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Abstract
Reducing methane emissions from livestock production is of great importance for the sustainable management of the Earth’s
environment. Rumen microbiota play an important role in producing biogenic methane. However, knowledge of how host
genetics influences variation in ruminal microbiota and their joint effects on methane emission is limited. We analyzed data
from 750 dairy cows, using a Bayesian model to simultaneously assess the impact of host genetics and microbiota on host
methane emission. We estimated that host genetics and microbiota explained 24% and 7%, respectively, of variation in host
methane levels. In this Bayesian model, one bacterial genus explained up to 1.6% of the total microbiota variance. Further
analysis was performed by a mixed linear model to estimate variance explained by host genomics in abundances of microbial
genera and operational taxonomic units (OTU). Highest estimates were observed for a bacterial OTU with 33%, for an
archaeal OTU with 26%, and for a microbial genus with 41% heritability. However, after multiple testing correction for the
number of genera and OTUs modeled, none of the effects remained significant. We also used a mixed linear model to test
effects of individual host genetic markers on microbial genera and OTUs. In this analysis, genetic markers inside host genes
ABS4 and DNAJC10 were found associated with microbiota composition. We show that a Bayesian model can be utilized to
model complex structure and relationship between microbiota simultaneously and their interaction with host genetics on
methane emission. The host genome explains a significant fraction of between-individual variation in microbial abundance.
Individual microbial taxonomic groups each only explain a small amount of variation in methane emissions. The
identification of genes and genetic markers suggests that it is possible to design strategies for breeding cows with desired
microbiota composition associated with phenotypes.

Introduction

Mitigation of greenhouse gas emissions has become a major
research objective due to global climate change [1–3]. With
the development of tools for the measurement of methane
emission in the livestock sector, the amount of greenhouse gas
such as methane emission from cows can be measured on a
large scale [4, 5]. Global livestock production is an important
source of greenhouse gasses. For example, livestock accounts
for 10–12% of CO2, and 5% of CH4 of total anthropogenic
greenhouse gas emissions [6, 7]. Growing human populations
and incomes are fueling demand for animal products, which
result in more greenhouse gas emission from livestock pro-
duction. Therefore, reduction of methane emission from
livestock production is critical to address the global climate
problems. Besides, methane emission constitutes a loss of
dietary energy for the cow. Thus, reducing methane emissions
maybe ties to improving feed efficiency.
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Among livestock species, ruminants such as cattle have
the ability to digest rough fiber feeds like grasses, thanks to
the action of symbiotic ruminal microbes. This process
leads to production of methane as a byproduct [8]. Studies
have shown that the amount of methane emissions from
cow rumen is largely determined by the composition of its
ruminal microbiota, feed intake and diet composition,
physiology and genome [9–13]. Methane is produced in
ruminants when anaerobic archaeal microorganisms convert
H2 and CO2 to CH4 [14]. Therefore, among different
microbial groups, archaea play an important role in methane
production. The link between microbiota and methane
emission is well known. Recent studies have found that host
genetics influences methane emission [15–18]. Therefore, it
might be possible to identify both properties of the micro-
biota and host genetic markers as biomarkers to select cows
with low methane emissions.

However, until now, there has been little success in
identifying robust biomarkers useful to reduce methane
emission in ruminants like cows. This is due to insufficient
data or a lack of statistical models. None the less, Roehe
et al. [16] identified 20 microbial genes associated with
methane yield using ~8 samples. Furthermore, using 16S
rRNA ribotyping on 68 postmortem rumen samples, they
also found evidence that the archaea:bacteria ratio and
methane yield are similarly influenced by Sire [16]. Their
study opened up the possibility of selecting cows with lower
methane emission based on the archaea:bacteria ratio in the
rumen. Breeding for less methane emitting cows through
genetic selection is a sustainable approach to reduce climate
impact. To this end, we need more knowledge about how
host genetics and microbiota affect methane emission
[19, 20]. Larger sample sizes and new statistical models will
improve our knowledge on how host genetics and which
host genes affect microbiota composition, and which taxo-
nomic groups in the microbiota affect methane emission.
Accurate knowledge on the contributions of host genetics
and microbiota to variation in methane emission will also
aid in understanding biological underlying variation in
methane emission. Such knowledge can be utilized to
design a strategy to reduce methane emissions from the
cow rumen.

Microbiota data are high dimensional and zero inflated
[21, 22]. Correlation patterns between microbiota and
environmental covariates are usually studied by various
regression models [23–25]. Roehe et al. and Ross et al. were
the first to model the influence of host genetics on methane
emission through ruminal microbial community in cows
[16, 26]. Ross et al. and Difford et al. have proposed using a
similarity matrix built from microbiota 16S rRNA abun-
dance and shotgun metagenomic contig data [15, 26]. This
matrix was fitted as a covariance structure for a random
effect in a linear mixed model [15, 26]. In their model, all

components of the microbiota are implicitly assumed to
contribute equally to genetic variance. A Bayesian mixture
model is able to derive the posterior distribution of the
effect of each specific microbiota under a mixture of prior
distributions [27]. In this way, the effects of microbiota are
jointly modeled, and therefore, the complex structure and
interplay between microbiota can be modeled.

In this study, we used both Bayesian model and mixed
linear model approaches, methane emission data from 750
cows together with their SNP chip genotypes as genetic
markers, and measures of microbial abundance. We
modeled joint effects of host genetics and all microbial
abundances on methane emission, as well as host herit-
ability and SNP effects on abundances in individual
bacterial genera. We hypothesize that (1) a Bayesian
model that allows for joint effects of host and all bacterial
genera can be used to explore the variation explained by
microbiota data in methane emission; (2) host genetics
and genes in host genomes influence the microbiota
composition, (3) the abundance of different microbiota
influence methane emission; (4) both host genetics and
microbiota variation contribute to the variation in methane
emission.

Material and methods

All handling of animals was conducted according to
“Metagenomics in Dairy Cows” protocol. The protocol and
study were approved by The Animal Experiments Inspec-
torate, Danish Veterinary and Food Administration, Min-
istry of Environment and Food of Denmark (Approval
number 2016-15-0201-00959).

Phenotype and genotype collection

Data of methane emissions from 750 Holstein cows were
collected, see [15]. Concentrations of CH4 and CO2 were
measured spectroscopically in the breath of individual cows
during automated milking in voluntary milking stations.
Mean gas concentrations were corrected for systematic
effects such as diurnal variation and day-to-day differences
following [15]. Total methane emissions were calculated as
the measured CH4 to CO2 ratio (l/day) and converted CO2

(g/d) using CH4 density times the predicted CO2 emission
from the converted cow heat production units to CO2 pro-
duction [4].

Out of 750 cows, 691 cows were genotyped using Illu-
mina BovineSNP50 BeadChip (50k) versions 2 (Illumina
Inc., San Diego, CA). SNPs were removed from further
analysis if they met any of these criteria: no known chro-
mosomal location according to Illumina’s maps [5], non-
autosomal locations, call rates <99% for individuals or
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<98% for SNPs, deviation from Hardy–Weinberg propor-
tions (p < 10−8), or minor allele frequency <0.02. In total,
39,034 autosomal SNPs remained for the analyses. Pedigree
records for these 750 cows traced as far back as far as 1926.

16S rRNA sequencing of microbiota, sequence
processing, and OTU table construction

Rumen liquid fractions were collected individually from the
rumen of the sampled cows by oral insertion of the rumen
floral scoop [28]. For details on rumen liquid fraction col-
lection, see [15]. DNA extraction of rumen liquid fraction
was performed using Qiagen QIAamp toolkit according to
manufacturer’s instructions. DNA library construction and
sequencing of DNA were performed by Eurofins Genomics.
16S rRNA sequencing was conducted using the universal
bacterial 16S gene primers (V1–V3) and universal archaeal
16S rRNA gene primers (V4–V6) [13, 28]. In total, 96
libraries were sequenced using 250 bp paired-end short read
sequencing. Half the samples were sequenced on the Illu-
mina MiSeq platform, the other half on the Illumina HiSeq
platform. For details of 16S rRNA sequencing of the
microbiota, see [15]. The sequence reads of 16S rDNA of
bacterial and archaeal were processed under quality control,
see [15]. They were clustered into operational taxonomic
units (OTUs) using the LotuS pipeline [29]. For details on
sequence processing and quality control, see [15]. Con-
sensus sequences were derived for each OTU. A phyloge-
netic tree of the consensus sequences was constructed.
Further, taxonomies were assigned to OTUs using the RDP
classifier with a confidence level of 0.8 using the green-
genes reference database (gg_13_8_otus) [30]. We retained
the OTUs classified as k_Bacteria and k_Archaea for the
bacterial primer set and the archaeal primer set,
respectively.

Statistical models

Variance explained by microbiota using Bayesian four-
component mixture model

We used a Bayesian model to jointly model effects of host
genetics and all microbiota on host methane emission. This
model is a generalized version of that used by BayesR [27].
Like BayesR, we assign a four-component mixture prior to
effect sizes (i.e., each OTU is assumed to have a tiny, small,
medium, or large effect on methane emissions). However,
we, in addition, include a polygenic term, in order to cap-
ture the contribution of host genetics. We implemented the
model in Bayz (see http://www.bayz.biz); an R version of
Bayz is freely available at github.com/MarniTausen/BayzR/
(released under a GPL license) [35–37].

The conditional distribution of the data was taken as:

yjγ; u; β; σ2e � NðXγ þ ZuþMβ; Iσ2eÞ;

where y was a vector of estimated methane production (l/
day). X was a matrix of fixed covariates including an
intercept, dummy covariates for herd (six levels) and
parity (four levels), a covariate for days in milk (range:
1–350), and covariates to fit a Wilmink function on days
in milk accounting for nonlinearity in early lactation [31],
and γ is a vector of associated effects. Z was an incidence
matrix relating phenotypes to the corresponding polygenic
effects u. M was an n × m matrix of the counts of the m
tested OTUs and n was the number of individuals. To
construct M, first, OTUs which were not present in at least
50% of the cows were removed. The element mij was then
added a small constant (0.001) and natural log trans-
formed and then standardized for the j’th OTU in
individual i with mean of 0 and variance of 1. In order
to account for the compositional nature of M, a separate
centered log-ratio (CLR) transformation was conducted as
per [32] using the CoDaSeq package [33, 34]. Both
methods of transforming data were run separately. β was
the vector of associated effects of the m OTUs within
sequencing instrument as described in [14]. Residuals
were assumed independent and identically distributed
with residual variance σ2e .

The prior distributions of the model parameters were as
follows. The effects in γ were assumed independently dis-
tributed, each with an unbounded uniform prior, which can
be written as:

γi / constant:

The vector of polygenic effects u had a multivariate
Normal prior:

u � Nð0;Aσ2uÞ;

where A is the known pedigree-based additive genetic
relationship matrix, and σ2u is an unknown polygenic var-
iance, which was estimated with an unbounded uniform
prior:

σ2u / constant:

The vector of effects of OTUs β was modeled to have a
four-component mixture distribution. To facilitate fitting
of this mixture, indicator variables zi were added in the
model, where zi has a categorical distribution zi
∈{1,2,3,4} to indicate the (unknown) assignment of the
i'th OTU to one of the four components of the mixture.
With this prior distribution for the i'th OTU effect is
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written as:

βi � zi ¼ 1½ �Nð0; Iσ21Þ þ zi ¼ 2½ �Nð0; Iσ22Þ
þ zi ¼ 3½ �Nð0; Iσ23Þ þ zi ¼ 4½ �Nð0; Iσ24Þ

;

where [] are Iverson brackets and βi are assumed
independent. The variances in the components of the
mixture have unbounded uniform priors, and are con-
strained so that σ21 ¼ 10σ22 ¼ 100σ23 ¼ 1000σ24. The indica-
tor variables zi had a categorical distribution with unknown
parameters πk to indicate the probability for zi= k as:

zi � cat π1; π2; π3; π4ð Þ:
The πk probabilities indicate the mixture proportions of

the four-component mixture distribution. These mixture
proportions were estimated from the data with a Dirichlet
prior set as:

π1; π2; π3; π4ð Þ � Dir 125; 25; 5; 1ð Þ:
The rationale behind the four-component mixture is to

apply different levels of shrinkage (regularization) to the
OTU effects, with the model determining assignment to one
of the four shrinkages (mixture components), and with
priors such that most effects will be heavily shrunken
inducing a sparse model. This is induced by the Dirichlet
prior on the mixture proportions giving most prior counts to
the first class, while the constraints on the variances induce
highest shrinkage in the first class. Conversely, the last
component of the mixture induces the mildest shrinkage,
allowing βi assigned to this group to remain relatively large,
but a-priori this group is the smallest. The hyperparameters
and priors were selected based on prior biological knowl-
edge and previous literature [35–37]. In particular, the
Dirichlet prior is strong enough to induce the desired sparse
model, but weak enough to allow πk’s to be updated by
information from the data, and the ratio of 1:1000 between
strongest and weakest shrinkage is often adequate to iden-
tify the largest effects in most biological problems.

The Bayesian posterior distribution was constructed by
combining the Normal likelihood with all prior distribu-
tions. A Monte Carlo Markoc Chain (MCMC) algorithm
was used to obtain samples from this posterior distribution.
The MCMC algorithm was a mix of Gibbs sampling
updates and Metropolis–Hastings (MH) updates. The
parameters γ, u and β (conditional on indicator variables z)
have Normal conditional posterior distributions and were
updated using Gibbs sampling steps. The zi indicator vari-
ables to assign βi’s to mixture components were updated
with MH updates, with proposals to move either to the next
or to the previous mixture component with 0.5 and 0.5
probability, but when in the first component the proposal
was only to move to the next, and when in the last com-
ponent the proposal was only to move to the previous

component. The MH probability ratio for accepting or not
to move, consisted of the ratio of the likelihoods selecting
the current or the new proposed mixture component for βi,
and an added balancing correction when in the first or last
mixture component. The vector (π1,π2,π3,π4) has a condi-
tional posterior distribution that is Dirichlet and was
updated with a Gibbs sampling step. The variance para-
meters σ2e and σ2u have scaled-inverse chi-square conditional
posterior distributions and were also updated with a Gibbs
sampling step. However, the variances in the mixture dis-
tribution needed an MH algorithm to update all variance
simultaneously under the given constraint. This variance
update made proposals for the new variances on a log-
normal scale (obeying the needed constraints), and the MH
acceptance probability is the likelihood ratio between using
the current and proposed variances in the distribution of β.

We were interested in obtaining the variances explained
by host genetics and microbial abundances on methane
production, that is, var(Zu) and ver(Mβ). For var(Zu) we
used σ2u. However, var(Mβ) is less straightforward because
β follows a mixture distribution, and we constructed the
posterior distribution of var(Mβ) by computing this term in
every cycle of the Markov chain. Finally, we obtained the
posterior means, and the highest posterior density (HPD)
interval (95%) for these explained variances. The Markov
chain was run for 100,000 iterations, with the first 10,000
cycles discarded as burn-in. Finally, every 20th sample of
the remaining 90,000 iterations were saved for the posterior
analysis.

Detection of heritable rumen microbiota using a mixed
model

We estimated the proportion of variance due to host genetic
markers on OTUs collapsed at genus level or OTUs
directly using a mixed model Restricted Maximum Like-
lihood (REML) analysis. The p values of the estimates of
the proportion of variance explained were adjusted using
multiple testing correction and a FDR using Benjamini–
Yekutieli procedure [38] with adjusted p values smaller
than 0.05 considered as significant.

We performed a principal coordinate analysis (PCoA)
using a Bray–Curtis dissimilarity matrix [39] and Chao 1
[40] to examine the similarities between archaeal and bac-
terial rumen microbiota, using the natural log transformed
and standardized matrix M, details see [15, 31]. PCoA and
Chao 1 were used to estimate the diversity of the micro-
biota, corresponding to the diversity between (β) and within
(α) individuals, respectively. In addition, we conducted a
principal components analysis (PCA) on the CLR trans-
formed OTU data, in order to assess microbial composition
when compositionality is considered [34]. Euclidean dis-
tance was used as the dissimilarity measure used for the
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PCA. The following linear mixed model was fitted to esti-
mate the proportion of variance of archaeal and bacterial
rumen taxonomic groups explained by genetic markers:

y ¼ 10μþ Zuþ e;

where y was a vector of abundances for one of the
taxonomic groups, pre-corrected for herd, parity, days in
milk and a Wilmink function on days in milk as described
above. As response variable we used the first two PCoA and
Chao 1 for archaeal and bacterial rumen taxa, genus level
classification of archaeal and bacterial ruminal taxa, of
selected archaeal and bacterial ruminal OTUs and the first to
PCs (PCA analysis). 1 was a vector of ones, and μ was the
general mean. Z was an incidence matrix relating
phenotypes to the corresponding random polygenic effect,
and u was a vector of random polygenic effects that follows
a multivariate normal distribution Nð0;Gσ2gÞ, where G was
the genomic relationship matrix built using 50k SNP
markers following Yang et al. [41], and σ2g was the
polygenic variance. e was a vector of random residuals,
e � N 0; Iσ2e

� �
; where 0 was a vector of zeroes, I was an

identity matrix, and σ2e was the residual variance. The
genomic heritability is estimated as the ratio of polygenic
variance to total phenotypic variance h2 ¼ σ2g=σ

2
p. Signifi-

cance of the genomic heritability was tested by using the S.
E. obtained from the REML analysis.

Detection of association between host genetic markers and
rumen microbiota using a mixed linear model

The following linear mixed model was fitted to detect sig-
nificant host genetic markers affecting the composition of
the microbiota, testing one host SNP at a time:

y ¼ 10μþ Zuþ Xgþ e;

where y was a vector of corrected phenotypes as in the
previous model, i.e., the first two PCoA and Chao 1 for
archaeal and bacterial rumen taxa, genus level classification
of archaeal and bacterial ruminal taxa, of archaeal and
bacterial ruminal OTUs explaining large proportion of
variation in methane emission detected from 3.1 and the
first two PCs (PCA analysis). 1 was a vector of ones, and μ

was the general mean. Z was an incidence matrix relating
phenotypes to the corresponding random polygenic effect,
and u was a vector of random polygenic effects that follows
a multivariate normal distributionNð0;Gσ2gÞ, where G was
the genomic relationship matrix built using 50k SNP
markers following Yang et al. [41] and σ2g was the
polygenic variance. X was a vector of allele counts (0, 1,
2); g was the SNP effect. e was a vector of random
residuals, e � N 0; Iσ2e

� �
; where 0 was a vector of zeroes, I

was an identity matrix, and σ2e was the residual variance.
This model was used to calculate the SNP effect for each

SNP in the SNP chip successively. The p values of SNP
effects were calculated using a t test based on the estimate
and its S.E., and Bonferroni correction was applied for the p
values of SNP effects estimates, by dividing by the number
of tests (i.e., number of markers tested).

Results

Host additive genetics and microbiota jointly
contribute to the variation in methane emission

A Bayesian mixture model was used to examine the relative
contributions of host genetics and microbiota variation at
the OTU level on methane emission by fitting all effects
simultaneously.

The proportion of variation in methane emission
explained by host genetic effects was 22% (95% HPD
interval= [3%, 45%]). The proportion of variation
explained by microbial OTUs after natural log transforma-
tion and standardization was 7% (95% HPD interval=
[0.02%, 17%]). When fitting both host genetics and
microbial OTUs, they jointly explained a total of 31% of the
variation in methane emission, in which the proportion of
variance explained by host genetic effects increased to 24%
(95% HPD interval= [3%, 48%]) and the proportion of
variance explained by microbiota remained at 7% (95%
HPD interval= [0.06%, 17%]).

When treating the compositionality of microbiota data by
CLR transformation, we found that the proportion of
methane emission variation explained by host genetics and
microbiota were 22% (95% HPD interval= [4%, 42%]) and
11% (95% HPD interval= [0.5%, 22%]) respectively, when
fitting host genetics and microbiota separately. When we fit
host genetics and microbiota simultaneously 11% (95%
HPD interval= [0.9%, 23%]) of the methane emission
variation explained by host genetics and 24% (95% HPD
interval= [5%, 46%]) of the methane emission variation
explained by microbiota.

We then quantified the relative contribution of each
bacterial and archaeal OTU, genera abundance in the var-
iation of methane emission from the Bayesian four-
component mixture model (Table S1). Figures 1 and 2
show the exact variance explained by each genus and OTU
in the variation of methane emission apart from the genetic
variance. Generally, each genus and OTU explained very
small amount of variation in methane emission. The largest
proportion of variance explained in methane production
regardless of transformation ways for microbiota data was
observed for a bacterial genus (i.e., Domain: Bacteria,
Phylum: Actinobacteria, Class: Coriobacteriia, Order: Cor-
iobacteriales, Family: Coriobacteriaceae), which explained
1.6% (95% HPD interval= [0.004%, 2.4%]) of total
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microbiota variance, and a bacterial OTU (Phylum: Bac-
teroidetes, Class: Bacteroidia, Order: Bacteroidales), which
explained 0.03% (95% HPD interval= [0.09%, 21%]) of
the variance in methane production.

The proportion of variance of microbiota
community explained by host genetic markers using
a mixed linear model

The composition of bacterial and archaeal communities
were described in Difford et al. [15]. Here a mixed linear
model was used to estimate host genomic heritability on
abundances of microbial genera by REML estimates of
variances. The variance proportion of microbiota commu-
nity explained by genetic markers ranged from 0 to 41%
with an average of 7% for abundance of bacterial genera,
and from 0 to 22% with an average of 12% for abundance
of archaeal genera (Fig. 3a and Table S2). Among these
estimates, 16 out of 147 bacterial and 2 out of 8 archaeal

genera had estimates significantly different from zero with a
p value smaller than 0.05. The bacterial genus Paludibacter
had the highest heritability of 41% with a standard error of
0.12. The two most significant estimates of 22% and 19%
for archaeal genera were observed for the methanogenic
genera Methanobrevibactera and Methanosphaera,
respectively.

The variance of each bacterial and archaeal OTU
explained by genetic markers was estimated. The estimates
ranged from 0 to 34% with a mean of 5% for bacterial
OTUs and range from 0 to 27% with a mean of 5% for
archaeal OTUs (Fig. 3b and Table S2). Among the esti-
mates, 102 out of 3897 bacterial OTUs had an estimate
significantly different from zero and 15 out of 189 archaeal
OTUs had an estimate significantly different from zero
(p < 0.05). The highest estimate was observed for an
unclassified bacterial OTU belonging to family Lachnos-
piraceae (Phylum: Firmicutes, Class: Clostridia, Order:
Clostridiales, Family: Lachnospiraceae) with 33% (S.E.=
0.12, p= 0.004), and an archaeal OTU belonging to family
Thermogymnomonas (Phylum: Euryarchaeota, Class:
Thermoplasmata, Order: Thermoplasmatales, Thermo-
plasmatales incertae sedis, Family: Thermogymnomonas)
with 26% (S.E.= 0.11, p= 0.01). However, after using
Benjamini–Yekutieli procedure for multiple testing cor-
rection, none of the corrected p values is significant any-
more (p < 0.05).

Host genetic markers affecting the microbiota
community and interacting with methane emission
using a mixed model

PCoA was performed to characterize the variation in com-
position between individuals and alpha diversity estimates
for variation within individuals. This information was used
to associate differences in microbiota composition with host
genetic markers to identify host genetic factors that cause
variation between and within individuals in the composition
of microbiota. A mixed linear model was used to control for
background relatedness between cows, and testing the con-
tribution of one SNP marker at a time. We found that the
proportion of variance of the microbiota variation in
microbiota community composition (β diversity) explained
by host genetic markers were 28% (S.E.= 0.11) for the
bacteria first PCoA and 22% (S.E.= 0.10) for archaeal first
PCoA, respectively. This finding is comparable to previous
findings in dairy and beef cattle [15, 42]. We also performed
a CLR transformation of our data to account for the com-
positional nature and investigate the proportion of variance
of the microbiota variation on the first two principal com-
ponents (Table 1). The genetic markers explained 10–15%
of the bacterial, and 29–38% of the archaeal, first and second
principal components, respectively (Table 1). Genetic

Fig. 2 The variance explained by bacterial and archaeal OTUs in
the variation of methane emission using Bayesian variable selec-
tion model. The X axis is OTUs numbered and the variation explained
by natural log transformed and standardized bacterial and archeal
OTUs data is in one unit of the measured methane emission.

Fig. 1 The variance explained by bacterial and archaeal genera in
the variation of methane emission using Bayesian variable selec-
tion model. The X axis is genus numbered and the variation explained
by natural log transformed and standardized bacterial and archeal
genus data is in one unit of the measured methane emission.
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markers inside the genes such as ABS4 and DNAJC10 were
identified to significantly associate with bacterial microbiota
composition within individual (α diversity) (Fig. 4 and
Table 1). However, none of the genetic markers identified
significantly associate with microbiota composition between
individuals (β diversity) regardless of transformation meth-
ods applied in microbiota data.

We further estimated the variance explained by genetic
markers in the variation of microbial genera (Domain:
Bacteria, Phylum: Actinobacteria, Class: Coriobacteriia,
Order: Coriobacteriales, Family: Coriobacteriaceae) and
OTU (Phylum: Bacteroidetes, Class: Bacteroidia and Order:
Bacteroidales), which explained the large fraction of var-
iance in methane emissions. The proportion of variance of
this genus and OTU explained by genetic markers were
very low (9% and <1%, respectively). Several highly
associated markers and genes were identified for the genera
and OTUs explaining the largest fraction of variance in
methane emission (Tables 2 and 3). None of them, however,
exceeded the significance threshold after Bonferroni cor-
rection (adjusted p value < 0.05).

Lastly, we tested the association of genetic markers with
most heritable bacterial and archaeal genus (bacterial:
Paludibacter and archaeal: Methanobrevibactera) and
OTUs (bacterial: Phylum: Firmicutes, Class: Clostridia,
Order: Clostridiales, Family: Lachnospiraceae; archaeal:
Phylum: Euryarchaeota, Class: Thermoplasmata, Order:
Thermoplasmatales, Thermoplasmatales incertae sedis,
Family: Thermogymnomonas). Significant genetic markers
were identified for the highest proportion of variance of
archaeal OTU explained by genetic markers (Fig. 5).
Interesting, we found that gene DNAH9 overlapped with
markers significantly associated with this archaeal OTU.

Discussion

This is the first use of Bayesian mixture models to estimate
the proportion of variance in methane emission explained by
variation in ruminal microbiota composition while jointly
modeling the effects of parity, lactation stage, herd of origin,
and host additive genetics in the model. Microbiota data are
compositional and high-dimensional data due to the con-
version to the relative taxon abundance [43–45]. A linear
model approach simply fits a metagenomic relationship
matrix as random effect in the model. In contrast, our
Bayesian mixture model assumes that the effects of micro-
bial groups follow a four-component mixture of normal
distributions, allowing the model to classify each microbial
OTU into one out of four levels of shrinkage. The Bayesian
mixture model added more variance components to assign
different priors for the effect sizes of microbiomes (i.e., a
mixture of four normal distributions) compared with linear
mixed model assuming only one normal distribution for
effect sizes. The most accurate method to estimate variance
component based on microbiome data is to fit all microbiotas
simultaneously treating the microbiota effects as drawn from
a prior distribution that matches the true distribution of
microbiota effects as closely as possible. However, the true
distribution of microbiota effect sizes is unknown, but a
more flexible, i.e., mixture of normal distributions can
approximate a wide range of distributions by varying the
mixing proportions. The mixture prior on the effect sizes
indeed assumes that the OTUs fall in four groups with very
small/negligible effects, small, medium, and large effects, as
set in the relative variances for the four components, while
our Bayesian model could be developed further to treat OTU
matrix to have measurement error. Our modified BayesR

Fig. 3 The estimates of proportion of microbiota variation explained by host genetic markers. a The estimates for microbiota collapsed at
genus level grouped as bacterial and archaeal; b the estimates for OTU level grouped as bacterial and archaeal.
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approach performs MCMC to create posterior distributions
for parameter estimation, while estimating all parameters
from the data. The used prior distributions are mostly
uninformative, except for mixture proportions where the
priors were chosen to indicate that more OTUs should have
negligible and small effects, while only a smaller proportion
can have medium and large effects. Our study reveals that a
Bayesian four-component mixture models can be used to
model the effects of heterogeneity, and complex relation-
ships between microbial groups without simply assuming
one simple normal distribution.

The amount of variation in methane emissions attribu-
table to the host genetics was 24% (heritability). Under
natural log transformation and standardization, the micro-
biota alone could explain 7% of variation when assuming
the effects of OTUs follow four-mixture of normal dis-
tributions. We further compared the four-mixture model
with two-mixture model. It was found that when fitting the
two-mixture model, the microbiota alone explained only 6%
of the total variation. The proportion of variance explained
by microbiota is slightly higher using four-mixture model
compared with two-mixture model. We observed that the
deviance information criterion (DIC) for four-mixture
model (DIC= 7048) is slightly lower than the two-
mixture model (DIC= 7049). It reflects that four-mixture
model is a better model and could capture more variation
explained by microbiota due to its flexibility by assuming
four-mixture groups of OTU effects. There are similar
findings in other studies that four-mixture model had the best
predictive ability compared with other models [27, 46–49].
When a two-component mixture model would be simplified
further, reducing it to one component only, the model would
become a regularized (ridge) regression model. As the two-
component model already is slightly worse than the four-
component model, we expect simplification to a ridge
regression model would worsen the fit further. We also
performed a sensitivity analysis within the four-component
model using different priors, modifying the Dirichlet prior
for the mixture proportions, and modifying the variance-
ratios between the mixture components. This showed that
the estimates for the microbial explained variance could
change between 6 to 8.6% under different prior settings.
Between priors Dir(1000,100,10,1), Dir(125,25,5,1), and Dir
(1,1,1,1), the Dir(125,25,5,1) that we used had the lowest
DIC. Between different setting for variance-ratios in the
mixture components, we found that a more extreme setting
of σ21 ¼ 100σ22 ¼ 1000σ23 ¼ 10000σ24 obtained lower DIC
and reached an explained variance of 8.6%. Overall, we
concluded that the influence of the priors is small, smaller
than the posterior uncertainty on these estimates, and that the
priors we used struck a good middle ground with an esti-
mated microbial contribution to explained variance of 7%.
However, the performance of regression of the four-mixtureTa
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Fig. 4 Manhattan plot of –log10(p) values for genome-wide associated markers associated with microbiota composition (α diversity). X
axis is the 28 chromosomes and y axis is –log10(p) values for each marker.

Table 2 The top genetic markers
associated with the bacterial
OTU (i.e., Phylum:
Bacteroidetes, Class:
Bacteroidia and Order:
Bacteroidales) explained the
most variance in the variation of
methane emission.

Chromosome Position Allele 1 Allele 2 Frequency Effect size Standard error p value

1 118226740 A C 0.33 −0.25 0.07 1.9e−4

1 119579301 A G 0.32 0.26 0.07 1.4e−4

3 114797789 A G 0.29 −0.28 0.07 1.4e−4

5 82878525 G A 0.34 −0.27 0.07 5.7e−5

9 75484456 A G 0.18 0.32 0.08 8.1e−5

13 9276071 G A 0.48 0.24 0.06 2.2e−4

13 9424085 A G 0.47 0.24 0.06 1.9e−4

15 55206099 A G 0.47 −0.23 0.06 2.3e−4

20 7103987 A C 0.33 0.27 0.07 1.3e−4

29 2491812 A G 0.17 −0.32 0.09 1.9e−4

The effect sizes of SNP are in one unit of natural log transformed and standardized microbiota composition.

Table 3 The top genetic markers
associated with the microbiota
genera (i.e., Domain: Bacteria,
Phylum: Actinobacteria, Class:
Coriobacteriia, Order:
Coriobacteriales, Family:
Coriobacteriaceae) explained the
most variance in the variation of
methane emission.

Chromosome Position Allele 1 Allele 2 Frequency Effect size Standard error p value

2 34537333 A G 0.37 0.23 0.06 2.4e−4

3 29880508 A G 0.22 0.29 0.07 1.2e−4

9 51243021 G A 0.36 −0.24 0.06 1.6e−4

9 53197668 G A 0.43 −0.23 0.06 2.2e−4

14 66907798 G A 0.22 −0.29 0.07 1.3e−4

16 64516788 G A 0.01 0.95 0.260 2.5e−4

17 57109193 A G 0.38 0.27 0.07 6.1e−5

17 74925889 A G 0.40 0.25 0.07 1.7e−4

25 37693781 A G 0.41 −0.23 0.06 2.5e−4

25 39844749 A G 0.21 −0.28 0.08 2.5e−4

The effect sizes of SNP are in one unit of natural log transformed and standardized microbiota OTU data.
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model can be further improved by further optimizing priors
and integrating optimized continuous weights from prior
knowledge, such as prior biological knowledge of micro-
biota genomes or a different prior distribution such as
Dirichlet multinomial mixtures [50]. When combining host
genetics with the role of the microbiota, the model could
jointly explain 31%. Difford et al. found that the proportion
of variance of methane emission explained by fitting host
pedigree matrix as a random effect was 19% and that the
proportion of variance of methane emission explained by
microbiota estimated in a separate model using a microbial
relationship matrix was 15% [15]. In a model fitting these
two effects simultaneously the variation explained by host
and microbes are forced to be uncorrelated by linear mixed
effect model assumptions, in this case the heritability
increased to 21% and the microbiability decreased to 13%.
From the relative change in explained phenotypic variation,
we could conclude that the host genetics explaining variation
in methane emissions was largely independent of the rumen
microbiota in explaining variation in methane emissions. In
the current study, we used a Bayesian mixture model with
four mixed normal distributions of microbial effects
assumed as opposed to a single normal distribution assumed
by Difford et al. (2018) in cattle and others in pigs, poultry,
and humans [51–53]. When fitting both host genetics and
rumen microbes, the proportion of variance explained by
host genetics increased from 22 to 24% and the proportion
of variance explained by microbiota remained the same

(7%). While under CLR transformation of microbiota data to
account for compositionality, we observed the similar trend
for the proportion of variance in methane emission variation
explained by host genetics and microbiota by fitting them
separately or simultaneously in the Bayesian mixture model.
This suggests that the host genetics exercises the majority of
its influence on ruminal methane emissions by mechanisms
other than by direct host control of the composition of the
ruminal microbiota.

On average, 7 and 12% variance of bacterial and archaeal
taxon abundance was explained by host genetic markers.
Abundance of a small proportion of bacterial and archaeal
taxa had a high estimate for proportion of variance of
methane emission explained by host genetic markers,
implying that cows with a similar genetic background
would have similar abundance of these bacterial and
archaeal taxa. Compared with the estimates using pedigree
information from Difford et al. [15], our estimates using
genetic markers are probably more reliable, as pedigrees
may be incomplete or contain errors. Compared with those
authors, we also observed more significant microbial taxa
with estimates significantly different from zero. Generally,
estimates of proportion of variance explained by host
genetic markers in microbiota abundance were low to
moderate. This is consistent with a recent finding by Wal-
lace et al. [54], who found 39 rumen microbial taxa to be
heritable in 650 Holstein-Friesian cows from UK and Italy.
This suggests that the host genome has a limited influence

Fig. 5 Manhattan plot of –log10(p) values for genome-wide associated markers associated with the most heritable archaeal OTU (i.e.
Phylum: Euryarchaeota, Class: Thermoplasmata, Order: Thermoplasmatales, Thermoplasmatales incertae sedis, Family: Thermo-
gymnomonas). X axis is the 28 chromosomes and y axis is –log10(p) values for each marker.
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on the rumen microbiota composition. Nonetheless,
the presence of highly heritable microbial taxa implies
the possibility for host genetic control through the heritable
microbiota for other economic traits. For example, we
observed that the most heritable microbial genus was
Paludibacter. It was suggested that Paludibacter is major
genus propionate producer [55], while the formation of
propionate was considered as a competitive pathway of
hydrogen use to further produce methane [56]. This
potentially provides possible ways to reduce methane
emission by increasing the formation of propionate through
host genetics. Further, the two methanogenic genera
Methanobrevibactera and Methanosphaera with most sig-
nificant estimates of proportion of microbiota variation
explained by host genetic markers have been proposed to
use methanol as a substrate for converting CO2 to methane
[57]. Methanobrevibactera can be used to formulate H2 and
CO2 to produce methane and Methanosphaera ruminatium
also plays a role in the methanol pathway [58–60]. There-
fore, our findings suggest that these microbiota might be
utilized to reduce methane emission through host genetics.
Notably, the sample size used in this study is comparatively
modest in size for quantitative genetic analyses and
increasing sample size will increase the power and precision
of the estimated genetic parameters. However, this is cur-
rently the largest sample size from a single population of
dairy cows to estimate the genomic heritability of rumen
microbiota and thus the most reliable estimates to date.

It is important to make the distinction between rumen
community composition at the OTU level or at the genus or
higher taxonomical levels, as both methods have advantages
and disadvantages. OTUs are defined as amplicon sequen-
ces clustered at 97% sequence similarity, i.e., de novo OTU
picking [61]. In most cases the threshold of 97% sequence
similarity is adequate for delineating species, however
intragenic variation in the 16S rDNA sequences along with
only sequencing portions of the hypervariable regions has
been shown to over inflate the number of species estimated
from OTUs by as much as 123% [62]. In such instances
OTUs may not accurately reflect the diversity in prokaryotic
species and strains and are not necessary the closest proxy
to true biological diversity in a sample. Taxonomical clas-
sification of OTUs can overcome the overestimation of
strains and subspecies inherent in de novo OTU picking,
however this method is reliant on four publicly available
databases [63], and the accuracy and reliability of these
databases has not been assessed for rumen prokaryotes. This
limits the discovery of OTUs to those already included in
the database and cannot capture new variation. Furthermore,
these databases are predominantly limited to grouping
OTUs at genus level resolution. Whilst in many cases
member of the same genus can have similar biological

functions, some species within the same genus can have
very diverse functions. For instance, the genera Prevotella
is one of the most abundant genera in ruminants, often with
100 or more OTUs assigned [64]. Moreover, the cultured
members of Prevotella have diverse metabolic capabilities
for example hydrolysis of proteins and peptides, starch and
many hemicelluloses, as well as fermentation of many
amino acids and most sugars [65]. For the reasons listed
above, genetic analyses were conducted at both OTU level
as well as genus level.

Generally, each taxonomic group of microbes only
explained a small amount of methane emission variation
and jointly explained 7% of methane emission variation,
which implies that the microbiota plays a relatively smaller
role in variation in methane emission. However, we
observed one group of microbes belonging to the family
Coriobacteriaceae which explained a relatively large
amount of variation in methane emissions (Domain: Bac-
teria, Phylum: Actinobacteria, Class: Coriobacteriia, Order:
Coriobacteriales, Family: Coriobacteriaceae). Abundance of
this genus of bacteria belonging to family Coriobacteriaceae
has previously been found to highly negatively correlated
with methane emissions in cattle and sheep [66, 67]. Our
findings support this. Especially, the abundance of Cor-
iobacteriaceae was known to be negatively correlated with
CH4 emissions [66]. Difford et al. [15] identified several
bacterial and archaeal genera, which were significantly
associated with methane emission. These were Sporobacter,
Sphaerochaeta, and Bacteroidales. In this study, we
focused on examining the variance due to bacterial or
archaeal taxa on variance in methane emission. We
observed that archaea known to play important roles in
methane production [68] at most explained 0.01% of var-
iance in methane emissions. This result, however, was
consistent with the observation in other studies that weak
correlations between methane emission and the abundance
of archaea in ruminant livestock [10, 15].

The rumen microbial community structure was examined
by PCoA for the archaeal and bacterial communities as this
method has been shown to produce distinct clusters called
“ruminotypes” in sheep and cattle [42, 69]. However, beta
diversity analysis using the PCoA approach fails to account
for the compositional nature of 16S rRNA microbial data
and thus we also examined microbial community structure
using PCA analysis of CLR transformation [34]. We focus
on exploiting host genetic markers and genes controlling the
rumen community structure and important microbiota (β
diversity) by use of mixed linear models. The first and
second principal components (PCA) had genetic markers
explaining 10–15% for bacteria and 20–38% for archaeal.
Similarly, the host genetic markers explained 28 and 22% of
the variance in the first principal coordinates (PCoA) of the
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rumen archaeal and bacterial composition. Recently, Li
et al. [42] found host genetic markers to explain between
0–25% of bacterial and 0–15% of archaeal community
composition (PCoA) in Beef cattle. This implies that it is
possible to control microbiota composition by changing
host genetics. Therefore, breeding programs can be
designed to breed for cows with a specific preferred
microbiota composition suited for high production effi-
ciency or low methane emission. However, it is notable that
we utilize PCoA axes as an approximation to quantifying
the variance explained by the host genetic markers in the
variation of PCoA axes using a mixed linear model, which
ignores the non-linear curvatures of the original data space.
Therefore, in our linear mixed model, host genetic markers
could only capture the variance in the variation of PCoA
axes in a linear relationship and the explained variance
might increase when we are able to capture the nonlinearity
of PCoA axes. Further, we also identified genes and genetic
markers associated with the microbiota community struc-
ture. Genes ABS4 and DNAJC10 were found to associate
with the composition bacterial community. Gene DNAJC10
was found to associate with milk content of conjugated
linoleic acid in cattle [70]. Furthermore, the microbiability
of conjugated linoleic acid was found to be 33% with a
standard error of 0.17 [71], which provides a strong evi-
dence on the positive correlation of bacterial composition
and milk composition. It suggests that Gene DNAJC10
affects milk acid content through an effect on microbiota.

The gene DNAH9 was significantly associated with the
archaeal OTU (Phylum: Euryarchaeota, Class: Thermo-
plasmata, Order: Thermoplasmatales, Thermo-
plasmatales incertae sedis, Family: Thermogymnomonas)
with most variance explained by host genetic markers.
This archaeal OTU belongs to the recently discovered
seventh order of archaea originally termed “Thermo-
plasmatales” [72] or “Methanoplasmatales” [73] based on
their close phylogenetic relationship to nonmethanogenic
Thermoplasmatales [74], which has been widely adopted
across databases. However, according to Bacteriological
Code the taxonomic name must be derived from the first
isolate in the order, in this case Methanomassilicoccus
[74]. Importantly this order are methylotrophic methano-
gens using H2 as an electron donor for reducing methy-
lamines and methanol [72, 75]. A study on sheep showed
that the composition of bacterial (i.e., PCoA) was asso-
ciated with methane emission through passage rate with
possible genetic mechanisms related to muscle contraction
[69]. Gene DNAH9 identified in our study encoded for
axonemal beta heavy chain dynein 9 and has important
biological role in muscle contraction [59]. It implies the
possible genetic mechanism regulating by gene DNAH9 in
host that links this archaeal OTU and microbiota com-
position with impact on methane emission through

passage rate. This notion is further supported by findings
in beef cattle associating SNPs with MYH3 (implicated in
muscle contraction) with rumen microbial composition
and feed intake [42]. Difford et al. also found numerous
OTUs within this order displaying significant heritability
estimates indicting these methylotrophic pathways are
associated with host genetic background [15]. Gene
DNAH9 found associated with this OTU was also asso-
ciated with milk conjugated linoleic acid content in cattle
[70]. The gene DNAH9 could also be a candidate gene
affecting milk volatile fatty acid content through a highly
heritable archaeal microbiota with a heritability of 22%.
Thus, it might be possible to breed for the cows with
optimized microbiota composition for improving milk-
related traits and reducing methane emission through
genetics. However, it is notable that there might be
risk to get negative responses for other traits when
selecting milk-related traits through microbiota by host
genetics.

We provided biological insight by exploiting the genes
affecting microbiota composition and heritable microbiota
and the microbiota associated with methane emission. The
genetic basis in the host for methane emission and micro-
biota shows that we could possibly alter microbiota com-
position through host genetics and it is possible to breed for
cows through microbiota for better production.

Conclusion

This study examined how much the host genetics affect the
rumen microbiota and its composition in cows. Host gen-
omes explained 0–41% of variation in the abundance of
microbial groups. It reveals the host genetic effects on
microbiota and the possibilities to change microbiota
composition through host genetics. We are also the first to
utilize a Bayesian four-component mixture approach to
model the complex structure and relationship between
microbiota and host genetics on methane emission. The
archaeal and bacterial microbiota have been identified,
which explained the most variance in microbiota variance
(up to 1.6%). However, each of them explain very small
amount of the methane emission variation. The identified
bacterial microbiota are known to be highly correlated with
methane biosynthesis, which supports the evidence for the
biological role of identified microbiota in methane emission
from our observations. The identification of genes DNAH9,
ABS4, and DNAJC10 as affecting composition of ruminal
microbial communities suggests that they can serve as
possible markers to modify cows’ microbiota composition.
These results collectively provide an improved under-
standing of the genetic basis of microbiota and its compo-
sition with methane emission.
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