Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus

Abstract

Marine picocyanobacteria of the Prochlorococcus and Synechococcus genera have been longtime considered as autotrophic organisms. However, compelling evidence published over the last 15 years shows that these organisms can use different organic compounds containing key elements to survive in oligotrophic oceans, such as N (amino acids, amino sugars), S (dimethylsulfoniopropionate, DMSP), or P (ATP). Furthermore, marine picocyanobacteria can also take up glucose and use it as a source of carbon and energy, despite the fact that this compound is devoid of limiting elements and can also be synthesized by using standard metabolic pathways. This review will outline the main findings suggesting mixotrophy in the marine picocyanobacteria Prochlorococcus and Synechococcus, and its ecological relevance for these important primary producers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Phylogenetic species tree representing the diverse capabilities of selected Prochlorococcus and Synechococcus strains to take up different organic compounds.
Fig. 2: Glucose uptake kinetics in Prochlorococcus sp. strains SS120, TAK9803-2, PCC 9511, MIT9303, NATL2, and NATL1 and Synechococcus sp. strain WH7803.

References

  1. 1.

    Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, et al. Dating the rise of atmospheric oxygen. Nature. 2004;427:117–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA. A novel free living prochlorophyte abundant in the oceanic euphotic zone. Nature. 1988;334:340–3.

    Google Scholar 

  3. 3.

    Waterbury J, Watson S, Guillard R, Brand L. Widespread occurrence of a unicellular, marine planktonic, cyanobacterium. Nature. 1979;277:293–4.

    Google Scholar 

  4. 4.

    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Braakman R. The emergence of a globally productive biosphere. Free Radic Biol Med. 2019;140:172–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Partensky F, Hess W, Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev. 1999;63:106–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2015;13:13–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, et al. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev. 2009;73:249–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Braakman R, Follows MJ, Chisholm SW. Metabolic evolution and the self-organization of ecosystems. Proc Natl Acad Sci USA. 2017;114:E3091–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, Becker JW, et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci Data. 2018;5:180154.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Zubkov MV, Hartmann M. Ecological significance of microbial trophic mixing in the oligotrophic ocean: the Atlantic Ocean case studies. In: Gasol JM, Kirchman DL, editors. Microbial ecology of the oceans, 3rd ed. Hoboken: Wiley Blackwell; 2018.

  12. 12.

    Stoecker DK, Hansen PJ, Caron DA, Mitra A. Mixotrophy in the marine plankton. Annu Rev Mar Sci. 2017;9:311–35.

    Google Scholar 

  13. 13.

    Cottrell MT, Kirchman DL. Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol. 2009;75:4958–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Muñoz-Marín MC, Gómez-Baena G, Diez J, Beynon RJ, González-Ballester D, Zubkov MV, et al. Glucose uptake in Prochlorococcus: diversity of kinetics and effects on the metabolism. Front Microbiol. 2017;8:327.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Rippka R. Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae. Arch Microbiol. 1972;87:93–8.

    Google Scholar 

  16. 16.

    Hoare D, Hoare S, Moore R. The photoassimilation of organic compounds by autotrophic blue-green algae. J Gen Microbiol. 1967;49:351–70.

    CAS  Google Scholar 

  17. 17.

    Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol. 1979;111:1–6.

    Google Scholar 

  18. 18.

    Karl DM. Microbial oceanography: paradigms, processes and promise. Nat Rev Microbiol. 2007;5:759–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann I, Barbe V, et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA. 2003;100:10020–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Palenik B, Brahamsha B, Larimer F, Land M, Hauser L, Chain P, et al. The genome of a motile marine Synechococcus. Nature. 2003;424:1037–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Rocap G, Larimer F, Lamerdin J, Malfatti S, Chain P, Ahlgren N, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 2003;424:1042–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Eiler A. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl Environ Microbiol. 2006;72:7431–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, et al. Mixotrophs combine resource use to outcompete specialists: implications for aquatic food webs. Proc Natl Acad Sci USA. 2003;100:12776–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Vage S, Castellani M, Giske J, Thingstad TF. Successful strategies in size structured mixotrophic food webs. Aquat Ecol. 2013;47:329–47.

    Google Scholar 

  25. 25.

    Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, et al. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci USA. 2012;109:5756–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Giovannoni S, Tripp H, Givan S, Podar M, Vergin K, Baptista D, et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science. 2005;309:1242–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Zubkov MV. Photoheterotrophy in marine prokaryotes. J Plankton Res. 2009;31:933–8.

    CAS  Google Scholar 

  28. 28.

    Church M, Ducklow H, Karl DM. Light dependence of [3H]- Leucine incorporation in the oligotrophic North Pacific Ocean. Appl Environ Microbiol. 2004;70:4079–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Church M, Ducklow H, Letelier R, Karl DM. Temporal and vertical dynamics in picoplankton photoheterotrophic production in the subtropical North Pacific Ocean. Aquat Micro Ecol. 2006;45:41–53.

    Google Scholar 

  30. 30.

    Michelou V, Cottrell M, Kirchman D. Light-stimulated bacterial production and amino acid assimilation by cyanobacteria and other microbes in the North Atlantic Ocean. Appl Environ Microbiol. 2007;73:5539–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Paerl H. Ecophysiological and trophic implications of light-stimulated amino acid utilization in marine picoplankton. Appl Environ Microbiol. 1991;57:473–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ruiz-González C, Simó R, Vila-Costa M, Sommaruga R, Gasol J. Sunlight modulates the relative importance of heterotrophic bacteria and picophytoplankton in DMSP-sulphur uptake. ISME J. 2012;6:650–9.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Zubkov M, Fuchs B, Tarran G, Burkill P, Amann R. High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol. 2003;69:1299–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Zubkov M, Tarran G, Fuchs B. Depth related amino acid uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre. FEMS Microbiol Ecol. 2004;50:153–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Zubkov M, Tarran G. Amino acid uptake of Prochlorococcus spp. in surface waters across the South Atlantic Subtropical Front. Aquat Micro Ecol. 2005;40:241–9.

    Google Scholar 

  36. 36.

    Aldunate M, Henriquez-Castillo C, Ji QX, Lueders-Dumont J, Mulholland MR, Ward BB, et al. Nitrogen assimilation in picocyanobacteria inhabiting the oxygen-deficient waters of the eastern tropical North and South Pacific. Limnol Oceanogr. 2019.

  37. 37.

    Duhamel S, Moutin T. Carbon and phosphate incorporation rates of microbial assemblages in contrasting environments in the Southeast Pacific. Mar Ecol Prog Ser. 2009;375:53–64.

    CAS  Google Scholar 

  38. 38.

    Gómez-Pereira PR, Hartmann M, Grob C, Tarran GA, Martin AP, Fuchs BM, et al. Comparable light stimulation of organic nutrient uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre. ISME J. 2013;7:603–14.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Mary I, Tarran G, Warwick P, Terry M, Scanlan D, Burkill P, et al. Light enhanced amino acid uptake by dominant bacterioplankton groups in surface waters of the Atlantic Ocean. FEMS Microbiol Ecol. 2008;63:36–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Björkman KM, Church MJ, Doggett JK, Karl DM. Differential assimilation of inorganic carbon and leucine by Prochlorococcus in the oligotrophic North Pacific subtropical gyre. Front Microbiol. 2015;6:1401.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kiene R, Linn LJ, Bruton JA. New and important roles for DMSP in marine microbial communities. J Sea Res. 2000;43:209–24.

    CAS  Google Scholar 

  42. 42.

    Moran MA, Durham BP. Sulfur metabolites in the pelagic ocean. Nat Rev Microbiol. 2019;17:665–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Kiene RP. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl Environ Microbiol. 1990;56:3292–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Sunda W, Kieber DJ, Kiene RP, Huntsman S. An antioxidant function for DMSP and DMS in marine algae. Nature. 2002;418:317–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Malmstrom RR, Kiene R, Vila M, Kirchman KL. Dimethylsulfoniopropionate (DMSP) assimilation by Synechococcus in the Gulf of Mexico and northwest Atlantic Ocean. Limnol Oceanogr. 2005;50:1924–31.

    CAS  Google Scholar 

  46. 46.

    Vila-Costa M, Simo R, Harada H, Gasol J, Slezak D, Kiene R. Dimethylsulfoniopropionate uptake by marine phytoplankton. Science. 2006;314:652–4.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    López-Lozano A, Diez J, El Alaoui S, Moreno-Vivián C, García-Fernández J. Nitrate is reduced by heterotrophic bacteria but not transferred to Prochlorococcus in non axenic cultures. FEMS Microbiol Ecol. 2002;41:151–60.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Moore L, Post A, Rocap G, Chisholm S. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr. 2002;47:989–96.

    CAS  Google Scholar 

  49. 49.

    Becker JW, Hogle SL, Rosendo K, Chisholm SW. Co-culture and biogeography of Prochlorococcus and SAR11. ISME J. 2019;13:1506–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Casey JR, Lomas MW, Michelou VK, Dyhrman ST, Orchard ED, Ammerman JW, et al. Phytoplankton taxon-specific orthophosphate (Pi) and ATP utilization in the western subtropical North Atlantic. Aquat Micro Ecol. 2009;58:31–44.

    Google Scholar 

  51. 51.

    Duhamel S, Bjorkman KM, Van Wambeke F, Moutin T, Karl DM. Characterization of alkaline phosphatase activity in the North and South Pacific Subtropical Gyres: Implications for phosphorus cycling. Limnol Oceanogr. 2011;56:1244–54.

    CAS  Google Scholar 

  52. 52.

    Duhamel S, Björkman K, Karl DM. Light dependence of phosphorus uptake by microorganisms in the subtropical North and South Pacific Ocean. Aquat Micro Ecol. 2012;67:225–38.

    Google Scholar 

  53. 53.

    Duhamel S, Bjorkman KM, Doggett JK, Karl DM. Microbial response to enhanced phosphorus cycling in the North Pacific Subtropical Gyre. Mar Ecol Prog Ser. 2014;504:43–58.

    CAS  Google Scholar 

  54. 54.

    Duhamel S, Van Wambeke F, Lefevre D, Benavides M, Bonnet S. Mixotrophic metabolism by natural communities of unicellular cyanobacteria in the western tropical South Pacific Ocean. Environ Microbiol. 2018;20:2743–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Orchard ED, Ammerman JW, Lomas MW, Dyhrman ST. Dissolved inorganic and organic phosphorus uptake in Trichodesmium and the microbial community: the importance of phosphorus ester in the Sargasso Sea. Limnol Oceanogr. 2010;55:1390–9.

    CAS  Google Scholar 

  56. 56.

    Sosa OA, Casey JR, Karl DM. Methylphosphonate oxidation in Prochlorococcus strain MIT9301 supports phosphate acquisition, formate excretion, and carbon assimilation into purines. Appl Environ Microbiol. 2019;85:e00289–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Sosa OA, Repeta DJ, DeLong EF, Ashkezari MD, Karl DM. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation. Environ Microbiol. 2019;21:2402–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Young CL, Ingall ED. Marine dissolved organic phosphorus composition: insights from samples recovered using combined electrodialysis/reverse osmosis. Aquat Geochem. 2010;16:563–74.

    CAS  Google Scholar 

  59. 59.

    Coleman ML, Chisholm SW. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci USA. 2010;107:18634–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Dyhrman ST, Ammerman JW, Van Mooy BAS. Microbes and the marine phosphorus cycle. Oceanography. 2007;20:110–6.

    Google Scholar 

  61. 61.

    Rippka R, Coursin T, Hess W, Lichtlé C, Scanlan D, Palinska K, et al. Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a 2/b 2-containing cyanobacterium (Oxyphotobacteria). Int J Syst Evol Microbiol. 2000;50:1833–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    García-Fernández JM, Hess WR, Houmard J, Partensky F. Expression of the psbA gene in the marine oxyphotobacteria Prochlorococcus spp. Arch Biochem Biophys. 1998;359:17–23.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Gómez-Baena G, López-Lozano A, Gil-Martínez J, Lucena J, Diez J, Candau P, et al. Glucose uptake and its effect on gene expression in Prochlorococcus. PLoS ONE. 2008;3:e3416.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Muñoz-Marín MC, Luque I, Zubkov MV, Hill PG, Diez J, García-Fernández JM. Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean. Proc Natl Acad Sci USA. 2013;110:8597–602.

    Google Scholar 

  65. 65.

    Moisander PH, Zhang R, Boyle EA, Hewson I, Montoya JP, Zehr JP. Analogous nutrient limitations in unicellular diazotrophs and Prochlorococcus in the South Pacific Ocean. ISME J. 2012;6:733–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Moreno-Cabezuelo JA, López-Lozano A, Díez J, García-Fernández JM. Differential expression of the glucose transporter gene glcH in response to glucose and light in marine picocyanobacteria. PeerJ. 2019;6:e6248.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Chen X, Schreiber K, Appel J, Makowka A, Fahnrich B, Roettger M, et al. The Entner-Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. Proc Natl Acad Sci USA. 2016;113:5441–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Pelroy R, Rippka R, Stanier R. Metabolism of glucose by unicellular blue-green algae. Arch Microbiol. 1972;87:303–22.

    CAS  Google Scholar 

  69. 69.

    DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science. 2006;311:496–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Yelton AP, Acinas SG, Sunagawa S, Bork P, Pedros-Alio C, Chisholm SW. Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J. 2016;10:2946–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Karsenti E, Acinas SG, Bork P, Bowler C, De Vargas C, Raes J, et al. A holistic approach to marine eco-systems biology. PLOS Biol. 2011;9:e1001177.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G. et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359–1261351.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Cullen J. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Annu Rev Mar Sci. 2015;7:207–39.

    Google Scholar 

  74. 74.

    Picossi S, Flores E, Ekman M. Diverse roles of the GlcP glucose permease in free-living and symbiotic cyanobacteria. Plant Signal Behav. 2013;8:e27416.

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Delmont TO, Eren AM. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ. 2018;6:e4320.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17:13–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science. 2014;343:183–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Scanlan D. Bacterial vesicles in the ocean. Science. 2014;343:143–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Soler N, Krupovic M, Marguet E, Forterre P. Membrane vesicles in natural environments: a major challenge in viral ecology. ISME J. 2015;9:793–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Morris JJ, Lenski RE, Zinser ER. The Black Queen hypothesis: evolution of dependencies through adaptive gene loss. mBio. 2012;3:e00036–12.

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Mary I, Garczarek L, Tarran G, Kolowrat C, Terry M, Scanlan D, et al. Diel rhythmicity in amino acid uptake by Prochlorococcus. Environ Microbiol. 2008;10:2124–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Zubkov M, Tarran G, Mary I, Fuchs B. Differential microbial uptake of dissolved amino acids and amino sugars in surface waters of the Atlantic Ocean. J Plankton Res. 2008;30:211–20.

    CAS  Google Scholar 

  83. 83.

    Ethayathulla AS, Yousef MS, Amin A, Leblanc G, Kaback HR, Guan L. Structure-based mechanism for Na(+)/melibiose symport by MelB. Nat Commun. 2014;5:3009.

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol. 2016;24:833–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Coe A, Ghizzoni J, LeGault K, Biller S, Roggensack SE, Chisholm SW. Survival of Prochlorococcus in extended darkness. Limnol Oceanogr. 2016;71:1375–88.

    Google Scholar 

  86. 86.

    Biller SJ, McDaniel LD, Breitbart M, Rogers E, Paul JH, Chisholm SW. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 2017;11:394–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Laurenceau R, Bliem C, Osburne MS, Becker JW, Biller SJ, Cubillos-Ruiz A, et al. Toward a genetic system in the marine cyanobacterium Prochlorococcus. 2019. https://doi.org/10.1101/820027.

  88. 88.

    Krumhardt KM, Callnan K, Roache-Johnson K, Swett T, Robinson D, Reistetter EN, et al. Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 I: uptake physiology. Environ Microbiol. 2013;20:2114–28.

    Google Scholar 

Download references

Acknowledgements

Work of the authors on mixotrophy in marine picocyanobacteria has been funded by Gobierno de España (grants BFU2009/08008/BMC, BFU2013-44767-P, and BFU2016-76227-P, Ministerio de Ciencia, Innovación y Universidades, cofunded by European Regional Development Fund), Junta de Andalucía (Excellence projects P07-CVI-3055 and P12-BIO-2141, Consejería de Conocimiento, Investigación y Universidad, cofunded by European Regional Development Fund), and Universidad de Córdoba (Programa Propio de Investigación). We are indebted to Dr. Pedro Candau (Instituto de Bioquímica Vegetal y Fotosíntesis, Sevilla, Spain), Dr. Ignacio Luque (Instituto de Bioquímica Vegetal y Fotosíntesis, Sevilla, Spain) and Prof. Mikhail Zubkov (Scottish Association for Marine Science, United Kingdom) and their teams, since their collaboration was essential in our studies on glucose uptake in marine picocyanobacteria. We thank Prof. Josep M. Gasol and his team (Institut de Ciències del Mar-CMIMA, CSIC, Barcelona, Spain) and Prof. Mikhail Zubkov (Scottish Association for Marine Science, United Kingdom) for providing DMSP and amino acid uptake rates by Prochlorococcus and Synechococcus in the field, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. M. García-Fernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Marín, M.C., Gómez-Baena, G., López-Lozano, A. et al. Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus. ISME J 14, 1065–1073 (2020). https://doi.org/10.1038/s41396-020-0603-9

Download citation

Further reading