exhibit a negative correlation between Dis-
similarity and Overlap, and Dissimilarity remained constant
even as Overlap increased [18]. The negative slope was
recovered after a fecal microbiota transplantation, which
restored a healthy microbiota and cured the disease. Although
the reasons for this finding may be very different from the
similar result found in our communities, our results indicate
that a tight association between specific taxa and the flattening
of the DOC may be seen even in the absence of an immune
system or a complex host.

The publicly available data of Goldford et al. [13]
includes the measurement of the complete population
dynamics for one glucose pair with high-Overlap and high
Dissimilarity (highlighted in Fig. 2a). Both communities in
the pair contain the Citrobacter ESV. For this pair, we find
that the population dynamics are initially strongly con-
vergent between the two communities, but bifurcate after
~20 generations and subsequently diverge into alternative
compositions (Fig. 2e, f), suggesting the potential presence
of true multistability (i.e., multiple stable steady states are
associated with the same set of species).

Of course, other possibilities exist. For example, the
population dynamics may just not be identical even in
replicate habitats due to the violation of the first assumption
of DOA (that the communities are at equilibrium steady
state). Communities may either have not reached equili-
brium after 12 transfers, or they may be at a non-
equilibrium steady state, undergoing oscillatory or cyclical
dynamics. Neutral population dynamics and stochastic
population dynamics can also lead to variation in commu-
nity composition that may lead to increased Dissimilarity
[19, 21]. These dynamics would be observed if commu-
nities are moving on a shallow attractor where selection is
weak, or if non-accounted environmental fluctuations shift
the position of the fixed points in the community. The high
overlap of the two communities at the ESV level might also
reflect their differences at the strain level due to rapid
evolution. Citrobacter may also have more sensitive

interactions with the rarer members of the community. It is
important to consider that environments do not just pas-
sively select for species and determine their interactions, but
rather they are dynamically shaped by the taxa growing in
them [22–25]. Therefore, it is possible that although the
supplied nutrients are the same in two communities, the
environment experienced by the members of our commu-
nities is actually different, through the different effects that
species have on it [22].

One limitation of our study is that the communities
investigated are species-poor, and many of our community
pairs will only share a few species in common. This can be
potentially problematic because it may affect the Dissimilarity
measurement [18]. Despite this caveat, the overall good
agreement between our findings and the expectations of DOA
suggests that species richness is not necessarily an impedi-
ment for the application of DOA to taxonomically poor nat-
ural communities. Further research would be needed to
establish the precise conditions under which this would be
true. More generally, others have argued that communities
assembled along an environmental gradient may also give rise
to negative correlations between Dissimilarity and Overlap
[19]. It would be important to test this prediction experi-
mentally (for instance by establishing mixed nutrient habitats
with varying concentrations of glucose and citrate in between
the two “pure” habitats studied by Goldford et al.) but this
falls beyond the scope of this paper.

It is thus important to remark that although sets of
communities assembled in identical habitats present a
negatively sloped DOC, the reverse statement is not
necessarily true: the presence of a negatively sloped DOC
does not necessarily mean that the habitats are identical to
each other. In fact, grouping together all communities in the
experiment, including those assembled in identical and
different environments and projecting them all into the same
Dissimilarity–Overlap plot, we find a negative correlation
between D and O and a negatively sloped DOC (Fig. S10).
The reason is that the strong effect of identical habitats
overpowers the effect of nonidentical ones. In our case, we
know the environmental factor that was critically different
among these habitats (the single limiting nutrient), but this
is not something that is trivial to identify in any given
natural habitat, even if we remove any known factors of
variation across habitats.

Notwithstanding these important caveats, our results
confirm in a controlled set of experiments that microbial
dynamics in replicate habitats are strongly convergent on
average and lead to a negatively sloped DOC. In recent
years, negatively sloped DOC has been detected for the
microbial communities assembled in some (but not all)
human body sites [18], as well as for mycorrhizal fungal
communities [20]. In order to correctly interpret these
results, it is critical to benchmark the technique not only
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against simulations, but also against experimental commu-
nities whose assembly is well understood. Our results have
provided a first empirical benchmark using well-controlled
communities. We hope that these findings will contribute to
grounding the expectations and intuitions behind DOA, and
contribute to its application to microbial communities
assembled in natural environments. More generally we hope
that these results will encourage other researchers to
benchmark novel statistical methods in microbial ecology
using well-controlled in vitro communities.

Methods

Community assembly experiment

We analyzed publicly available data from a recent set of
in vitro microcosms experiments [13]. Briefly, diverse
microbial communities were isolated from natural ecosystems
and used as the inoculum for a batch culture containing M9+
one of three carbon sources (Glucose, Citrate, Leucine).
Cultures were passaged every 48 h with a dilution factor of
125× and after each transfer, a sample was taken and stored
for 16S community sequencing (Fig. 1a). The experiment was
conducted for 12 transfers by which point communities appear
to have reached a stable population equilibrium. In total, 276
communities were allowed to self assemble (7–8 replicates per
Inoculum and 12 Inoculum per carbon source). Community
structure was determined at the end of the 12th growth period
for all communities using 16s rRNA amplicon sequencing. A
subset of communities was sequenced at each transfer
allowing community structure to be tracked through time.

Calculating Dissimilarity and Overlap for community
pairs

To account for differences in the sequencing depth of dif-
ferent communities we first normalize all communities so that
each community is represented by the same number of
sequences. Briefly, for each community we create a sample
community of N reads sampled from the original read pool
without replacement. Here N= 4397 was used as this is the
minimum number of reads for all communities analyzed. We
then calculated the relative abundance of each ESV in each
community. For each pair of communities, we follow Bashan
et al. [18] and calculate Overlap and Dissimilarity between
relative abundance vectors x and y. The Overlap is given by

O x; yð Þ ¼
X
i2S

xi þ yi
2

� �
;

where S is the set of ESVs found in both communities. For
the calculation of Dissimilarity only the shared ESVs are

considered, and the relative abundance of shared taxa is
renormalized to add up to 1. The Dissimilarity between
renormalized vectors X and Y can be calculated as root
Jensen–Shannon divergence

D x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

X
i

Xi log
Xi

Mi
þ
X
i

Yi log
Yi
Mi

 !vuut ;

where Mi ¼ XiþYi
2 .

We calculated the Overlap and Dissimilarity for every
pair of our 276 communities at transfer 12 (a total of 37,950
pairwise comparisons). From this dataset, any pairwise
comparison in which the communities shared fewer than
two taxa in common is excluded. These were removed as
for these pairs D(x,y) is always 0. In total this gave us a
dataset consisting of 23592 pairwise comparisons.

Fitting DOCs

In Bashan et al. [18] estimated using the Robust LOWESS
a nonparametric scatterplot smoothing method. When
analyzing all pairs of communities (Fig. 1b, Fig. S2A,
Fig. 2c, d), we implement the same method using the
LOESS function from R default stats package with the
following parameters (span= 0.2, family= “symmetric”,
iterations=5 ). To compare slopes across different subsets
of pairs (Insets Fig. 1b, Fig. 1c–e, Fig. S2B–D, Insets
Fig. 2c, d) we use a simple OLS regression on data
points with above-median Overlap as was also done
by Bashan et al. [18] and later by Kalyuzhny and Shnerb
[19].

Estimating confidence intervals and P value for DOC

We implemented the same bootstrapping algorithm used by
Bashan et al. [18]. We repeat this bootstrap algorithm 500
times and repeated all our analysis on every bootstrap rea-
lization. Confidence intervals in Fig. 1 and Fig. 2 represent
95% percentiles of the curves fitted to the bootstrapped data.
The reported p values for the regression slopes (m) represent
the fraction of bootstrap realization for which the OLS slope
is positive (main text and Fig. 1, Fig. 2, Fig. S3).

Bootstrapped Welch-tests

To account for the nonindependence of groups of sample
pairs, all t-tests were performed on every bootstrap reali-
zation. The reported p values represent the fraction of
bootstrap realizations in which the t-statistic has a different
sign to the one calculated from the original dataset. When
calculating this fraction we excluded bootstrap realizations
in which some groups of sample pairs were unrepresented
and so no t-statistic could be obtained.
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Randomized data

Each time a DOC is shown, we repeat the analysis on a
randomized dataset in which species assemblage and abun-
dance distribution are kept but the abundance of each taxon is
randomized following Bashan et al. [18]. The randomized
results are shown in Fig. S1, Fig. S3, and Fig. S7.

Code availability

The R Code and datasets analyzed are available at https://
doi.org/10.5281/zenodo.3817698.
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