Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts

Abstract

In addition to abiotic triggers, biotic factors such as microbial symbionts can alter development of multicellular organisms. Symbiont-mediated morphogenesis is well-investigated in plants and marine invertebrates but rarely in insects despite the enormous diversity of insect-microbe symbioses. The bean bug Riptortus pedestris is associated with Burkholderia insecticola which are acquired from the environmental soil and housed in midgut crypts. To sort symbionts from soil microbiota, the bean bug develops a specific organ called the “constricted region” (CR), a narrow and symbiont-selective channel, located in the midgut immediately upstream of the crypt-bearing region. In this study, inoculation of fluorescent protein-labeled symbionts followed by spatiotemporal microscopic observations revealed that after the initial passage of symbionts through the CR, it closes within 12–18 h, blocking any potential subsequent infection events. The “midgut closure” developmental response was irreversible, even after symbiont removal from the crypts by antibiotics. It never occurred in aposymbiotic insects, nor in insects infected with nonsymbiotic bacteria or B. insecticola mutants unable to cross the CR. However, species of the genus Burkholderia and its outgroup Pandoraea that can pass the CR and partially colonize the midgut crypts induce the morphological alteration, suggesting that the molecular trigger signaling the midgut closure is conserved in this bacterial lineage. We propose that this drastic and quick alteration of the midgut morphology in response to symbiont infection is a mechanism for stabilizing the insect-microbe gut symbiosis and contributes to host-symbiont specificity in a symbiosis without vertical transmission.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Morphological alteration of the constricted region and M4B during symbiont colonization in 2nd instar nymphs of R. pedestris.
Fig. 2: Closing of the constricted region.
Fig. 3: The closure of the constricted region and M4B during symbiont colonization in 3rd instar nymphs of R. pedestris.
Fig. 4: The midgut closure prevents subsequent infections.
Fig. 5: The midgut closure is irreversible.
Fig. 6: Midgut closure requires passage through the constricted region and crypt colonization.

References

  1. 1.

    Gilbert SF, Epel D. Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sunderland, MA: Sinauer Associates Inc; 2009.

    Google Scholar 

  2. 2.

    Nyholm SV, McFall-Ngai M. The winnowing: establishing the squid-Vibrio symbiosis. Nat Rev Microbiol. 2004;2:632–42.

    CAS  PubMed  Google Scholar 

  3. 3.

    Kondorosi E, Mergaert P, Kereszt A. A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. Annu Rev Microbiol. 2013;67:611–28.

    CAS  PubMed  Google Scholar 

  4. 4.

    Sommer F, Backhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–38.

    CAS  Google Scholar 

  5. 5.

    Broderick NA, Buchon N, Lemaitre B. Microbiota-induced changes in Drosophila melanogaster host gene expression and gut morphology. mBio. 2014;5:e01117–14.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, et al. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 2013;4:356.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science. 2014;343:529–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Shikuma NJ, Antoshechkin I, Medeiros JM, Pilhofer M, Newman DK. Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc Natl Acad Sci USA. 2016;113:10097–102.

    CAS  PubMed  Google Scholar 

  9. 9.

    Ericson CF, Eisenstein F, Medeiros JM, Malter KE, Cavalcanti GS, Zeller RW, et al. A contractile injection system stimulates tubeworm metamorphosis by translocating a proteinaceous effector. eLife. 2019;8:e46845.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife. 2012;1:e00013.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Buchner P. Endosymbiosis of animals with plant microorganism. New York: Interscience; 1965.

    Google Scholar 

  12. 12.

    Kikuchi Y. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ. 2009;24:195–204.

    PubMed  Google Scholar 

  13. 13.

    Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.

    CAS  Google Scholar 

  14. 14.

    Douglas AE. Lessons from studying insect symbioses. Cell Host Microbe. 2011;10:359–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Utami YD, Kuwahara H, Murakami T, Morikawa T, Sugaya K, Kihara K, et al. Phylogenetic diversity and single-cell genome analysis of “Melainabacteria”, a non-photosynthetic cyanobacterial group, in the termite gut. Microbes Environ. 2018;33:50–7.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T. Symbiont acquisition alters behaviour of stinkbug nymphs. Biol Lett 2008;4:45–8.

    PubMed  Google Scholar 

  17. 17.

    Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6:741.

    CAS  PubMed  Google Scholar 

  18. 18.

    Feldhaar H. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol. 2011;36:533–43.

    Google Scholar 

  19. 19.

    Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA. 2012;109:8618–22.

    CAS  PubMed  Google Scholar 

  20. 20.

    Flórez LV, Biedermann PH, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep. 2015;32:904–36.

    PubMed  Google Scholar 

  21. 21.

    Tsuchida T. Molecular basis and ecological relevance of aphid body colors. Curr Opin Insect Sci. 2016;17:74–80.

    PubMed  Google Scholar 

  22. 22.

    Anbutsu H, Moriyama M, Nikoh N, Hosokawa T, Futahashi R, Tanahashi M, et al. Small genome symbiont underlies cuticle hardness in beetles. Proc Natl Acad Sci USA. 2017;114:E8382–91.

    CAS  PubMed  Google Scholar 

  23. 23.

    Itoh H, Tago K, Hayatsu M, Kikuchi Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep. 2018;35:434–54.

    CAS  PubMed  Google Scholar 

  24. 24.

    Kikuchi Y, Meng XY, Fukatsu T. Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). Appl Environ Microbiol. 2005;71:4035–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Takeshita K, Kikuchi Y. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations. Res Microbiol. 2016;168:175–87.

    PubMed  Google Scholar 

  26. 26.

    Takeshita K, Tamaki H, Ohbayashi T, Meng XY, Sone T, Mitani Y, et al. Burkholderia insecticola sp. nov., a gut symbiotic bacterium of the bean bug Riptortus pedestris. Int J Syst Evol Microbiol. 2018;68:2370–4.

    CAS  PubMed  Google Scholar 

  27. 27.

    Kaltenpoth M, Flórez LV. Versatile and dynamic symbioses between insects and Burkholderia bacteria. Annu Rev Entomol. 2020;65:145–70.

    CAS  PubMed  Google Scholar 

  28. 28.

    Kikuchi Y, Fukatsu T. Live imaging of symbiosis: spatiotemporal infection dynamics of a GFP-labelled Burkholderia symbiont in the bean bug Riptortus pedestris. Mol Ecol. 2014;23:1445–56.

    CAS  PubMed  Google Scholar 

  29. 29.

    Ohbayashi T, Futahashi R, Terashima M, Barrière Q, Lamouche F, Takeshita K, et al. Comparative cytology, physiology and transcriptomics of Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and in culture. ISME J. 2019;13:1469–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73:4308–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kikuchi Y, Hosokawa T, Fukatsu T. Specific developmental window for establishment of an insect-microbe gut symbiosis. Appl Environ Microbiol. 2011;77:4075–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.

    CAS  PubMed  Google Scholar 

  33. 33.

    Ohbayashi T, Takeshita K, Kitagawa W, Nikoh N, Koga R, Meng XY, et al. Insect’s intestinal organ for symbiont sorting. Proc Natl Acad Sci USA. 2015;112:E5179–88.

    CAS  PubMed  Google Scholar 

  34. 34.

    Kinosita Y, Kikuchi Y, Mikami N, Nakane D, Nishizaka T. Unforeseen swimming and gliding mode of an insect gut symbiont, Burkholderia sp. RPE64, with wrapping of the flagella around its cell body. ISME J. 2018;12:838–48.

    PubMed  Google Scholar 

  35. 35.

    Raina JB, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol. 2019;17:284–94.

    CAS  PubMed  Google Scholar 

  36. 36.

    Itoh H, Jang S, Takeshita K, Ohbayashi T, Ohnishi N, Meng XY, et al. Host-symbiont specificity determined by microbe-microbe competition in an insect gut. Proc Natl Acad Sci USA. 2019;116:22673–82.

    CAS  PubMed  Google Scholar 

  37. 37.

    Norris MH, Kang Y, Wilcox B, Hoang TT. Stable, site-specific fluorescent tagging constructs optimized for Burkholderia species. Appl Environ Microbiol. 2010;76:7635–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Vergunst AC, Meijer AH, Renshaw SA, O’Callaghan D. Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Immun. 2010;78:1495–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kim JK, Kim NH, Jang HA, Kikuchi Y, Kim CH, Fukatsu T, et al. Specific midgut region controlling the symbiont population in an insect-microbe gut symbiotic association. Appl Environ Microbiol. 2013;79:7229–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kim JK, Jang HA, Won YJ, Kikuchi Y, Heum Han S, Kim CH, et al. Purine biosynthesis-deficient Burkholderia mutants are incapable of symbiotic accommodation in the stinkbug. ISME J. 2014;8:552–63.

    CAS  PubMed  Google Scholar 

  41. 41.

    Kim JK, Jang HA, Kim MS, Cho JH, Lee JB, Lorenzo FD, et al. The lipopolysaccharide core oligosaccharide of Burkholderia plays a critical role in maintaining a proper gut symbiosis with the bean bug Riptortus pedestris. J Biol Chem. 2017;292:19226–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Kim JK, Won YJ, Nikoh N, Nakayama H, Han SH, Kikuchi Y, et al. Polyester synthesis genes associated with stress resistance are involved in an insect-bacterium symbiosis. Proc Natl Acad Sci USA. 2013;110:E2381–9.

    CAS  PubMed  Google Scholar 

  43. 43.

    Yasunaga T, Takai M, Yamashita I, Kawamura M, Kawasawa T. A field guide to Japanese bugs. Tokyo, Japan: Zenkoku Nouson Kyouiku Kyoukai; 1993.

    Google Scholar 

  44. 44.

    Zipfel C, Oldroyd GE. Plant signalling in symbiosis and immunity. Nature. 2017;543:328–36.

    CAS  PubMed  Google Scholar 

  45. 45.

    Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ. Microbial factor-mediated development in a host-bacterial mutualism. Science. 2004;306:1186–8.

    CAS  PubMed  Google Scholar 

  46. 46.

    Adin DM, Engle JT, Goldman WE, McFall-Ngai MJ, Stabb EV. Mutations in ampG and lytic transglycosylase genes affect the net release of peptidoglycan monomers from Vibrio fischeri. J Bacteriol. 2009;191:2012–22.

    CAS  PubMed  Google Scholar 

  47. 47.

    Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14:668–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kim JK, Lee JB, Jang HA, Han YS, Fukatsu T, Lee BL. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system. Dev Comp Immunol. 2016;64:75–81.

    PubMed  Google Scholar 

  49. 49.

    Park KE, Jang SH, Lee J, Lee SA, Kikuchi Y, Seo YS, et al. The roles of antimicrobial peptide, rip-thanatin, in the midgut of Riptortus pedestris. Dev Comp Immunol. 2017;78:83–90.

    PubMed  Google Scholar 

  50. 50.

    Kikuchi Y, Hosokawa T, Fukatsu T. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 2011;5:446–60.

    PubMed  Google Scholar 

  51. 51.

    Itoh H, Navarro R, Takeshita K, Tago K, Hayatsu M, Hori T, et al. Bacterial population succession and adaptation affected by insecticide application and soil spraying history. Front Microbiol. 2014;5:457.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Itoh H, Hori T, Sato Y, Nagayama A, Tago K, Hayatsu M, et al. Infection dynamics of insecticide-degrading symbionts from soil to insects in response to insecticide spraying. ISME J. 2018;12:909–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Stopnisek N, Bodenhausen N, Frey B, Fierer N, Eberl L, Weisskopf L. Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations. Environ Microbiol. 2014;16:1503–12.

    CAS  PubMed  Google Scholar 

  54. 54.

    Campbell MA, Łukasik P, Meyer MC, Buckner M, Simon C, Veloso C, et al. Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas. mBio. 2018;9:e02104–18.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Mira A, Moran NA. Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Micro Ecol. 2002;44:137–43.

    CAS  Google Scholar 

  56. 56.

    Kaltenpoth M, Goettler W, Koehler S, Strohm E. Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol Ecol. 2010;24:463–77.

    Google Scholar 

  57. 57.

    Hosokawa T, Kikuchi Y, Fukatsu T. How many symbionts are provided by mothers, acquired by offspring, and needed for successful vertical transmission in an obligate insect-bacterium mutualism? Mol Ecol. 2007;16:5316–25.

    PubMed  Google Scholar 

  58. 58.

    Wollenberg MS, Ruby EG. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two Oahu (Hawaii) populations. Appl Environ Microbiol. 2009;75:193–202.

    CAS  PubMed  Google Scholar 

  59. 59.

    Gage DJ. Analysis of infection thread development using GFP- and DsRed-expressing Sinorhizobium meliloti. J Bacteriol. 2002;184:7042–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Schneider G. Beiträge zur Kenntnis der symbiontischen Einrichtungen der Heteropteren. Z Morphol O'kol Tiere. 1940;36:565–644.

    Google Scholar 

  61. 61.

    Fukatsu T, Hosokawa T. Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl Environ Microbiol. 2002;68:389–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Kaiwa N, Hosokawa T, Nikoh N, Tanahashi M, Moriyama M, Meng XY, et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr Biol. 2014;24:2465–70.

    CAS  PubMed  Google Scholar 

  63. 63.

    Oishi S, Moriyama M, Koga R, Fukatsu T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). Zool Lett. 2019;5:16.

    Google Scholar 

  64. 64.

    Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14:20–32.

    CAS  PubMed  Google Scholar 

  65. 65.

    Brune A, Emerson D, Breznak JA. The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol. 1995;61:2681–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci USA. 2017;114:4775–80.

    CAS  PubMed  Google Scholar 

  67. 67.

    Buchon N, Broderick NA, Lemaitre B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol. 2013;11:615–26.

    CAS  PubMed  Google Scholar 

  68. 68.

    Lee WJ, Hase K. Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol. 2014;10:416–24.

    CAS  PubMed  Google Scholar 

  69. 69.

    Lanan MC, Rodrigues PA, Agellon A, Jansma P, Wheeler DE. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 2016;10:1866–76.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Ooi (AIST) for technical assistance. Part of the fluorescence microscopy was performed at the Imagerie-Gif facilities (http://www.i2bc.paris-saclay.fr/spip.php?rubrique184). This study was supported by the JSPS-CNRS Bilateral Open Partnership Joint Research Project to YK and PM, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) KAKENHI to YK (18KK0211), and the JSPS Research Fellowship for Young Scientists to TO (20170267 and 19J01106) and SJ (201911493).

Author information

Affiliations

Authors

Contributions

YK, TO, and PM designed the study. YK, TO, and SJ performed inoculation tests, antibiotic treatments, and microscopy observations. TO and PM measured morphological change of gut parts and bottleneck of symbiont infection. YK and PM wrote the paper.

Corresponding author

Correspondence to Yoshitomo Kikuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, Y., Ohbayashi, T., Jang, S. et al. Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts. ISME J 14, 1627–1638 (2020). https://doi.org/10.1038/s41396-020-0633-3

Download citation

Further reading

Search

Quick links