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Abstract
In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the
deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the
linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from
hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to
reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are
the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat,
notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized
DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with
similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in
response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus
Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus,
at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how
key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the
biogeochemistry of exported fluids.

Introduction

Chemolithotrophy fuels primary production and nutrient
cycling in dark environments (e.g., [1–3]). This has been
well demonstrated for deep sea sulfur-oxidizing ecosystems
(e.g., [4, 5]), yet at the bottom of the ocean, the most
abundant source of energy for chemolithotrophy is iron that
originates from basaltic ocean crust [6]. Iron-oxidizing
microbial communities can be found associated with
widespread hydrothermal vents at the ocean floor (i.e.,
[7–17]). The best-studied example is Lōʻihi Seamount (also
in publication as Loihi Seamount), a submarine volcano
near Hawaiʻi with extensive iron microbial mats associated
with low- to mid-temperature vents [11, 14, 18–20]. These
distinctive biomineral mats at Lōʻihi are produced by the
Zetaproteobacteria [21, 22], a class of aerobic autotrophic
iron oxidizers that are the only known iron oxidizers in the
mat. While the Zetaproteobacteria are relatively well-
studied [7, 23, 24], the ecology of their microbial mats is
poorly explored. Metabolic predictions are largely based on
isolate physiology studies [25, 26] and genomic potential
[19, 20, 24] of the Zetaproteobacteria, while the functions of
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other, flanking members of the microbial community have
largely been inferred from 16S rRNA gene taxonomy,
which assumes metabolism is tied with taxonomic affilia-
tion [8, 11, 18]. However, this approach overlooks the roles
of uncharacterized taxa such as the DTB120 phylum, found
at Lōʻihi [11, 20], as well as viral communities that may
moderate mat ecology and mediate nutrient fluxes [27].
Thus, major questions remain about the metabolisms and
biogeochemical roles of these iron oxidation-driven
ecosystems.

One key question is how iron oxidation drives carbon
cycling throughout the iron mat. Lōʻihi mats are somewhat
enriched in 13C [28], consistent with primary productivity.
A study using quantitative PCR showed that the Calvin-
Benson-Bassham (CBB) pathway gene cbbM/rbcL is much
more abundant than aclB (reductive tricarboxylic acid
pathway), suggesting that the CBB pathway is the dominant
carbon fixation pathway in the mats [29]. However, not all
carbon fixation pathways were investigated and the
responsible organisms were not identified. Zetaproteo-
bacteria are often abundant in the mats (ranging from 1 to
96%) [19, 24], and all have CBB pathway genes, based on
isolate and environmental genomes [19, 20, 24–26, 30–33].
Thus, due to abundance and genetic potential, Zetaproteo-
bacteria are the presumed primary producers in the Lōʻihi
iron mats, yet this has not been definitively shown. Parti-
cularly since Zetaproteobacteria are aerobic and oxygen is
typically depleted within the first few mm’s to cm’s of the
mat surface [21, 34], there are large anoxic portions of the
iron mat where we do not know the source of fixed carbon
or the trophic structure of the community. To understand
how carbon flow structures the ecosystem, we need to
determine how both aerobic and anaerobic organisms con-
tribute to carbon cycling.

Compared to carbon, we know even less about nitrogen
cycling in iron-rich mats and vents. The main nitrogen
sources at Lōʻihi are vent fluids containing ammonia
(0.28–7.5 µM) and the surrounding ocean water containing
nitrate (36–43 µM) [35–37]. Sylvan et al. [35] showed that
Lōʻihi vent fluids have elevated nitrate N and O isotope
ratios, with patterns that suggest denitrification combined
with nitrification and/or ammonia oxidation. Some Zeta-
proteobacteria have genes for nitrate assimilation (nasA)
and denitrification (napA/nirK/nirS) [7, 19, 29], but it is
unclear if Zetaproteobacteria are the primary drivers of
denitrification in the mats. Denitrification within the anae-
robic portions of the mat is expected, though it is unknown
whether this denitrification is coupled to the oxidation of
organic carbon, Fe(II), or both. The presence of both nitrate
and Fe(II) at Lōʻihi suggests there is a niche for nitrate-
reducing iron oxidizers. However, there has been much
debate about whether denitrifying organisms can enzyma-
tically conserve energy from iron oxidation as opposed to

chemodenitrification, in which organotrophic denitrification
produces nitrite that oxidizes Fe(II) (see review by Bryce
et al. [38]). While nitrate reducers that clearly enzymatically
oxidize iron largely elude isolation, a number of studies
have demonstrated the relevance of coupled iron oxidation
and denitrification in coastal marine environments [39, 40],
suggesting that it may also be important in other marine
environments. These issues are important to resolve if we
are to understand how iron, carbon, and nitrogen cycling are
linked in deep sea iron systems.

To reconstruct microbial interactions that connect iron
oxidation with nutrient cycling, we conducted a genome-
resolved metagenomics and metatranscriptomics study at
Lōʻihi Seamount. We aimed to better understand the
balance of metabolic processes and contributions of spe-
cific organisms throughout the mat, including organisms
like viruses that have not otherwise been surveyed in iron
mats. We collected a surficial mat sample to represent
aerobic processes, as well as two bulk samples, which
include deeper, anaerobic portions of the mats. The sur-
face sample and one bulk sample were preserved in situ
for metatranscriptome studies. We used the other bulk
sample in a shipboard incubation experiment in which we
added Fe(II) and oxygen to stimulate aerobic iron oxida-
tion and monitored the transcriptomic response of the
community. Our results reveal a fuller picture of the
microbial ecology and geochemical cycling in iron
microbial mats, including viral influences on dominant
community members, nitrogen cycling by Zetaproteo-
bacteria, and a role for a potential nitrate-reducing iron-
oxidizing Candidatus Ferristratum sp., from the unchar-
acterized DTB120 phylum.

Methods

A complete description of sample collection, the Fe(II)
amendment experiment, DNA and RNA extraction and
sequencing, metagenomic analysis, and RNA read recruit-
ment are provided in McAllister et al. [24], including
detailed supplemental information with sample metadata.
Here we briefly summarize these methods for Lōʻihi Sea-
mount and describe additional data analysis for this
manuscript.

Sample collection

Three samples were collected at Lōʻihi Seamount,
Hawaiʻi, in March 2013, using the remotely-operated
vehicle (ROV) Jason II on the research vessel Thomas G.
Thompson. One sample was collected via syringe sampler
(~10 mL), collecting only the top cm of iron mat (S1). The
other two samples were collected in bulk, with S19 by
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scoop sampler (~2 L) and S6 by suction sampler (>5 L).
To preserve in situ RNA expression profiles, S1 was
collected in a syringe half-filled with 2X RNALater
(Invitrogen, Carlsbad, CA, USA) and S19 was collected in
a two-chamber scoop where mat material collected in the
first chamber was mixed with 2X RNALater from the
second chamber immediately after sampling. Samples
were allowed to settle for a few hours at 4 °C to con-
centrate the mat before being frozen at −80 °C.

Fe(II) amendment experiment

A shipboard Fe(II) amendment experiment was performed
on the bulk S6 sample, which included iron mat and
entrained seawater. Briefly, mat material collected and
retrieved after 2 h of ROV operations was allowed to
settle at 4 °C for 1 h. Two serum bottles were filled with
250 mL of iron mat floc, with one bottle treated with 1
mM sodium azide 5 min prior to the start of the experi-
ment, for a killed control. For the duration of the
experiment, both bottles were mixed thoroughly by hand
in a 35 °C water bath. A sample was taken 2 min prior to
Fe(II) amendment (labeled pre-Fe(II) addition). To initiate
the experiment, 100 µM FeCl2 was added to both bottles.
After this addition, at 10 min intervals for 40 min, 30 mL
of sample was removed and mixed 1:1 with 2X RNA-
Later. Samples were stored at 4 °C for a few hours prior to
freezing at −80 °C.

DNA and RNA extraction and sequencing

DNA was extracted from samples using the FastDNA SPIN
kit for soil (MP Biomedicals, Santa Ana, CA, USA). RNA
was extracted using the NucleoSpin RNA kit (Macherey-
Nagel, Bethlehem, PA, USA). Both kit protocols were
followed with modifications (see [24]). Microbial commu-
nity composition was estimated using a 16S rRNA gene
survey using long-read PacBio sequencing, with taxonomy
assigned using SILVAngs [41]. Metagenome (MG) and
metatranscriptome (MT) libraries were sequenced at the
University of Delaware Sequencing and Genotyping Center
on an Illumina HiSeq 2500 [24].

Metagenome and metatranscriptome analysis
methods

Quality-controlled metagenome sequences were assembled
using metaSPAdes v3.10 [42] and binned into metagenome-
assembled genomes (MAGs) using DAS Tool [43] to select
the best non-overlapping bins from MaxBin [44], MetaBAT
[45], CONCOCT [46], and BinSanity [47], followed by
manual curation in ggkbase (https://ggkbase.berkeley.edu/)
and Anvi’o [48]. Of the total 215 MAGs from this study, 49

belonged to the Zetaproteobacteria [24]. Quality-controlled
metatranscriptomic reads were recruited to curated MAGs
and unbinned contigs using BEDTools [49]. RNA expres-
sion estimates were calculated from raw read recruitment
numbers by normalizing these numbers for sequencing
depth and gene and read length using the transcripts per
million (TPM) metric [50]. Sample S6 expression, unless
otherwise noted, is represented as an average of the
expression over the time series. MG and MT relative
abundances were calculated as a percentage of reads map-
ping to binned contigs and contigs that were identified as
viral (see below). Maximum normalized TPM values were
calculated by dividing TPM by the maximum TPM value
across the S6 time series. Testing differential expression in
DESeq [51], based on overall gene expression and the
expression of genes by MAGs, failed to detect any sig-
nificantly differentially expressed genes. This is likely due
to a lack of replication from sampling limitations, resulting
in low statistical power.

Gene identification

Curated MAGs were submitted to RAST to be annotated
by the SEED database [52] and to GhostKoala to be
annotated by the KEGG database [53]. Gene calls from
RAST were used for all analysis. Genes of interest were
identified primarily through HMM searches via the Litho-
Genie program (github.com/Arkadiy-Garber/LithoGenie).
This program uses validated HMMs to identify genes in
the C, Fe, N, S, As, and H cycles (Supplementary Table 1)
(see supplemental data 14 in [54]), including the three
clusters of the putative iron oxidase, cyc2 [55]. The clus-
tering of the cyc2 genes was confirmed by phylogenetic
reconstruction and comparison with a reference database
[24]. A small subset of genes were identified using NCBI
BLASTp [56].

DTB120 Identification

To classify the unknown DTB120 from Lōʻihi, we selected
16S rRNA gene representatives from the Desulfobacterota
(closest relative; previously known as the Deltaproteo-
bacteria [57]), Zetaproteobacteria, Gallionellaceae, Aquifi-
cae, and Chloroflexi within the SILVA database [58]. A 16S
rRNA phylogenetic tree of these reference sequences and
all DTB120 sequences was constructed from a SINA
alignment [59] using RAxML [60] and visualized with
Iroki [61].

To identify DTB120 MAGs, we first identified DTB120
16S rRNA genes within all bins initially classified as
Desulfobacterota (closest relatives in Phylosift classifier
[62]) using the ssu_finder in CheckM [63]. Only four
MAGs possessed partial 16S rRNA genes. From these
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reference genomes, we used average amino acid identity
(AAI; see supplement) and average nucleotide identity
(ANI; data not shown) to identify closely-related MAGs
that also belonged to the DTB120 (github.com/mooreryan/
aai). These MAGs were named Candidatus Ferristratum sp.

Viral identification

Metagenomic contigs representing near-complete phage
genomes or containing prophage regions were identified
using VirSorter 1.0.3. [64] (lower confidence categories 3
and 6 excluded). Viral contigs were annotated using the
VIROME pipeline [65]. Viral taxonomy was determined in
two ways: (1) with vContact2 using BLASTp against the
ProkViralRefSeq94-Merged database [66] by assigning
consensus taxonomy to clusters requiring 100% reference
agreement to assign taxon at a given rank; (2) through
consensus taxonomy of Best BLASTp Hit (BBH; p < 1e−5)
for each ORF, with taxon assignment at a rank requiring ≥2
BBH and >50% of all BBHs in agreement [67]. Host-virus
interactions were determined using CASC [68]. CRISPR
spacers were blasted (BLASTn) against our assembled
metagenomes for matches of >98% similarity.

Data accessibility

Raw 16S rRNA gene, metagenome, and metatranscriptome
reads were deposited in the NCBI SRA under BioProject
accession PRJNA555820. Metagenome assemblies and
high-quality MAGs were submitted to the JGI IMG data-
base under sequence project IDs Gp0295814-Gp0295816.
All MAGs are available for download from doi:10.6084/
m9.figshare.12986078.v1. Additional sample metadata are
available in [24].

Results

Community composition and activity

Three samples from Lōʻihi Seamount iron mats were col-
lected: in situ-preserved surface mat S1, in situ-preserved
bulk mat S19, and shipboard-preserved bulk mat S6. We
evaluated the community structure and activity of the iron
mats at Lōʻihi Seamount (Fig. 1) using bacterial 16S rRNA
amplicon libraries, metagenome (MG) recruitment, and
metatranscriptome (MT) recruitment. We found the abun-
dance estimates provided by all three measurements of
microbial community composition were largely consistent
with each other, suggesting that the active microbial popu-
lations are relatively stable in this iron mat environment.

The most abundant taxonomic group in the Lōʻihi iron
mats was the Zetaproteobacteria, dominating the surface mat
sample S1 at 95%/93% of the community (by MG abun-
dance and MT activity, respectively) (Fig. 1). This high
representation of Zetaproteobacteria at the surface of the
actively growing mat is expected, due to their role in con-
structing the iron oxyhydroxide framework of the mat [21].
We were surprised to find the second most active population
in the surface mat sample were viruses (3.1% by MT abun-
dance). In the bulk mat samples S6 and S19, which include
deeper mat, there was a lower abundance of Zetaproteo-
bacteria, accounting for only 48%/19% of the S6/S19 com-
munity by MG abundance and 78%/18% by MT. Compared
to the surface mat S1, the bulk mat samples were much more
diverse, including (in order of decreasing abundance)
DTB120, Desulfobacterota, Planctomycetes, Gammaproteo-
bacteria, Marinimicrobia, and Chloroflexi. There was a minor
population of Archaea in the bulk mat samples, and viral
activity was detected in both bulk samples as well.
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Fig. 1 Lōʻihi Seamount iron mat microbial community composi-
tion based on 16S rRNA gene, metagenome (MG), and meta-
transcriptome (MT) relative abundance. Zetaproteobacteria and
Candidatus Ferristratum sp. were the most abundant taxa. The 16S

rRNA gene surveyed the bacterial population only. Viral expression
based on viral contigs identified from VirSorter. S6 expression shown
for pre-Fe(II) addition sample only.
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Significant members of the flanking microbial
community

Candidatus Ferristratum

The second most abundant group in the bulk samples was the
DTB120 (0.7% by MG recruitment in the surface sample S1,
16% in S19, and 22% in S6, Fig. 1). DTB120 is an
uncharacterized phylum, named for an uncultured clone from
a hot spring microbial mat [69], with closest relatives in the
Desulfobacterota. Sequences from the DTB120 had a median
16S rRNA sequence identity of 87.6% (minimum 79.0%).
The closest cultured relative to our DTB120 sequences is
Syntrophorhabdus aromaticivorans, a syntrophic, aromatic
compound-degrading microbe isolated from anaerobic
digesters [70, 71]. Based on a 16S rRNA gene phylogeny of
DTB120 (Supplementary Figs. 1 and 2), Syntrophorhabdus
spp. are at the base of the DTB120 phylum. However,
DTB120 from our samples and other iron-rich hydrothermal
vents and seeps (Lōʻihi Seamount, South Tonga Arc, Nile
Deep Sea Fan) [11, 16, 20, 72] form a distant and distinct
cluster within the DTB120 (minimum 90.1% identity, Sup-
plementary Fig. 1), leaving the Lōʻihi DTB120 energy
metabolism an open question.

Nineteen Lōʻihi DTB120 MAGs clustered into a single
genus (62.0–98.6%, 77.0% average amino acid identity
(AAI); above the 65% cutoff proposed in [73]) with four
of those MAGs positively identified as DTB120 based on
partial 16S rRNA genes (Supplementary Fig. 3). Clus-
tering by average nucleotide identity (ANI) yielded an
equivalent result (data not shown). Within this DTB120
genus, which we have named Candidatus Ferristratum
sp., four subclusters of genomes shared a high enough
similarity to form species with more than one genome
representative (>95% AAI; Supplementary Fig. 3B; [73]).
However, these species were only represented by a max-
imum of two MAGs, and were thus not considered to be
sufficiently represented to warrant naming at a species
level. Of the 19 recovered Candidatus Ferristratum sp.
MAGs, 9 are sufficient in quality (<20% redundancy) and
completeness (>70% complete) for analyses to predict the
metabolic capabilities of the genus (see below; genomes
marked with an asterisk in Supplementary Table 2), with
the other 10 used for supporting information (Supple-
mentary Table 2). Due to the similarity in their metabolic
potential, Candidatus Ferristratum sp. MAGs are largely
discussed as a unit.

Viruses

The iron mats all had substantial viral activity, which has
not previously been characterized. To investigate the
types of viruses and their potential hosts, we analyzed

viral contigs and identified CRISPR spacers within MAGs
(Supplementary Table 3). A total of 409 viral contigs
(1–82 kb; median 4.7 kb) were identified. Based on con-
sensus taxonomic placement, 85% of contigs were tax-
onomically associated with the tailed-phage order
Caudovirales (Supplementary Fig. 4), with the family
Siphoviridae the most numerous in all three samples
(Supplementary Table 3). Among other viral groups, three
contigs were placed in the ssDNA virus family Inoviridae
and several contigs showed similarity to unclassified
Halovirus. There were more taxonomically-unassigned
contigs within the bulk samples (S19, S6) than in the
surface (S1), which indicates an increased novelty of
phage in the deeper mat layers.

Aside from several viral contigs that showed consistent
Desulfobacterota and Gammaproteobacteria associations,
most contigs indicated mixed class- or phylum-level hosts.
While not uncommon to see lack of host specificity in a
protein homology analysis, the significant variability here
is likely indicative of under-characterized phage associa-
tions with the dominant microbes, Zetaproteobacteria and
Candidatus Ferristratum sp. Host-association was also
evidenced within MAGs, as many possessed CRISPR
spacer arrays, including the Zetaproteobacteria and Can-
didatus Ferristratum sp. (Supplementary Table 4). We
were able to match two CRISPR spacer sequences from
Zetaproteobacteria MAG S1_Zeta3 with 100% identity to
a 28-kb viral contig from S1 containing the nearly com-
plete genome (43 ORFs) of a lysogenic Mu-like phage
carrying a Zetaproteobacteria sulfate transporter. One of
the spacers was in the first position, indicating the most
recent infection, while the existence of a second spacer
demonstrated repeated contact between the Zetaproteo-
bacteria and the phage. Numerous other likely lysogenic
phage are evident in the libraries including additional Mu-
like phage, filamentous Inoviridae, and several identified
prophage elements within the metagenomes (VirSorter
categories 4 and 5 in Supplementary Table 3) consistent
with past findings of lysogeny in association with micro-
bial mats and effluent associated with geothermal features
and other aquatic environments [74, 75]. Such repetitive
contact and development of lysogeny indicate long term
viral-host interaction, which may have implications for
virally-mediated evolution through selective pressure,
lysogenic conversion (alteration of host phenotype), and
horizontal gene transfer [76].

Lōʻihi mat community metabolisms

Carbon fixation

Zetaproteobacteria are thought to be the primary producers
within iron mats, using the Calvin-Benson-Bassham

Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine. . . 1275



(CBB) cycle [7, 30, 77, 78]. We tested this assumption
using HMM profiles from five major carbon fixation
pathways (Supplementary Table 1). RuBisCO Form II
(catalytic subunit; rbcL) of the CBB pathway was the
highest expressed carbon fixation gene in all three sam-
ples, at 53×, 17×, 5× higher than the next highest
expressed carbon gene for S1, S6, and S19, respectively
(Fig. 2a). Surface sample S1 and Fe(II)-amended bulk
microcosm S6 had the highest expression levels of
RuBisCO Form II, 27–50× higher than in the bulk mat
S19, and the majority of those transcripts mapped to
Zetaproteobacteria MAGs (Fig. 2d).

Heterotrophy

Our datasets provide the opportunity to make specific pre-
dictions about heterotrophic pathways and organisms. Many
MAGs contained genes for degrading polysaccharides such
as cellulose and chitin (Supplementary Table 5) [79]. The
bulk mat sample S19 contained the greatest number of
polysaccharide degradation genes, more than double the
number found in surface mat S1 and microcosm S6. The
Candidatus Ferristratum sp. MAGs all lacked autotrophy
genes, but several possessed and expressed genes used for
polysaccharide degradation. Almost all Candidatus
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Ferristratum sp. MAGs possessed genes for mannose
transport and mannose-6-phosphate isomerase, which
channels mannose into glycolysis (Supplementary Table 6).
Thus, our analyses uncovered specific evidence for het-
erotrophy in Candidatus Ferristratum sp. and other flanking
community organisms from Lōʻihi iron mats.

Electron donors

All three Lōʻihi iron mat samples have high expression of
cyc2, a potential marker gene for Fe(II) oxidation
(Fig. 2b) [24]. This gene is expressed in all three samples,
2.4–5.3× higher than genes for any other energy meta-
bolism (Fig. 2b), making iron oxidation the key metabo-
lism in the iron mats. The cyc2 gene is most highly
expressed in the surface mat S1, which is almost entirely
composed of Zetaproteobacteria, and indeed, Zetaproteo-
bacteria account for nearly all the cyc2 expression in S1
(Fig. 2d). Zetaproteobacteria also dominate cyc2 expres-
sion in the Fe(II)-amended bulk microcosm S6, with a
small proportion of expression from Candidatus Ferris-
tratum sp. In contrast, the high level of cyc2 expression in
the bulk mat S19 can be attributed primarily to Candi-
datus Ferristratum sp. While the high cyc2 expression by
Zetaproteobacteria is consistent with previous work
[23, 24], cyc2 expression by Candidatus Ferristratum sp.
was an unexpected novel finding, as Zetaproteobacteria

were previously the only hydrothermal iron mat organ-
isms known to possess the cyc2 gene. Phylogenetic
reconstruction of Cyc2 sequences from public databases
and our samples show that the Candidatus Ferristratum
sp. Cyc2 sequences form a monophyletic clade within
Cluster 1 (Fig. 3). Their closest neighbors are the Gal-
lionellaceae and Chlorobi, suggesting that the Candidatus
Ferristratum sp. did not acquire cyc2 directly from the
Zetaproteobacteria. Because Cluster 1 is largely com-
prised of Cyc2 from established neutrophilic iron-oxidi-
zers, this presents the possibility that the Candidatus
Ferristratum sp. may also be an iron oxidizer.

While Fe(II) oxidation appears to be the predominant
energy acquisition pathway in all three Lōʻihi mat samples,
genes for utilization of a diversity of electron donors are
expressed by the non-Zetaproteobacteria flanking commu-
nity, with notable differences between the surficial and bulk
mats (Fig. 2b; taxonomic distribution for all genes in Sup-
plementary Table 7). In the surface mat S1, there is high
expression of genes for methane oxidation, consistent with
previous reports of methane-oxidizers and methane oxida-
tion genes within iron mats [72, 80, 81]. In contrast to the
surface mat, bulk mat S19 and bulk microcosm S6 had
higher expression of genes involved in H2 oxidation
(Fig. 2b). Oxidative nitrogen transformations were also
present but relatively rare in the iron mat genomes and
metatranscriptomes (Fig. 2b).
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Electron acceptors

Genes for oxygen and nitrate respiration were expressed in
all Lōʻihi mat samples (Fig. 2c) with differences as expected
due to the fact that S1 sampled the aerobic surface while
S19 includes deeper regions of the mat [21, 34]. In the
surface sample S1, the dominant terminal electron acceptor
genes were the aerobic cbb3-type ccoNO, 11.8× more
highly expressed than genes for the next electron acceptor,
the respiratory nitrate reductase narGH, likely reflecting the
greater availability of oxygen in the surface mat (Fig. 2c).
Bulk mat sample S19 terminal electron acceptor expression
was dominated by Candidatus Ferristratum sp. respiratory
nitrate reductase narGH (Fig. 2d), though aerobic terminal
oxidases were also expressed, primarily by Gammaproteo-
bacteria. In addition, low levels of expression of nitrate
reduction genes napAB and iron reduction genes mtrAB
were detected. The bulk microcosm S6 expressed all
terminal electron acceptors at the same or a higher level
than bulk mat S19.

Nitrogen transformations

Previous work at Lōʻihi suggested that iron mat microbes
actively oxidize and reduce nitrogen species [35]. To better
understand the processes and taxa involved, we examined
genes involved in nitrogen transformations (Fig. 4). Of
these, genes for reductive nitrogen transformations were the
highest expressed in all three samples. Genes for full
denitrification of nitrate to N2 were expressed in all samples
(Fig. 4a), including dissimilatory nitrate reductase (napAB
or narGH), nitrite reductase (nirK or nirS), nitric oxide
reductase (norBC or eNOR [a family of nitric oxide
reductase with a putative proton channel, [82]]), and nitrous
oxide reductase (nosZ)), but not all by the same organism
(Fig. 4b). Instead, different parts of the pathway were
expressed by Candidatus Ferristratum sp., Desulfobacter-
ota, Zetaproteobacteria, Marinimicrobia, Sphingobacter-
iales, and other unclassified Bacteria.

Nitrogen fixation, nitrification, and anaerobic ammonia
oxidation gene expression was detected in the bulk mat S19
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and bulk microcosm S6 at low levels (Fig. 4a). Although
nirBD plays a role in dissimilatory nitrate reduction to
ammonium (DNRA), the majority of Zetaproteobacteria
MAGs possess a gene cluster containing nasA and nirBD
together, signaling these genes are likely used in concert for
nitrate assimilation [7]. The expression of this assimilatory
pathway was highest in S1 and S6, where the Zetaproteo-
bacteria were most abundant. Assimilation of ammonium
from environmental sources is mediated by the ammonium
transporter encoded by amt, which is found in nearly all
Zetaproteobacteria and 75% of the Candidatus Ferristratum
sp. genomes.

Fe(II)-amended bulk microcosm S6 time-series

To understand how iron oxidation affects community
metabolisms, we added Fe(II) to the bulk mat sample S6
under aerobic conditions and then monitored gene expres-
sion every 10 min for 40 min, by which time Fe(II) was
depleted. The S6 microcosm gene expression data showed a
wide array of stimulated metabolisms, including both
aerobic and anaerobic metabolisms and iron oxidation

(Figs. 2b, c and 4a). In particular, Zetaproteobacteria ccoNO
and Candidatus Ferristratum sp. narGH (Fig. 2c, d) were
similarly highly expressed, and both taxa were actively
expressing cyc2 (Fig. 2c, d).

We evaluated how Zetaproteobacteria and Candidatus
Ferristratum sp. transcription responded to Fe(II) stimulus
by examining their individual gene expression patterns over
the course of the time series (Fig. 5; we note that shipboard
conditions precluded replicates and related statistical ana-
lyses). Immediately after Fe(II) addition, viral activity
jumped, while Zetaproteobacteria decreased until 12 min
(T12) before increasing. Candidatus Ferristratum sp.
peaked at 12 min, suggesting Candidatus Ferristratum sp.
and Zetaproteobacteria activity relate to different conditions
(Fig. 5a).

To explore this, we examined genes potentially involved
in the aerobic or anaerobic iron oxidation pathway (cyc2,
ccoNO, narG) for each taxon (Fig. 5b). In the Zetaproteo-
bacteria, total cyc2 expression continuously increased after
Fe(II) addition until 32 min (2.7× increase), in contrast to
expression of the aerobic terminal electron acceptor (2.5×
increase between lowest and highest values; Fig. 5b, left),
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which more closely followed the overall expression pattern
of the dominant Zetaproteobacteria (Fig. 5a, left). This
suggests that Zetaproteobacteria cyc2 expression is stimu-
lated by Fe(II) addition [24]. On the other hand, both cyc2
and narG expression rapidly increased in Candidatus Fer-
ristratum sp. within 2 min after Fe(II) addition (2.9× and
1.8×, respectively), followed by a decline (Fig. 5b, right).
The cyc2 and narG peak occurred before overall expression
in Candidatus Ferristratum sp. peaked, suggesting these
genes were specifically upregulated by Fe(II) addition
before other cellular processes were stimulated by iron
oxidation (Fig. 5a, b, right).

We also examined gene expression patterns for the
denitrification pathway (narG, nirK, eNOR, cNOR, nosZ).
With the exception of narG, the expression pattern shows
some similarity between both groups of organisms, in some
cases starting high and declining after Fe(II) addition, and
then increasing after 2 or 12 min (Fig. 5c). This suggests
that the mat already had sufficient capacity for transforming
denitrification intermediates, such as nitrite, and new
expression was not immediately necessary. Overall, the
trends of Zetaproteobacteria and Candidatus Ferristratum
sp. gene expression in response to Fe(II) addition suggest
different niches and biogeochemical roles for these organ-
isms within the gradients of iron mats.

Contribution of individual Zetaproteobacteria and
Candidatus Ferristratum sp. MAGs to iron and
nitrogen mat cycling

To better resolve the ecological niches of the major iron mat
taxa, we examined the distribution and MAG-specific
expression of genes within individual genomes, focusing
on near-complete MAGs from the Zetaproteobacteria and

Candidatus Ferristratum sp. (Fig. 6; Candidatus Ferris-
tratum sp. details Supplementary Table 6). The majority of
Zetaproteobacteria MAGs expressed both cyc2 and ccoNO
at high levels, as expected for aerobic iron-oxidizers (Fig. 6)
[24]. Most of these MAGs also expressed the assimilatory
nitrate reduction cassette with nasA and nirBD. Most MAGs
expressed nirK, but the rest of the dissimilatory deni-
trification pathway was scattered between individual Zeta-
proteobacteria MAGs. Notably, several Zetaproteobacteria
had the napAB nitrate reduction genes, though only two
MAGs showed expression at low levels, compared to their
aerobic respiratory ccoNO genes.

In contrast, Candidatus Ferristratum sp. metabolic
potential was consistent between MAGs. Most of the
MAGs possessed cyc2, though individual expression levels
varied from undetectable to very high. Only one Candidatus
Ferristratum sp. MAG possessed terminal oxidase genes
(coxAB), while the majority instead expressed the narGH
nitrate reductase genes (Fig. 6). None of the Candidatus
Ferristratum sp. MAGs contained the complete deni-
trification pathway, only possessing cNOR nitric oxide
reduction genes. Although Candidatus Ferristratum sp.
appears to be anaerobic, several oxygen detoxification
genes were found within the MAGs and were frequently
highly expressed (Supplementary Table 6). Additionally, all
high-quality Candidatus Ferristratum sp. MAGs possessed
the oxygen-independent class II ribonucleotide reductase
(RNR), and all but one also possessed the oxygen-sensitive
class III RNR. These genes suggest that most Candidatus
Ferristratum sp. are adapted to survive aerobic conditions.
Given the high expression of narG, this suggests that the
Candidatus Ferristratum sp. are primarily facultative
anaerobes that respire nitrate and may be capable of iron
oxidation.
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Discussion

Iron-oxidizing microorganisms can strongly influence the
biogeochemical cycles of a wide range of elements. Pre-
vious studies have focused primarily on the biomineral
byproducts, iron oxyhydroxides, which adsorb and copre-
cipitate various elements (e.g., [33, 83–86]). However, iron
oxidizer physiology and ecological interactions are just as
likely to affect biogeochemical cycling. Here, we have
explored these interactions within three iron mat samples
from Lōʻihi Seamount, comparing community composition
and expression in aerobic surface mat (S1) with bulk mat
that includes anaerobic niches (S6 and S19). In the S6 bulk
mat microcosm, we were able to observe which organisms
and processes are most primed to respond to Fe(II). With
these samples, we explored the capabilities of individual
iron mat members and reconstructed ecological interactions
and community impacts on iron, carbon, and nitrogen
cycles.

The Lōʻihi Seamount iron mat communities are domi-
nated by a few key players, primarily Bacteria, but also
include Archaea and viruses (Figs. 1 and 7). The microbial
community is structured by a gradient of oxygen, which
becomes undetectable within the first few mm’s to cm’s of
the mat surface [21, 34] Depending on oxygen levels, we
find microorganisms involved in either aerobic iron oxida-
tion (Zetaproteobacteria) or anaerobic iron oxidation

(Candidatus Ferristratum sp.). These iron oxidizers (Fig. 7,
process 1) form metabolic products (Fe(III), Corg, NO2

−)
that support the metabolisms of flanking community
microorganisms, thus either directly or indirectly driving
most biogeochemical processes in the mat, including iron
reduction, carbon fixation, fermentation, nitrate assimila-
tion, and denitrification (Figs. 2 and 7).

Zetaproteobacteria are known to be autotrophs based on
culture work and inference from MAGs [19, 20, 25, 77], but
a definitive link to primary production in iron mats has not
been demonstrated. Our work shows that the Zetaproteo-
bacteria are the primary producers in the surface mat, where
nearly all gene expression from known carbon fixation
pathways can be attributed to RuBisCO Form II gene
expression in the Zetaproteobacteria (Fig. 2). This suggests
that carbon fixation is concentrated near the aerobic surface
of actively growing mats. This is consistent with micro-
scopy evidence that mats accrete as iron oxidizers form
biomineral stalks, positioning the cells at the surface of the
mat [21]. The iron oxyhydroxide stalk structures of the
Zetaproteobacteria contain polysaccharides [87] and adsor-
bed organic exudates [88], thus the biominerals act as
reservoirs of organic carbon for use by heterotrophs and
fermenters. Viral induced lysis is another key mechanism
for organic nutrient recycling, such as the viral shunt that
maintains a pool of dissolved organic matter driving oceanic
carbon cycling in the water column [89]. Given the diversity
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of phage, high abundance of viral transcripts in the meta-
transcriptomes, and evidence of repeated interaction
between viruses and the dominant microbial populations in
the mat, it is quite likely that viruses may be playing a
similar role mediating carbon bioavailability in the iron
mats (Supplementary Tables 3 and 4).

Zetaproteobacteria are aerobes, as no Zetaproteobacteria
culture can grow anaerobically [7, 20] and all sequenced
Zetaproteobacteria genomes include aerobic terminal oxi-
dase genes [24]. However, some have the genetic potential
for using nitrate reduction to live within an aerobic/anae-
robic transition zone. A few Zetaproteobacteria genomes
from the S6 bulk microcosm have the dissimilatory nitrate
reductase genes napAB (Figs. 4 and 6). These organisms
may conduct aerobic nitrate reduction, using nitrate as a
backup electron acceptor under oxygen limiting conditions
[90]. This is consistent with the concurrent expression of
genes for terminal oxidase (ccoNO) and nitrate reduction
(napAB) (Fig. 6) within the well-mixed S6 microcosm.
Furthermore, different Zetaproteobacteria MAGs encode
various other parts of the dissimilatory denitrification
pathway (Fig. 6). Only the dissimilatory nitrate reductases
are known to conserve energy in this pathway, though
eNOR may also conserve energy via a proposed proton
pump [82]. Thus, Zetaproteobacteria engaging in only part
of the pathway may do so as a means of detoxifying
intermediates, such as nitric oxide [91], or removing nitrite
to avoid abiotic iron oxidation and encrustation in an Fe(II)-
rich environment [38, 92]. Together with evidence of nitrate
assimilation (including in [19, 20]), these results show that
within the Zetaproteobacteria themselves, iron oxidation
and nitrate reduction are coupled in multiple ways.

Since Zetaproteobacteria are primarily aerobes, this
leaves anaerobic niches open for other organisms to thrive.
Candidatus Ferristratum was overall the second most
abundant taxa within the iron mats (Fig. 1) and their high
expression of narGH (Figs. 2 and 4) and Cluster 1 Cyc2
homologs (Fig. 3) suggests they are active anaerobic deni-
trifiers with the ability to oxidize Fe(II). Given the rapid
and parallel responses of cyc2 and narG genes after Fe(II)
stimulus (Fig. 5), Candidatus Ferristratum sp. may repre-
sent a novel nitrate-reducing iron-oxidizing taxon. Although
oxygen was available in the microcosm, the injection of
Fe(II) may have promoted transient anaerobic niches
within the mat material. In the environment, Candidatus
Ferristratum sp. are much more abundant in bulk mat
samples (Fig. 1), including those from previous studies at
Lōʻihi Seamount [11, 20]. Our findings suggest there
may be two partitioned niches of iron oxidation in iron
mats: The Zetaproteobacteria oxidizing iron in the
shallow, aerobic zone, and Candidatus Ferristratum sp.
conducting nitrate-reducing iron oxidation in the primarily
anoxic zone.

The Lōʻihi iron mats should be an ideal place to find
nitrate-reducing iron oxidizers, due to gradients of Fe(II),
O2, and NO3

- in the mat [21, 34, 35]. Nitrate reduction
coupled to iron oxidation is theoretically possible for a
single organism, but no isolate aside from the hyperther-
mophilic Archaea Ferroglobus placidus [93] has been
shown to do so unequivocally [38, 94]. Indeed, the model
system for nitrate-reducing iron oxidizing bacteria is the
KS enrichment culture containing an autotrophic, nitrate-
reducing iron-oxidizing Gallionellaceae partnered with
heterotrophs that complement the Gallionellaceae’s deni-
trification pathway [94–96]. At Lōʻihi, Zetaproteobacteria
produce organic carbon and consume oxygen, creating a
niche for nitrate-reducing iron oxidizers. However, it is
clear that Zetaproteobacteria themselves do not fill this
niche, though they can assimilate nitrate using electrons
from Fe(II) (Fig. 8, Zetaprotobacteria cell A), and some
may conduct aerobic denitrification for redox balance
(Zetaproteobacteria cell C). The anaerobic iron oxidation
niche is open for another organism, such as the dominant
denitrifier Candidatus Ferristratum sp., which may cou-
ple nitrate reduction to either iron (Fig. 8, Candidatus
Ferristratum cell A) and/or organic carbon oxidation
(Candidatus Ferristratum cell B). Either way, the high
Candidatus Ferristratum sp. narG expression (Figs. 2
and 4) suggests that significant quantities of nitrite are
produced in the mats. In theory, this could rapidly oxidize
Fe(II) through chemodenitrification, which would result in
the encrustation of nitrite-producing cells [38, 92].
However, Zetaproteobacteria expressed nirK highly, and
increased nirK expression in the Fe(II)-amended bulk
microcosm after peak narG expression (Fig. 5), suggest-
ing that the Zetaproteobacteria actively remove nitrite
produced by Candidatus Ferristratum sp. (Fig. 8, Zeta-
proteobacteria cell A). Zetaproteobacteria (cell B; Fig. 8)
and Candidatus Ferristratum sp. (cell B) also express
genes to reduce NO via eNOR and cNOR, respectively
(Fig. 6), suggesting the need to detoxify NO. Finally,
some Zetaproteobacteria can complete denitrification
from N2O to N2 (cell B; Fig. 8). In this partner approach, a
nitrate-reducing iron-oxidizing organism is relieved of the
burden of having to synthesize all four separate enzyme
complexes to denitrify to N2 because other taxa help with
detoxifying byproducts. This cooperative approach to
denitrification may explain why it has been challenging to
isolate nitrate-reducing iron oxidizers.

Conclusions and implications

At Lōʻihi Seamount, energy from iron oxidation fuels the
growth and ecological interactions of a diverse microbial
community. The well-known Zetaproteobacteria colonize
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iron-rich vents [18, 97], oxidize Fe(II) aerobically, and
produce Fe(III) oxyhydroxide stalks to create the physical
framework of the mat [21]. The Zetaproteobacteria use
energy and electrons from Fe(II) to fix carbon, some of
which binds to mat biominerals. Organic carbon is also
made available through the viral lysis of Zetaproteobacteria,
as they are hosts to Mu-like lysogenic phages and in contact
with a diverse and active viral assemblage. Zetaproteo-
bacteria oxygen consumption creates anaerobic zones and
thus, in these various ways, Zetaproteobacteria create the
physical and chemical niche for the nitrate-reducing het-
erotrophic iron oxidizer Candidatus Ferristratum. Because
this metabolism is inferred from genomes and tran-
scriptomes, the logical next step would be to attempt iso-
lation. However, it is not clear that complete isolation
would be successful, as Candidatus Ferristratum sp.
appears to require others to remove byproducts to prevent
chemodenitrification and toxicity. Instead, we can use our
results as a starting point for more specific probing of
ecological interactions and metabolite exchange within the
mat, which may be unique in iron mats because of the
affinity of organics for iron. In addition to affecting local
biogeochemistry, organic-bound iron and other metabolites
are carried by diffusely venting fluid moving through the
mat, exported from Lōʻihi in buoyant plumes for 100 s to
1000+ km [98]. These exported fluids fertilize iron-
depleted waters, connecting microbial iron and nutrient
cycles across ocean basins.

Description of Candidatus Ferristratum gen. nov

Ferristratum (fer.ri.stra’tum. L. neut. n. ferrum iron; L.
neut. n. stratum mat/cover or a layer; N.L. neut. n. Ferris-
tratum from an iron mat layer). Genus defined from nine
metagenome-assembled genomes with >70% completeness
and <20% redundancy with an average 77% pairwise AAI.
Genome sources from three unique samples. Type material:
MAG S6_Bacteria1 (partial 16S rRNA gene present). Five
of the highest-quality (>90% complete, <5% redundant)
Candidatus Ferristratum sp. genomes have been submitted
to IMG under the analysis project IDs Ga0454285-
Ga0454287, Ga0454293, and Ga0454316 (type material).

Physiological inferences from genome annotation: Het-
erotrophic. Facultative anaerobic. Capable of respiring
nitrate coupled to organic carbon or Fe(II) oxidation for
energy. Capable of nitric oxide reduction and nitrate
assimilation. Found within Fe(II)-rich hydrothermal vent
bulk/deep mat and sediment environments.
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