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Abstract

Although parasites are known to have various effects on their hosts, we know little about their role in the assembly of
diversifying host populations. Using an experimental bacterium (Pseudomonas fluorescens SBW25)-bacteriophage ($2)
system, we show that earlier parasite arrival significantly reduced the repeatability of host diversification. Earlier parasite
arrival amplified the priority effects associated with the stochastic emergence of novel SBW25 phenotypes, translating into
greater historical contingency in SBW25 diversification. Our results highlight the important role of parasite-host interactions

in driving host adaptive radiation.

Evolutionary biologists have long debated over the repeat-
ability of evolution, which is driven by both deterministic
and historical processes [1, 2]. Deterministic processes,
involving selection associated with interactions between the
focal species and their environments, tend to result in
convergent evolution of parallel lineages among similar
habitats [3, 4]. In contrast, historically contingent processes,
often involving stochastic events, such as species coloni-
zation [5] and mutation [6], can result in different evolu-
tionary trajectories and outcomes across similar habitats,
making evolution largely unpredictable [7]. While the roles
of both determinism and historical contingency in evolution
have been well recognized [1], mechanisms that regulate
their relative importance remain poorly understood.
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Here, we explore the role of parasitism, specifically the
timing of parasite arrival, in modulating the repeatability of
adaptive radiation. Parasites may have various effects on
their hosts, such as the alternation of host population size
[8], dynamics [9], and competitive ability [10]. These
effects may, in turn, alter the strength of priority effects (i.e.
the inhibitory or facilitative effects of ancestral or earlier
emerging species on later emerging ones) and thus the
importance of historical contingency in evolving host
lineages. Priority effects may be further modified by the
timing of parasite arrival, analogous to predator arrival
timing influencing prey community assembly via, for
instance, the long-lasting influences of transient predator-
prey interactions [11]. Nevertheless, despite the inherent
stochasticity of parasite colonization relative to their hosts,
the effect of such stochastic parasite arrival timing on host
adaptive diversification remains unexplored.

We examined the effect of bacteriophage arrival timing
on the repeatability of bacterial evolution, using the fast-
evolving bacterium Pseudomonas fluorescens SBW25
(hereafter SBW25) [12] and the bacteriophage ¢$2 [13] as
the model system. Through adaptive radiation, SBW25
rapidly evolves from one smooth morph (SM) phenotype
into several biofilm-forming specialists, including wrinkly
(WS) and fuzzy spreader (FS) phenotypes, in aqueous
microcosms. For generality, we used two strains (original
and evolved; see SI for details) of ¢2, with the evolved ¢2
co-evolving with SBW25 for 9-d prior to the experiment.
We allowed SBW25 to diversify for a varying number of
days before invading them with one of the two phage
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Fig. 1 The relationship between phage arrival time and SBW25
phenotype turnover (f-diversity; measured as Bray-Curtis dis-
similarity index) among replicates according to the main experi-
ment. The solid line delineates the significant relationship between the
original phage arrival time and SBW25 phenotype turnover (data
shown by solid circles); the dashed line delineates the significant
relationship between the evolved phage arrival time and SBW25
phenotype turnover (data shown by open circles). Jitters were used
horizontally to separate data between the original and evolved phage
treatments.

strains. Phenotypic variation (f-diversity) among the six
replicate lineages was quantified at the end of the experi-
ment (day 10).

Both ¢2 strains suppressed the host SBW25’s diversifi-
cation (Figs. S1 and S2; generalized linear model: P<
0.001), whereas ¢2 arrival time did not affect SBW25
phenotypic richness (P =0.715). However, the phenotypic
variation (p-diversity) among replicate host populations was
strongly influenced by ¢2 arrival time (permutational
ANOVA: P<0.001). As ¢2 colonized earlier, B-diversity
increased (Figs. 1 and S3; original: R*= 0.157, P<0.001;
evolved: R>=0.472, P<0.001), indicating that earlier ¢2
colonization reduced the repeatability of SBW25 adaptive
radiation. The effect of the arrival time of the evolved ¢2
was stronger than that of the original strain (Fig. 1;
ANCOVA: interaction term, P < 0.001), possibly suggestive
of the increased virulence of the evolved strain (see
Fig. S4).

The evolutionary differentiation of SBW25 phenotypes
is known to be driven by negative frequency-dependent
selection, which allows newly emerged WS to increase
from low frequency and eventually drives SBW25 diversi-
fication to converge over time [14]. We speculated that
parasites might have altered host evolutionary repeatability
by disrupting the negative frequency dependence between
host phenotypes. This could occur when, for example, the

presence of large parasite populations makes it difficult for
rare, emerging host phenotypes to establish viable
populations.

To examine this possibility, we conducted a selection
experiment varying the initial ratio of WS and SM, in the
absence and presence of ¢2. Consistent with previous work
[12, 15], we found that when ¢$2 was absent, WS fitness
(relative to SM) declined as WS initial frequency increased
(Fig. 2a; R>=0.889, P< 0.001), indicating the operation of
negative frequency-dependent selection. However, when ¢2
was present, the relationship between WS fitness and fre-
quency became hump-shaped (Fig. 2b; original: R*> = 0.794,
P <0.001; evolved: R?= 0.587, P=0.004), such that the
frequency dependence was positive when WS was rare and
negative when WS was abundant. These results lend sup-
port to our hypothesis, suggesting that the initial rarety of
newly evolved WS phenotypes favored their establishment
in the absence, but not in the presence of ¢2.

We suggest that interacting with stochasticity in the
emergence of novel phenotypes (see Fig. S5), the positive
frequency dependence in the presence of parasites (Fig. 2),
which disfavors rare, newly evolved host phenotypes,
drove the observed temporal dependency of parasite effect
on host evolution (Fig. 1). At the early stage of adaptive
radiation, different SBW25 populations contained differ-
ent, few fast-evolving novel phenotypes (Fig. S5). The
colonization of the parasite at this stage, through promot-
ing host positive frequency dependence, made it difficult
for additional new phenotypes from getting established,
resulting in greater historical contingency and lower
repeatability in SBW25 evolution. During the late stage of
adaptive radiation, replicate SBW25 populations were
similar in phenotypic composition as a result of determi-
nistic inter-phenotypic competition (Fig. S5). Parasites that
colonized at this stage suppressed the same competitively
inferior phenotypes from all SBW25 populations, reinfor-
cing deterministic host assembly. An alternative, but not
mutually exclusive, explanation for the reduced deter-
minism of SBW25 evolution with earlier parasite arrival is
that the longer period of host-parasite coevolution, under
earlier parasite arrival, offered more opportunity for the
evolution of different parasite-resistant host strains and
subsequent different evolutionary trajectories across
replicate lineages. We acknowledge that this scenario
cannot be examined using data collected in our experiment
designed to study within-host diversification. Nevertheless,
the importance of host-parasite coevolution for the his-
torical contingency in host evolution is a worthy topic for
future studies.

Our study is the first, to our knowledge, to experimen-
tally explore the effects of parasite arrival time on the
repeatability of host evolution. We show that whereas
parasites suppress host adaptive radiation, their early arrival
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promotes the historical contingency in host diversification.
These findings improve our understanding of mechanisms
regulating microbial evolution, as well as help reconcile the
mixed findings on the importance of determinism and sto-
chasticity for community assembly on ecological time
scales [11, 16, 17].
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