Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Symbiotic associations of the deepest recorded photosynthetic scleractinian coral (172 m depth)

Abstract

The symbiosis between scleractinian corals and photosynthetic algae from the family Symbiodiniaceae underpins the health and productivity of tropical coral reef ecosystems. While this photosymbiotic association has been extensively studied in shallow waters (<30 m depth), we do not know how deeper corals, inhabiting large and vastly underexplored mesophotic coral ecosystems, modulate their symbiotic associations to grow in environments that receive less than 1% of surface irradiance. Here we report on the deepest photosymbiotic scleractinian corals collected to date (172 m depth), and use amplicon sequencing to identify the associated symbiotic communities. The corals, identified as Leptoseris hawaiiensis, were confirmed to host Symbiodiniaceae, predominantly of the genus Cladocopium, a single species of endolithic algae from the genus Ostreobium, and diverse communities of prokaryotes. Our results expand the reported depth range of photosynthetic scleractinian corals (0–172 m depth), and provide new insights on their symbiotic associations at the lower depth extremes of tropical coral reefs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sampling location of the deepest photosymbiotic scleractinian coral recorded to date.
Fig. 2: Microbial communities harbored by the three deep colonies.

References

  1. 1.

    Blackall LL, Wilson B, Van Oppen MJH. Coral—the world’s most diverse symbiotic ecosystem. Mol Ecol. 2015;24:5330–5347.

    Article  Google Scholar 

  2. 2.

    Pearse V, Muscatine L. Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull. 1971;141:350–363.

    CAS  Article  Google Scholar 

  3. 3.

    Muscatine L, Porter JW. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience. 1977;27:454–460.

    Article  Google Scholar 

  4. 4.

    Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs. 2010;29:255–275.

    Article  Google Scholar 

  5. 5.

    Maragos JE, Jokiel PL. Reef corals of Johnston Atoll: one of the world’s most isolated reefs. Coral Reefs. 1986;4:141–150.

    Article  Google Scholar 

  6. 6.

    Gattuso JP, Gentili B, Duarte CM, Kleypas JA, Middelburg JJ, Antoine D. Light availability in the coastal ocean: Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences. 2006;3:489–513.

    Article  Google Scholar 

  7. 7.

    Wagner D, Pochon X, Irwin L, Toonen RJ, Gates RD. Azooxanthellate? Most Hawaiian black corals contain Symbiodinium. Proc R Soc B Biol Sci. 2011;278:1323–1328.

    CAS  Article  Google Scholar 

  8. 8.

    Bongaerts P, Sampayo EM, Bridge TCL, Ridgway T, Vermeulen F, Englebert N, et al. Symbiodinium diversity in mesophotic coral communities on the Great Barrier Reef: a first assessment. Mar Ecol Prog Ser. 2011;439:117–126.

    Article  Google Scholar 

  9. 9.

    Padilla-Gamiño JL, Roth MS, Rodrigues LJ, Bradley CJ, Bidigare RR, Gates RD, et al. Ecophysiology of mesophotic reef-building corals in Hawai’i is influenced by symbiont–host associations, photoacclimatization, trophic plasticity, and adaptation. Limnol Oceanogr. 2019;64:1980–1995.

    Article  Google Scholar 

  10. 10.

    Pochon X, Forsman Z, Spalding H, Padilla-Gamiño J, Smith C, Gates R. Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawaii. R Soc Open Sci. 2015;2:140351.

    CAS  Article  Google Scholar 

  11. 11.

    Chan YL, Pochon X, Fisher MA, Wagner D, Concepcion GT, Kahng SE, et al. Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67–100 m depths) coral Leptoseris. BMC Ecol. 2009;9:21.

    Article  Google Scholar 

  12. 12.

    Thornhill DJ, Lewis AM, Wham DC, Lajeunesse TC. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. 2014;68:352–367.

    CAS  Article  Google Scholar 

  13. 13.

    Franklin EC, Stat M, Pochon X, Putnam HM, Gates RD. GeoSymbio: a hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium-host symbioses. Mol Ecol Resour. 2012;12:369–373.

    Article  Google Scholar 

  14. 14.

    Ziegler M, Roder CM, Büchel C, Voolstra CR. Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology. Front Mar Sci. 2015;2:4.

    Article  Google Scholar 

  15. 15.

    Polinski JM, Voss JD. Evidence of photoacclimatization at mesophotic depths in the coral-Symbiodinium symbiosis at Flower Garden Banks National Marine Sanctuary and McGrail Bank. Coral Reefs. 2018;37:779–789.

    Article  Google Scholar 

  16. 16.

    Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour. 2019;19:1063–1080.

    CAS  Article  Google Scholar 

  17. 17.

    Pettay D, Wham D, Smith R, Iglesias-Prieto R, LaJeunesse T. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc Natl Acad Sci USA. 2015;112:1–8.

    Article  Google Scholar 

  18. 18.

    LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA. Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) clade D are different species. Phycologia. 2014;53:305–319.

    Article  Google Scholar 

  19. 19.

    Fricke H, Vareschi E, Schlichter D. Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia. 1987;73:371–381.

    CAS  Article  Google Scholar 

  20. 20.

    Gonzalez-Zapata FL, Gómez-Osorio S, Sánchez JA. Conspicuous endolithic algal associations in a mesophotic reef-building coral. Coral Reefs. 2018;37:705–709.

    Article  Google Scholar 

  21. 21.

    Del Campo J, Pombert JF, Šlapeta J, Larkum A, Keeling PJ. The ‘other’ coral symbiont: Ostreobium diversity and distribution. ISME J. 2017;11:296–299.

    Article  Google Scholar 

  22. 22.

    Fine M, Loya Y. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc B. 2002;269:1205–1210.

    Article  Google Scholar 

  23. 23.

    Halldal P. Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol Bull. 1968;134:411–424.

    CAS  Article  Google Scholar 

  24. 24.

    Fork D, Larkum A. Light harvesting in the green alga Ostreobium sp., a coral symbiont adapted to extreme shade. Mar Biol. 1989;103:381–385.

    Article  Google Scholar 

  25. 25.

    Hernandez-Agreda A, Gates RD, Ainsworth TD. Defining the core microbiome in corals’ microbial soup. Trends Microbiol. 2017;25:125–140.

    CAS  Article  Google Scholar 

  26. 26.

    Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10.

    Article  Google Scholar 

  27. 27.

    Williams AD, Brown BE, Putchim L, Sweet MJ. Age-related shifts in bacterial diversity in a reef coral. PLoS ONE. 2015;10:1–16.

    CAS  Google Scholar 

  28. 28.

    Galand PE, Remize M, Meistertzheim AL, Pruski AM, Peru E, Suhrhoff TJ, et al. Diet shapes cold-water corals bacterial communities. Environ Microbiol. 2020;22:354–368.

    CAS  Article  Google Scholar 

  29. 29.

    Schlichter D, Zscharnack B, Krisch H. Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften. 1995;82:561–564.

    CAS  Article  Google Scholar 

  30. 30.

    Lesser MP, Stat M, Gates RD. The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs. 2013;32:603–611.

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank the divers of the Under The Pole (UTP) Team: GB, JL, GL who performed the extreme CCR deep dive to 172 m depth to collect the specimens for this study. In addition, we are grateful to all UTP III Expedition crew who greatly contributed to the success of the one-year-long mesophotic expedition. We also thank West N for assistance with the BIO2MAR platform. We acknowledge del Campo J for constructive discussions on Ostreobium phylogeny and sharing his updated 16S-sequences database. We are also grateful for constructive reviews from Hume B and one anonymous referee. This research was funded by the ANR DEEPHOPE (ANRAAPG 2017 #168722), the Délégation à la Recherche DEEPCORAL, the CNRS DEEPREEF and the IFRECOR. MM was supported by NSF OCE 1442206. The technical dives for coral sampling were funded through the Under The Pole Expedition III.

Under The Pole Consortium

G. Bardout9, E. Périé-Bardout9, E. Marivint9, G. Lagarrigue9, J. Leblond9, F. Gazzola9, S. Pujolle9, N. Mollon9, A. Mittau9, J. Fauchet9, N. Paulme9, R. Pete9, K. Peyrusse9, A. Ferucci9, A. Magnan9, M. Horlaville9, C. Breton9, M. Gouin9, T. Markocic9, I. Jubert9, P. Herrmann9.

Author information

Affiliations

Authors

Consortia

Contributions

All authors conceived and designed this study; LH and HR coordinated the study; HR, GP-R, MP, UTP III consortium and LH collected field data; MP identified coral species; HR carried out analysis and graphics and drafted the manuscript; HR, PG, MM, JBR, PB, and LH wrote the manuscript. All authors commented on the manuscript and gave their approval to submit.

Corresponding author

Correspondence to Héloïse Rouzé.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the Under The Pole Consortium are listed below Acknowledgements.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rouzé, H., Galand, P.E., Medina, M. et al. Symbiotic associations of the deepest recorded photosynthetic scleractinian coral (172 m depth). ISME J (2021). https://doi.org/10.1038/s41396-020-00857-y

Download citation

Search

Quick links