Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synergism between Corynebacterium and Streptococcus sanguinis reveals new interactions between oral commensals


The oral microbiome engages in a diverse array of highly sophisticated ecological interactions that are crucial for maintaining symbiosis with the host. Streptococci and corynebacteria are among the most abundant oral commensals and their interactions are critical for normal biofilm development. In this study, we discovered that Streptococcus sanguinis specifically responds to the presence of Corynebacterium durum by dramatically altering its chain morphology and improving its overall fitness. By employing gas chromatography-mass spectrometry (GC-MS) analysis, specific fatty acids were identified in C. durum supernatants that are responsible for the observed effect. Membrane vesicles (MVs) containing these fatty acids were isolated from C. durum supernatants and were able to replicate the chain morphology phenotype in S. sanguinis, suggesting MV as a mediator of interspecies interactions. Furthermore, S. sanguinis responds to C. durum lipids by decreasing the expression of key FASII genes involved in fatty acid synthesis. Several of these genes are also essential for the chain elongation phenotype, which implicates a regulatory connection between lipid metabolism and chain elongation. In addition, C. durum was found to affect the growth, cell aggregation, and phagocytosis of S. sanguinis, revealing a complex association of these species that likely supports oral commensal colonization and survival.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Effect of C. durum JJ1 [1] on S. sanguinis SK36 (SK36) chain morphology.
Fig. 2: Strain-specific interactions between Corynebacterium spp. and S. sanguinis.
Fig. 3: Role of fatty acids in S. sanguinis chain elongation.
Fig. 4: Involvement of SK36 lipid metabolism and cell division genes in the elongated chain phenotype induced by Cd.
Fig. 5: Influence of glucose on the SK36 chain elongated phenotype.
Fig. 6: Transmission electron micrograph of MVs prepared from Cd.
Fig. 7: Effect of Cd on SK36 survivability and phagocytosis.


  1. 1.

    The Human Microbiome Project C, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207.

    Google Scholar 

  2. 2.

    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, et al. The human oral microbiome. J Bacteriol. 2010;192:5002–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ribeiro AA, Azcarate-Peril MA, Cadenas MB, Butz N, Paster BJ, Chen T, et al. The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries. Plos ONE. 2017;12:e0180621.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci. 2016;113:E791.

    CAS  PubMed  Google Scholar 

  5. 5.

    Xiao C, Ran S, Huang Z, Liang J. Bacterial diversity and community structure of supragingival plaques in adults with dental health or caries revealed by 16S pyrosequencing. Front Microbiol. 2016;7: Article 1145.

  6. 6.

    Wang K, Lu W, Tu Q, Ge Y, He J, Zhou Y, et al. Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus. Sci Rep. 2016;6:22943.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Tsai C-Y, Tang CY, Tan T-S, Chen K-H, Liao K-H, Liou M-L. Subgingival microbiota in individuals with severe chronic periodontitis. J Microbiol Immunol Infect. 2018;51:226–34.

    PubMed  Google Scholar 

  8. 8.

    Hsu SD, Cisar JO, Sandberg AL, Kilian M. Adhesive properties of viridans streptoccocal species. Microb Ecol Health Dis. 1994;7:125–37.

    Google Scholar 

  9. 9.

    Egland PG, Palmer RJ, Kolenbrander PE. Interspecies communication in Streptococcus gordoniiVeillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci USA. 2004;101:16917–22.

    CAS  PubMed  Google Scholar 

  10. 10.

    Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A. Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol. 2007;52:1048–56.

    CAS  PubMed  Google Scholar 

  11. 11.

    Jakubovics NS, Yassin SA, Rickard AH. Chapter two—community interactions of oral streptococci. In: Sariaslani S, Gadd GM, editors. Advances in Applied Microbiology. vol. 87. Academic Press; Waltham, MA; 2014. p. 43–110.

  12. 12.

    Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721–32.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology 2000.2006;42:80–7.

    PubMed  Google Scholar 

  14. 14.

    Kreth J, Merritt J, Qi F. Bacterial and host interactions of oral streptococci. DNA Cell Biol. 2009;28:397–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kreth J, Giacaman RA, Raghavan R, Merritt J. The road less traveled – defining molecular commensalism with Streptococcus sanguinis. Mol Oral Microbiol. 2017;32:181–96.

    CAS  PubMed  Google Scholar 

  16. 16.

    Kreth J, Vu H, Zhang Y-M, Herzberg MC. Characterization of hydrogen peroxide-induced DNA release by Streptococcus sanguinis and Streptococcus gordonii. J Bacteriol. 2009;191:6281–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zheng L, Itzek A, Chen Z, Kreth J. Environmental influences on competitive hydrogen peroxide production in Streptococcus gordonii. Appl Environ Microbiol. 2011;77:4318–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Slavkin HC. Biofilms, microbial ecology and Antonie van Leeuwenhoek. J Am Dent Assoc. 1997;128:492–5.

    CAS  PubMed  Google Scholar 

  19. 19.

    Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev. 2007;71:653–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kreth J, Merritt J, Shi W, Qi F. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol. 2005;187:7193–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ng HM, Kin LX, Dashper SG, Slakeski N, Butler CA, Reynolds EC. Bacterial interactions in pathogenic subgingival plaque. Microb Pathogenesis. 2016;94:60–9.

    Google Scholar 

  22. 22.

    Riegel P, Heller R, Prevost G, Jehl F, Monteil H. Corynebacterium durum sp. nov., from human clinical specimens. Int J Syst Evolut Microbiol. 1997;47:1107–11.

    CAS  Google Scholar 

  23. 23.

    Tsuzukibashi O, Uchibori S, Shinozaki-Kuwahara N, Kobayashi T, Takada K, Hirasawa M. A selective medium for the isolation of Corynebacterium species in oral cavities. J Microbiological Methods. 2014;104:67–71.

    CAS  Google Scholar 

  24. 24.

    Tomoyasu T, Imaki H, Masuda S, Okamoto A, Kim H, Waite RD, et al. LacR mutations are frequently observed in Streptococcus intermedius and are responsible for increased intermedilysin production and virulence. Infect Immun. 2013;81:3276–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    He X, Wu C, Yarbrough D, Sim L, Niu G, Merritt J, et al. The cia operon of Streptococcus mutans encodes a unique component required for calcium-mediated autoregulation. Mol Microbiol. 2008;70:112–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Taciak B, Białasek M, Braniewska A, Sas Z, Sawicka P, Kiraga Ł, et al. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. Plos ONE. 2018;13:e0198943.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989. p. 1546.

    Google Scholar 

  28. 28.

    Cullin N, Redanz S, Lampi KJ, Merritt J, Kreth J. Murein hydrolase LytF of Streptococcus sanguinis and the ecological consequences of competence development. Appl Environ Microbiol. 2017;83:e01709–17.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Zheng L, Chen Z, Itzek A, Ashby M, Kreth J. Catabolite control protein A controls hydrogen peroxide production and cell death in Streptococcus sanguinis. J Bacteriol. 2011;193:516–26.

    CAS  PubMed  Google Scholar 

  30. 30.

    Chen Z, Itzek A, Malke H, Ferretti JJ, Kreth J. Dynamics of speB mRNA transcripts in Streptococcus pyogenes. J Bacteriol. 2012;194:1417–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Chen Z, Itzek A, Malke H, Ferretti JJ, Kreth J. Multiple roles of RNase Y in Streptococcus pyogenes mRNA processing and degradation. J Bacteriol. 2013;195:2585–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lepage G, Roy CC. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res. 1984;25:1391–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Jensen SK. Improved Bligh and Dyer extraction procedure. Lipid Technol. 2008;20:280–1.

    CAS  Google Scholar 

  34. 34.

    Bauman SJ, Kuehn MJ. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 2006;8:2400–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan U, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Investig. 2011;121:1471–83.

    PubMed  Google Scholar 

  36. 36.

    Prados-Rosales R, Weinrick BC, Piqué DG, Jacobs WR, Casadevall A, Rodriguez GM. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. J Bacteriol. 2014;196:1250–6.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lasica AM, Ksiazek M, Madej M, Potempa J. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front Cell Infect Microbiol. 2017;7:215.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    English BK, Patrick CC, Orlicek SL, McCordic R, Shenep JL. Lipoteichoic acid from viridans streptococci induces the production of tumor necrosis factor and nitric oxide by murine macrophages. J Infect Dis. 1996;174:1348–51.

    CAS  PubMed  Google Scholar 

  39. 39.

    Kim HY, Baik JE, Ahn KB, Seo HS, Yun C-H, Han SH. Streptococcus gordonii induces nitric oxide production through its lipoproteins stimulating Toll-like receptor 2 in murine macrophages. Mol Immunol. 2017;82:75–83.

    CAS  PubMed  Google Scholar 

  40. 40.

    Kim JS, Kim KD, Na HS, Jeong SY, Park HR, Kim S, et al. Tumor necrosis factor-α and interleukin-1β expression pathway induced by Streptococcus mutans in macrophage cell line RAW 264.7. Mol Oral Microbiol. 2012;27:149–59.

    CAS  PubMed  Google Scholar 

  41. 41.

    Kurosawa M, Oda M, Domon H, Isono T, Nakamura Y, Saitoh I, et al. Streptococcus pyogenes CAMP factor promotes calcium ion uptake in RAW264.7 cells. Microbiol Immunol. 2018;62:617–23.

    CAS  PubMed  Google Scholar 

  42. 42.

    van den Bogaart E, Mens PF, Adams ER, Grobusch MP, Schallig HDFH. Phagocytosis of hemozoin by RAW 264.7 cells, but not THP-1 cells, promotes infection by Leishmania donovani with a nitric oxide-independent mechanism. Parasitol Int. 2017;66:196–206.

    PubMed  Google Scholar 

  43. 43.

    Cullinane M, Gong L, Li X, Lazar-Adler N, Tra T, Wolvetang E, et al. Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy. 2008;4:744–53.

    CAS  PubMed  Google Scholar 

  44. 44.

    Evans K, Stone V, Chen L, Ge X, Xu P. Systematic study of genes influencing cellular chain length in Streptococcus sanguinis. Microbiology. 2014;160:307–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lu Y-J, Rock CO. Transcriptional regulation of fatty acid biosynthesis in Streptococcus pneumoniae. Mol Microbiol. 2006;59:551–66.

    CAS  PubMed  Google Scholar 

  46. 46.

    Jerga A, Rock CO. Acyl-acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae. J Biol Chem. 2009;284:15364–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Faustoferri RC, Hubbard CJ, Santiago B, Buckley AA, Seifert TB, Quivey RG. Regulation of fatty acid biosynthesis by the global regulator CcpA and the local regulator FabT in Streptococcus mutans. Mol Oral Microbiol. 2015;30:128–46.

    CAS  PubMed  Google Scholar 

  48. 48.

    Fozo EM, Quivey RG. The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol. 2004;186:4152–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Brinster S, Lamberet G, Staels B, Trieu-Cuot P, Gruss A, Poyart C. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature. 2009;458:83.

    CAS  PubMed  Google Scholar 

  50. 50.

    Yao J, Rock CO. How bacterial pathogens eat host lipids: Implications for the development of fatty acid synthesis therapeutics. J Biol Chem. 2015;290:5940–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Noirclerc-Savoye M, Le Gouëllec A, Morlot C, Dideberg O, Vernet T, Zapun A. In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae. Mol Microbiol. 2005;55:413–24.

    CAS  PubMed  Google Scholar 

  52. 52.

    Le Gouëllec A, Roux L, Fadda D, Massidda O, Vernet T, Zapun A. Roles of pneumococcal DivIB in cell division. J Bacteriol. 2008;190:4501–11.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ruch FE, Lin EC, Kowit JD, Tang CT, Goldberg AL. In vivo inactivation of glycerol dehydrogenase in Klebsiella aerogenes: properties of active and inactivated proteins. J Bacteriol. 1980;141:1077–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Ruzheinikov SN, Burke J, Sedelnikova S, Baker PJ, Taylor R, Bullough PA, et al. Glycerol dehydrogenase: structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure. 2001;9:789–802.

    CAS  PubMed  Google Scholar 

  55. 55.

    Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, et al. RegPrecise 3.0 – a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genom. 2013;14:745.

    CAS  Google Scholar 

  56. 56.

    Takeno S, Takasaki M, Urabayashi A, Mimura A, Muramatsu T, Mitsuhashi S, et al. Development of fatty acid-producing Corynebacterium glutamicum Strains. Appl Environ Microbiol. 2013;79:6776–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Pancholi V, Caparon MG. Streptococcus pyogenes metabolism. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: basic biology to clinical manifestations. Oklahoma City, OK: University of Oklahoma Health Sciences Center; 2016. p. 1–62.

  58. 58.

    Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010;64:163–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Nakano K, Fujita K, Nishimura K, Nomura R, Ooshima T. Contribution of biofilm regulatory protein A of Streptococcus mutans, to systemic virulence. Microbes Infect. 2005;7:1246–55.

    CAS  PubMed  Google Scholar 

  60. 60.

    Dalia AB, Weiser JN. Minimization of bacterial size allows for complement evasion and is overcome by the agglutinating effect of antibody. Cell Host Microbe. 2011;10:486–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Merritt J, Niu G, Okinaga T, Qi F. Autoaggregation response of Fusobacterium nucleatum. Appl Environ Microbiol. 2009;75:7725–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    van Leeuwen PT, van der Peet JM, Bikker FJ, Hoogenkamp MA, Oliveira Paiva AM, Kostidis S, et al. Interspecies interactions between Clostridium difficile and Candida albicans. mSphere. 2016;1:e00187–16.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13:620.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 2018;26:229–42.

    CAS  PubMed  Google Scholar 

  65. 65.

    Croft AJ, Metcalfe S, Honma K, Kay JG. Macrophage polarization alters postphagocytosis survivability of the commensal Streptococcus gordonii. Infect Immun. 2018;86:e00858–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Szpaderska AM, Zuckerman JD, DiPietro LA. Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res. 2003;82:621–6.

    CAS  PubMed  Google Scholar 

  67. 67.

    Wong JW, Gallant-Behm C, Wiebe C, Mak K, Hart DA, Larjava H, et al. Wound healing in oral mucosa results in reduced scar formation as compared with skin: Evidence from the red Duroc pig model and humans. Wound Repair Regeneration. 2009;17:717–29.

    PubMed  Google Scholar 

  68. 68.

    Iglesias-Bartolome R, Uchiyama A, Molinolo AA, Abusleme L, Brooks SR, Callejas-Valera JL, et al. Transcriptional signature primes human oral mucosa for rapid wound healing. Sci Transl Med. 2018;10:eaap8798.

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003;3:791–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Alves LA, de Carli TR, Harth-Chu EN, Mariano FS, Höfling JF, Stipp RN, et al. Oral streptococci show diversity in resistance to complement immunity. J Med Microbiol. 2019;68:600–8.

    CAS  PubMed  Google Scholar 

  71. 71.

    Fujita K, Matsumoto-Nakano M, Inagaki S, Ooshima T. Biological functions of glucan-binding protein B of Streptococcus mutans. Oral Microbiol Immunol. 2007;22:289–92.

    CAS  PubMed  Google Scholar 

  72. 72.

    Laufer AS, Metlay JP, Gent JF, Fennie KP, Kong Y, Pettigrew MM. Microbial communities of the upper respiratory tract and otitis media in children. mBio. 2011;2:e00245–10.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Bomar L, Brugger SD, Yost BH, Davies SS, Lemon KP. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. mBio. 2016;7:e01725–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Ramsey MM, Freire MO, Gabrilska RA, Rumbaugh KP, Lemon KP. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front Microbiol. 2016;7:1230.

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by an NIH-NIDCR grant DE021726 to JK and NIH-NIDCR grants DE018893 and DE022083 to JM. We thank Prof. Todd Kitten for kindly providing S. sanguinis SK strains, Dr Stefanie K. Petrie (Advanced Light Microscopy Core, OHSU) for expert assistance with LSM 780 confocal microscope, Prof. Dennis Koop (Bioanalytical Shared Resource/Pharmacokinetics Core, OHSU) for fatty acid identification, Dr Claudia S. López (Multiscale Microscopy Core, OHSU) for expert assistance in performing TEM with technical support from Center for Spatial Systems Biomedicine (OCSSB). We also thank Dr Nyssa Cullin for constructing SK36 ldh-gfp.

Author information



Corresponding author

Correspondence to Jens Kreth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Treerat, P., Redanz, U., Redanz, S. et al. Synergism between Corynebacterium and Streptococcus sanguinis reveals new interactions between oral commensals. ISME J 14, 1154–1169 (2020).

Download citation

Further reading


Quick links