Abstract
Deep-sea hydrothermal vents resemble the early Earth, and thus the dominant Thermococcaceae inhabitants, which occupy an evolutionarily basal position of the archaeal tree and take an obligate anaerobic hyperthermophilic free-living lifestyle, are likely excellent models to study the evolution of early life. Here, we determined that unbiased mutation rate of a representative species, Thermococcus eurythermalis, exceeded that of all known free-living prokaryotes by 1-2 orders of magnitude, and thus rejected the long-standing hypothesis that low mutation rates were selectively favored in hyperthermophiles. We further sequenced multiple and diverse isolates of this species and calculated that T. eurythermalis has a lower effective population size than other free-living prokaryotes by 1-2 orders of magnitude. These data collectively indicate that the high mutation rate of this species is not selectively favored but instead driven by random genetic drift. The availability of these unusual data also helps explore mechanisms underlying microbial genome size evolution. We showed that genome size is negatively correlated with mutation rate and positively correlated with effective population size across 30 bacterial and archaeal lineages, suggesting that increased mutation rate and random genetic drift are likely two important mechanisms driving microbial genome reduction. Future determinations of the unbiased mutation rate of more representative lineages with highly reduced genomes such as Prochlorococcus and Pelagibacterales that dominate marine microbial communities are essential to test these hypotheses.
Access options
Subscribe to Journal
Get full journal access for 1 year
$499.00
only $41.58 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.


Data availability
All the datasets generated, analyzed, and presented in the current study are available in the Supplementary Information. Genomic sequences of the eight Thermococcus eurythermalis strains are available at the JGI IMG under the GOLD study id Gs0142375. Raw reads of the eight strains are available at the NCBI SRA under the accession number PRJNA679699.
Code availability
The custom scripts used in this study have been deposited in the online repository (https://github.com/luolab-cuhk/Thermococcus-mut-genome-size).
References
- 1.
Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life. Nat Rev Microbiol. 2008;6:805–14.
- 2.
Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol. 2019;17:271–83.
- 3.
Zierenberg RA, Adams MWW, Arp AJ. Life in extreme environments: hydrothermal vents. Proc Natl Acad Sci USA. 2000;97:12961–2.
- 4.
Friedman R, Drake JW, Hughes AL. Genome-wide patterns of nucleotide substitution reveal stringent functional constraints on the protein sequences of thermophiles. Genetics. 2004;167:1507–12.
- 5.
Drake JW. Avoiding dangerous missense: thermophiles display especially low mutation rates. PLoS Genet. 2009;5:e1000520.
- 6.
Grogan DW, Carver GT, Drake JW. Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA. 2001;98:7928–33.
- 7.
Mackwan RR, Carver GT, Kissling GE, Drake JW, Grogan DW. The rate and character of spontaneous mutation in Thermus thermophilus. Genetics. 2008;180:17–25.
- 8.
Long H, Miller SF, Strauss C, Zhao C, Cheng L, Ye Z, et al. Antibiotic treatment enhances the genome-wide mutation rate of target cells. Proc Natl Acad Sci USA. 2016;113:E2498–505.
- 9.
Williams AB. Spontaneous mutation rates come into focus in Escherichia coli. DNA Repair. 2014;24:73–79.
- 10.
Lee H, Popodi E, Tang H, Foster PL. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci USA. 2012;109:E2774–E2783.
- 11.
Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, Thomas WK, et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet. 2016;17:704–14.
- 12.
He Y, Xiao X, Wang F. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin. Front Microbiol. 2013;4:148.
- 13.
Roussel EG, Bonavita M-AC, Querellou J, Cragg BA, Webster G, Prieur D, et al. Extending the sub-sea-floor biosphere. Science. 2008;320:1046.
- 14.
Takai K, Nakamura K. Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol. 2011;14:282–91.
- 15.
Zhao W, Zeng X, Xiao X. Thermococcus eurythermalis sp. nov., a conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin. Int J Syst Evol Microbiol. 2015;65:30–35.
- 16.
Zhao W, Ma X, Liu X, Jian H, Zhang Y, Xiao X. Cross-stress adaptation in a piezophilic and hyperthermophilic archaeon from deep sea hydrothermal vent. Front Microbiol. 2020;11:2081.
- 17.
Frenoy A, Bonhoeffer S. Death and population dynamics affect mutation rate estimates and evolvability under stress in bacteria. PLoS Biol. 2018;16:e2005056.
- 18.
Farlow A, Long H, Arnoux S, Sung W, Doak TG, Nordborg M, et al. The spontaneous mutation rate in the fission yeast Schizosaccharomyces pombe. Genetics. 2015;201:737–44.
- 19.
Buckel W. Sodium ion-translocating decarboxylases. Biochim Biophys Acta Bioenerg. 2001;1505:15–27.
- 20.
Long H, Sung W, Kucukyildirim S, Williams E, Miller SF, Guo W, et al. Evolutionary determinants of genome-wide nucleotide composition. Nat Ecol Evol. 2018;2:237–40.
- 21.
Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. Drift-barrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci USA. 2012;109:18488–92.
- 22.
Tenaillon O, Toupance B, Nagard HL, Taddei F. Godelle B. Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics. 1999;152:485–93.
- 23.
Giraud A, Radman M, Matic I, Taddei F. The rise and fall of mutator bacteria. Curr Opin Microbiol. 2001;4:582–5.
- 24.
Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH, Godelle B. Role of mutator alleles in adaptive evolution. Nature. 1997;387:700–2.
- 25.
Rocha EPC. Neutral theory, microbial practice: challenges in bacterial population genetics. Mol Biol Evol. 2018;35:1338–47.
- 26.
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S, High-throughput ANI. analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.
- 27.
Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. A reverse ecology approach based on a biological definition of microbial populations. Cell. 2019;178:820–34.
- 28.
Sun Y, Powell KE, Sung W, Lynch M, Moran MA, Luo H. Spontaneous mutations of a model heterotrophic marine bacterium. ISME J. 2017;11:1713–8.
- 29.
Senra MVX, Sung W, Ackerman M, Miller SF, Lynch M, Soares CAG. An unbiased genome-wide view of the mutation rate and spectrum of the endosymbiotic bacterium Teredinibacter turnerae. Genome Biol Evol. 2018;10:723–30.
- 30.
Dillon MM, Sung W, Sebra R, Lynch M, Cooper VS. Genome-wide biases in the rate and molecular spectrum of spontaneous mutations in Vibrio cholerae and Vibrio fischeri. Mol Biol Evol. 2017;34:93–109.
- 31.
Hughes AL. Near neutrality: leading edge of the neutral theory of molecular evolution. Ann N. Y Acad Sci. 2008;1133:162–79.
- 32.
Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol. 2015;11:e1004041.
- 33.
Song Q, Li Z, Chen R, Ma X, Xiao X, Xu J. Induction of a toxin-antitoxin gene cassette under high hydrostatic pressure enables markerless gene disruption in the hyperthermophilic archaeon Pyrococcus yayanosii. Appl Environ Microbiol. 2019;85:e02662–18.
- 34.
Sato T, Fukui T, Atomi H, Imanaka T. Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol. 2005;71:3889–99.
- 35.
Sabath N, Ferrada E, Barve A, Wagner A. Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biol Evol. 2013;5:966–77.
- 36.
Sela I, Wolf YI, Koonin EV. Theory of prokaryotic genome evolution. Proc Natl Acad Sci USA. 2016;113:11399–407.
- 37.
Bourguignon T, Kinjo Y, Villa-Martín P, Coleman NV, Tang Q, Arab DA, et al. Increased mutation rate is linked to genome reduction in prokaryotes. Curr Biol. 2020;30:3848–.e4.
- 38.
Lynch M. Evolution of the mutation rate. Trends Genet. 2010;26:345–52.
- 39.
Marais GAB, Batut B, Daubin V. Genome evolution: mutation is the main driver of genome size in prokaryotes. Curr Biol. 2020;30:R1083–5.
- 40.
Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.
- 41.
Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild. Prochlorococcus Sci. 2014;344:416–20.
- 42.
Luo H, Huang Y, Stepanauskas R, Tang J. Excess of non-conservative amino acid changes in marine bacterioplankton lineages with reduced genomes. Nat Microbiol. 2017;2:1–9.
- 43.
Luo H, Friedman R, Tang J, Hughes AL. Genome reduction by deletion of paralogs in the marine cyanobacterium Prochlorococcus. Mol Biol Evol. 2011;28:2751–60.
- 44.
Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterial genomes. Trends Genet. 2001;17:589–96.
- 45.
Kuo C-H, Ochman H. Deletional bias across the three domains of life. Genome Biol Evol. 2009;1:145–52.
Acknowledgements
This research is supported by the National Key R&D Program of China (2018YFC0309800), National Nature of Science China (NSFC 41530967), China Ocean Mineral Resources R & D Association DY125-22-04, the Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (SMSEGL20SC02), and the Hong Kong Research Grants Council Area of Excellence Scheme (AoE/M-403/16).
Author information
Affiliations
Contributions
HL conceptualized the work and strategy, directed the bioinformatics analyses, interpreted the data, and wrote the main manuscript. XX set up the experimental platform for deep-sea hyperthermophile studies, directed the experimental analyses and related writing, co-interpreted the data, provided comments to the main manuscript, and acquired the strains. JG performed all the experiments with contributions from XM, drafted the related methods in supplementary information and Fig. 1. XW performed all the bioinformatics analyses, co-interpreted the related results, drafted the related methods in supplementary information, Fig. 2 and all supplemental tables. YS contributed the bioinformatics tools for mutation detection and mutation rate calculation.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Gu, J., Wang, X., Ma, X. et al. Unexpectedly high mutation rate of a deep-sea hyperthermophilic anaerobic archaeon. ISME J (2021). https://doi.org/10.1038/s41396-020-00888-5
Received:
Revised:
Accepted:
Published: