Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A role for gut microbiota in host niche differentiation

Abstract

If gut microbes influence host behavioral ecology in the short term, over evolutionary time, they could drive host niche differentiation. We explored this possibility by comparing the gut microbiota of Madagascar’s folivorous lemurs from Indriidae and Lepilemuridae. Occurring sympatrically in the eastern rainforest, our four, target species have different dietary specializations, including frugo-folivory (sifakas), young-leaf folivory (indri and woolly lemurs), and mature-leaf folivory (sportive lemurs). We collected fecal samples, from 2013 to 2017, and used amplicon sequencing, metagenomic sequencing, and nuclear magnetic resonance spectroscopy, respectively, to integrate analyses of gut microbiome structure and function with analysis of the colonic metabolome. The lemurs harbored species-specific microbiomes, metagenomes, and metabolomes that were tuned to their dietary specializations: Frugo-folivores had greater microbial and metagenomic diversity, and harbored generalist taxa. Mature-leaf folivores had greater individual microbiome variation, and taxa and metabolites putatively involved in cellulolysis. The consortia even differed between related, young-leaf specialists, with indri prioritizing metabolism of fiber and plant secondary compounds, and woolly lemurs prioritizing amino-acid cycling. Specialized gut microbiota and associated gastrointestinal morphologies enable folivores to variably tolerate resource fluctuation and support nutrient extraction from challenging resources (e.g., by metabolizing plant secondary compounds or recalcitrant fibers), perhaps ultimately facilitating host species’ diversity and specialized feeding ecologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Features of the lemur hosts and their gut microbiomes.
Fig. 2: Gut microbiome structure in four species of folivorous lemurs.
Fig. 3: Gut microbiome function in two species of folivorous lemurs.
Fig. 4: The colonic metabolome in four species of folivorous lemurs.

References

  1. 1.

    Schoener TW. Resource partitioning in ecological communities. Science 1974;185:27–39.

    CAS  PubMed  Google Scholar 

  2. 2.

    De León LF, Podos J, Gardezi T, Herrel A, Hendry AP. Darwin’s finches and their diet niches: the sympatric coexistence of imperfect generalists. J Evol Biol. 2014;27:1093–104.

    PubMed  Google Scholar 

  3. 3.

    Kartzinel TR, Chen PA, Coverdale TC, Erickson DL, Kress WJ, Kuzmina ML, et al. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc Natl Acad Sci. 2015;112:8019–24.

    CAS  PubMed  Google Scholar 

  4. 4.

    Winemiller KO. Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelan ilanos. Environ Biol Fish. 1989;26:177–99.

    Google Scholar 

  5. 5.

    Lack D. Darwin’s finches. Cambridge: Cambridge University Press; 1947.

    Google Scholar 

  6. 6.

    Pöysä H. Morphology-mediated niche organization in a guild of dabbling ducks. Ornis Scand. 1983;14:317–26.

    Google Scholar 

  7. 7.

    Inouye DW. Resource partitioning in bumblebees: experimental studies of foraging behavior. Ecology 1978;59:672–8.

    Google Scholar 

  8. 8.

    Roggenbuck M, Schnell IB, Blom N, Bælum J, Bertelsen F, Sicheritz-Pontén T, et al. The microbiome of New World vultures. Nat Commun. 2014;5:5498.

    CAS  PubMed  Google Scholar 

  9. 9.

    Hata H, Tanabe AS, Yamamoto S, Toju H, Kohda M, Hori M. Diet disparity among sympatric herbivorous cichlids in the same ectomorphs in Lake Tanganyika: amplicon pyrosequences on algal farms and stomach contents. BMC Biol. 2014;12:90.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Zhu L, Yang Z, Yao R, Xu L, Chen H, Gu X, et al. Potential mechanism of detoxification of cyanide compounds by gut microbiomes of bamboo-eating pandas. mSphere 2018;3:e00229–18.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Delsuc F, Metcalf JL, Parfrey LW, Song SJ, González A, Knight R. Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol. 2014;23:1301–17.

    CAS  PubMed  Google Scholar 

  12. 12.

    Mårtensson P-E, Nordøy ES, Blix AS. Digestibility of krill (Euphausia superba and Thysanoessa sp.) in minke whales (Balaenoptera acutorostrata) and crabeater seals (Lobodon carcinophagus). Br J Nutr. 1994;72:713–6.

    PubMed  Google Scholar 

  13. 13.

    Whitaker JO, Dannelly HK, Prentice DA. Chitinase in insectivorous bats. J Mammol. 2004;85:15–8.

    Google Scholar 

  14. 14.

    Dearing DM, Kohl KD. Beyond fermentation: other important services provided to endothermic herbivores by their gut microbiota. Integr Comp Biol. 2017;57:723–31.

    CAS  PubMed  Google Scholar 

  15. 15.

    Iason G. The role of plant secondary metabolites in mammalian herbivory: ecological perspectives. Proc Nutr Soc. 2005;64:123–31.

    CAS  PubMed  Google Scholar 

  16. 16.

    Lambert JE. Primate digestion: interactions among anatomy, physiology, and feeding ecology. Evol Anthropol. 1998;7:8–20.

    Google Scholar 

  17. 17.

    Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008;6:121–31.

    CAS  PubMed  Google Scholar 

  18. 18.

    Barboza PS, Hume ID. Hindgut fermentation in the wombats: two marsupial grazers. J Comp Physiol B. 1992;162:561–6.

    CAS  PubMed  Google Scholar 

  19. 19.

    Clayton JB, Gomez A, Amato K, Knights D, Travis DA, Blekhman R, et al. The gut microbiome of nonhuman primates: lessons in ecology and evolution. Am J Primatol. 2018;80:e22867.

    PubMed  Google Scholar 

  20. 20.

    Popovich DG, Jenkins D, Kendall C, Dierenfeld ES, Carroll RW, Tariq N, et al. The western lowland gorilla diet has implications for the health of humans and other hominoids. J Nutr. 1997;127:2000–5.

    CAS  PubMed  Google Scholar 

  21. 21.

    Amato KR, Sanders JG, Song SJ, Nute M, Metcalf JL, Thompson LR, et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 2019;13:576–87.

    CAS  PubMed  Google Scholar 

  22. 22.

    McKenney EA, Rodrigo A, Yoder AD. Patterns of gut bacterial colonization in three primate species. PloS ONE 2015;10:e0124618.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    McKenney E, O’Connell TM, Rodrigo A, Yoder AD. Feeding strategy shapes gut metagenomic enrichment and functional specialization in captive lemurs. Gut Microbes 2017;9:202–17.

    Google Scholar 

  24. 24.

    Amato KR, Martinez-Mota R, Righini N, Raguet-Schofield M, Corcione FP, Marini E, et al. Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia 2016;180:717–33.

    PubMed  Google Scholar 

  25. 25.

    Gomez A, Rothman JM, Petrzelkova K, Yeoman CJ, Vlckova K, Umaña JD, et al. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME J. 2016;10:514–26.

    CAS  PubMed  Google Scholar 

  26. 26.

    Dill-McFarland KA, Weimer PJ, Pauli JN, Peery MZ, Suen G. Diet specialization selects for an unusual and simplified gut microbiota in two- and three-toed sloths. Environ Microbiol. 2016;16:1391–402.

    Google Scholar 

  27. 27.

    Perofsky AC, Lewis RJ, Meyers LA. Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals. ISME J. 2019;13:50–63.

    PubMed  Google Scholar 

  28. 28.

    Dewar RE, Richard AF. Evolution in the hypervariable environment of Madagascar. Proc Natl Acad Sci. 2007;104:13723–7.

    CAS  PubMed  Google Scholar 

  29. 29.

    Irwin MT. Ecologically enigmatic lemurs: the sifakas of the eastern forests (Propithecus candidus, P. diadema, P. edwardsi, P. perrieri and P. tattersalli). In: Gould L, Sauther M, editors. Lemurs: ecology and adaptation. New York: Springer; 2006. p. 305–26.

  30. 30.

    Powyzk JA, Mowry CB. Dietary and feeding differences between sympatric Propithecus diadema diadema and Indri indri. Int J Primatol. 2003;24:1143–62.

    Google Scholar 

  31. 31.

    Britt A, Randriamandratonirina NJ, Glasscock KD, Iambana BR. Diet and feeding behavior of Indri indri in a low-altitude rain forest. Folia Primatol. 2002;73:225–39.

    PubMed  Google Scholar 

  32. 32.

    Faulkner AL, Lehman SR. Feeding patterns in a small-bodied nocturnal folivore (Avahi laniger) and the influence of leaf chemistry: a preliminary study. Folia Primatol. 2006;77:218–27.

    CAS  PubMed  Google Scholar 

  33. 33.

    Ganzhorn JU, Abraham JP, Razanahoera-Rakotomalala M. Some aspects of the natural history and food selection of Avahi laniger. Primates 1985;26:452–63.

    Google Scholar 

  34. 34.

    Hladik CM, Charles-Dominique P. The behavior and ecology of the sportive lemur (Lepilemur mustelinus) in relation to its dietary peculiarities. In: Chivers D, Herbert J, editors. Prosimian biology. London: Duckworth; 1974. p. 23–7.

  35. 35.

    Ganzhorn JU. Flexibility and constraints of Lepilemur ecology. In: Kappeler PM, Ganzhorn JU, editors. Lemur social systems and their ecological basis. New York: Plenum Press; 1993. p. 153–65.

  36. 36.

    Campbell JL, Eisemann JH, Williams CV, Glenn KM. Description of the gastrointestinal tract of five lemur species: Propithecus tattersalli, Propithecus verreauxi coquereli, Varecia variegata, Hapalemur griseus, and Lemur catta. Am J Primatol. 2000;52:133–42.

    CAS  PubMed  Google Scholar 

  37. 37.

    Milne-Edwards A, Grandidier A. Histoire naturelle des mammifères, Tome I, Texte I. In: Grandidier A, editor. Histoire physique, naturelle et politique de Madagascar, Vol. 6. Les indrisinés, Imprimerie Nationale: Paris; 1875.

  38. 38.

    Charles-Dominique P, Hladik CM. Le Lepilemur du sud de Madagscar: ecologie, alimentation et vie sociale. La Terre et la Vie. 1971;25:3–66.

    Google Scholar 

  39. 39.

    Chivers DJ, Hladik CM. Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J Morphol. 1980;166:337–86.

    CAS  PubMed  Google Scholar 

  40. 40.

    Springer A, Fichtel C, Al‐Ghalith GA, Koch F, Amato KR, Clayton JB, et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecol Evol. 2017;7:5732–45.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Greene LK, Bornbusch SL, McKenney EA, Harris RL, Gorvetzian SR, Yoder AD, et al. The importance of scale in comparative microbiome research: new insights from the gut and glands of captive and wild lemurs. Am J Primatol. 2019;81:e22974.

    PubMed  Google Scholar 

  42. 42.

    Greene LK, Clayton JB, Rothman RS, Semel BP, Semel MA, Gillespie TR, et al. Local habitat, not phylogenetic relatedness, predicts gut microbiome structure within frugivorous and folivorous lemur lineages. Biol Lett. 2019;15:20190028.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Greene LK, McKenney EA, O’Connell TM, Drea CM. The critical role of dietary foliage in maintaining the gut microbiome and metabolome of folivorous sifakas. Sci Rep. 2018;8:14482.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Dickinson S, Berner PO. Ambatovy project: Mining in a challenging biodiversity setting in Madagascar. In: Goodman SM, Mass V, editors. Biodiversity, exploration, and conservation of the natural habitats associated with the Ambatovy project. Malagasy nature. 2010;3 p. 2–13.

  45. 45.

    Junge RE, Williams CV, Rakotondrainibe H, Mahefarisoa KL, Rajaonarivelo T, Faulkner C, et al. Baseline health and nutrition evoluation of two sympatric nocturnal lemur species (Avahi laniger) and (Lepilemur mustelinus) residing near an active mine site at Ambatovy, Madagascar. J Zoo Wildl Med. 2017;48:794–803.

    PubMed  Google Scholar 

  46. 46.

    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith A, et al. Reproducible, interactive, scalable and extensive microbiome data science using QIIME 2. Nat Biotechnol. 2019. https://doi.org/10.1038/s41587-019-0209-9.

  47. 47.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 2013;41:D590–D596.

    CAS  PubMed  Google Scholar 

  48. 48.

    Skaug H, Fournier D, Bolker B, Magnusson A, Nielsen A. Generalized Linear Mixed Models using AD Model Builder. 2016; R package version 0.8.3.3.

  49. 49.

    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017. https://www.R-project.org/.

    Google Scholar 

  50. 50.

    RStudio Team. RStudio: integrated development for R. Boston, MA: RStudio, Inc.; 2016. http://www.rstudio.com/.

    Google Scholar 

  51. 51.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan community ecology package: ordination methods, diversity analysis and other functions for community and vegetation ecologists. 2016. https://cran.r-project.org/web/packages/vegan/index.html.

  52. 52.

    Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods 2018;15:962–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995;57:289–300.

    Google Scholar 

  55. 55.

    Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. Animal behavior and the microbiome. Science 2012;338:198–9.

    CAS  PubMed  Google Scholar 

  56. 56.

    Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012;3:289–306.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014;8:295–308.

    CAS  PubMed  Google Scholar 

  58. 58.

    Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol. 2001;56:634–49.

    CAS  PubMed  Google Scholar 

  59. 59.

    Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 2013;5:627–40.

    Google Scholar 

  60. 60.

    den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.

    Google Scholar 

  61. 61.

    Dudley R. Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integr Comp Biol. 2004;44:315–23.

    CAS  PubMed  Google Scholar 

  62. 62.

    Forbes SL, Perrault KA. Decomposition odour profiling in the air and soil surrounding vertebrate carrion. PLoS ONE 2014;9:e95107.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.

    CAS  PubMed  Google Scholar 

  64. 64.

    Lee PC, Lee SY, Chang HN. Succinic acid production by Anaerobiospirillium succiniciproducens ATCC 29305 growing on galactose, galactose/glucose, and galactose/lactose. J Microbiol Biotechnol. 2008;18:1792–6.

    CAS  PubMed  Google Scholar 

  65. 65.

    Förster AH, Gescher J. Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products. Front Bioeng Biotechnol. 2014;2:16.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Ganzhorn JU, Wright PC. Temporal patterns in primate leaf eating: the possible role of leaf chemistry. Folia Primatol. 1994;63:203–8.

    CAS  PubMed  Google Scholar 

  67. 67.

    Chesson A, Stewart CS, Wallace RJ. Influence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria. Appl Environ Microbiol. 1982;44:597–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Pei K, Ou J, Huang J, Ou S. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric. 2016;96:2952–62.

    CAS  PubMed  Google Scholar 

  69. 69.

    Filannino P, Di Cagno R, Gobbetti M. Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Curr Opin Biotechnol. 2018;48:64–72.

    Google Scholar 

  70. 70.

    Burlingame R, Chapman PJ. Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli. J Bacteriol. 1983;155:113–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Kobayashi Y, Shinkai T, Koike S. Ecological and physiological characterization shows that Fibrobacter succinogens is important in rumen fiber digestion- review. Folia Microbiol. 2008;53:195–200.

    CAS  Google Scholar 

  72. 72.

    Kaakoush NO. Insights into the role of Erysipelotrichaceae in the human host. Front Cell Infect Microbiol. 2015;5:84.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Jia Y, Wilkins D, Lu H, Cai M, Lee PKH. Long-term enrichment on cellulose or xylan causes functional and taxonomic convergence of microbial communities from anaerobic digesters. Appl Environ Microbiol. 2016;82:1519–29.

    CAS  PubMed Central  Google Scholar 

  75. 75.

    Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol. 2008;58:1221–7.

  76. 76.

    Muthyala RS, Ju YH, Williams LD, Doerge DR, Katzenellenbogen BS, Helferich WG, et al. Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem. 2004;12:1559–67.

    CAS  PubMed  Google Scholar 

  77. 77.

    Lu M-F, Xiao Z-T, Zhang H-Y. Where do health benefits of flavonoids come from? Insights from flavonoid targets and their evolutionary history. Biochem Biophys Res Commun. 2013;434:701–4.

    CAS  PubMed  Google Scholar 

  78. 78.

    Madagascar Catalogue. Catalogue of the vascular plants of Madagascar. Missouri Botanical Garden, St. Louis, USA & Antananarivo, Madagascar. 2019; http://www.tropicos.org/Project/Madagascar.

  79. 79.

    Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med. 2006;27:1–93.

    CAS  Google Scholar 

  80. 80.

    Kohl KD, Stengel A, Dearing MD. Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets. Environ Microbiol. 2016;18:1720–9.

    CAS  PubMed  Google Scholar 

  81. 81.

    IUCN. The IUCN Red List of Threatened Species. Version 2019-1. http://www.iucnredlist.org.

  82. 82.

    Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Di Fiore A, et al. Impending extinction crisis of the world’s primates: why primates matter. Sci Adv. 2017;3:e1600946.

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, et al. Extinction risk from climate change. Nature 2004;427:145–8.

    CAS  PubMed  Google Scholar 

  84. 84.

    Colles A, Liow LH, Prinzing A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol Lett. 2009;12:849–63.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Jernvall J, Wright PC. Diversity components of impending primate extinctions. Proc Natl Acad Sci. 1998;95:11279–83.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Ambatovy Biocamp Agents for locating and tracking the lemurs. Vanessa Mass and Josia Razafindramanana facilitated logistics on site. Conversations with Marina Blanco, Erin McKenney, and Sally Bornbusch contributed to many of the ideas presented herein. Argonne National Laboratory and the New York Genome Center provided amplicon and metagenomic sequences, respectively. André Corvelo and Amrita Kar performed bioinformatic analyses of metagenomic data. The David H. Murdock Research Institute provided NMR spectral data. Funding was provided by two Margot Marsh Biodiversity Foundation awards (to LKG and CMD), a Duke University International Travel Award (to LKG), Duke University research funds (to CMD), the Duke Lemur Center (to CVW), and by Ambatovy Minerals, S.A., Madagascar. This is Duke Lemur Center publication number 1450.

Author information

Affiliations

Authors

Contributions

LKG, CVW, and CMD conceived the study. All authors contributed to study design. CVW, REJ, KLM, TR, and HR performed field work, with assistance from LKG and CMD. LKG and TMO performed sample and data analyses. LKG and CMD wrote the manuscript, and all authors contributed to final preparation.

Corresponding author

Correspondence to Lydia K. Greene.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Greene, L.K., Williams, C., Junge, R.E. et al. A role for gut microbiota in host niche differentiation. ISME J 14, 1675–1687 (2020). https://doi.org/10.1038/s41396-020-0640-4

Download citation

Further reading

Search

Quick links