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Abstract
The oceanic crustal aquifer is one of the largest habitable volumes on Earth, and it harbors a reservoir of microbial life that
influences global-scale biogeochemical cycles. Here, we use time series metagenomic and metatranscriptomic data from a
low-temperature, ridge flank environment representative of the majority of global hydrothermal fluid circulation in the ocean
to reconstruct microbial metabolic potential, transcript abundance, and community dynamics. We also present metagenome-
assembled genomes from recently collected fluids that are furthest removed from drilling disturbances. Our results suggest
that the microbial community in the North Pond aquifer plays an important role in the oxidation of organic carbon within the
crust. This community is motile and metabolically flexible, with the ability to use both autotrophic and organotrophic
pathways, as well as function under low oxygen conditions by using alternative electron acceptors such as nitrate and
thiosulfate. Anaerobic processes are most abundant in subseafloor horizons deepest in the aquifer, furthest from connectivity
with the deep ocean, and there was little overlap in the active microbial populations between sampling horizons. This work
highlights the heterogeneity of microbial life in the subseafloor aquifer and provides new insights into biogeochemical
cycling in ocean crust.

Introduction

Seawater circulating through porous, basaltic oceanic crust
constitutes the largest actively flowing aquifer system
on Earth, and represents ~2% of the ocean fluid volume
(~27 million km3 of water; [1–3]). The convective circulation
of seawater through mid-ocean ridges and ridge flanks has

profound effects on crustal and ocean chemistry [4, 5]. Stu-
dies of warm, anoxic venting fluids from mid-ocean ridges
and ridge flanks indicate a diverse and active microbial
community in these crustal fluids (reviewed in [6]). However,
much of the remaining crustal pore volume is composed of
cold, oxygenated deep ocean water that enters and exits the
basaltic crust through seafloor exposures [7, 8]. These crustal
fluids are chemically similar to seawater, but slightly enriched
in DIC and depleted in DOC and O2 [9–12]. Microbial
communities in the crustal fluids are distinct from those in the
overlying bottom water [9, 13], but the lifestyle and adaptive
strategies of microbial communities and the biogeochemical
processes they mediate in the oligotrophic, oxic subseafloor
aquifer remain poorly constrained.

North Pond is an 8 km × 15 km sediment-filled basin
located in 8 Myo volcanic crust on the western flank of the
Mid-Atlantic Ridge, ~4450 m below the oligotrophic Sar-
gasso Sea [14–16]. The overlying low-permeability sedi-
ments prevent seawater intrusion into the porous and
permeable basaltic crust below. In 2011, two circulation
obviation retrofit kits (CORKs [17, 18]) were installed into
drill holes U1382A and U1383C which penetrated oceanic
crust at North Pond during IODP Expedition 336, thus
enabling sampling and monitoring of the crustal aquifer
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[19]. The first crustal fluids were collected from the North
Pond CORKs 6 months after installation in 2012, with
return expeditions in 2014 and 2017. In addition, a battery-
powered GeoMICROBE sled was deployed at each CORK
for autonomous time series sampling from April 2012 to
April 2014 [20]. 16 S rRNA gene sequencing from
2012 showed that the North Pond fluid microbial commu-
nity is distinct from bottom seawater and U1382A and
U1383C communities are distinguishable from one another
[9]. Metagenomic data from samples collected between
2012 and 2014 revealed large shifts in the dominant taxo-
nomic groups, with a high degree of functional redundancy
in the microbial community [13].

Natural abundance isotopic data from fluids sampled in
2012 and 2014 indicate early removal of dissolved organic
carbon (DOC) sourced from the deep ocean, followed by the
slower removal of older, more refractory components, with
limited chemosynthetic production in the deepest basement
fluids [10]. Experiments using fluids collected in 2012
incubated with 13C-labeled bicarbonate and acetate at 5 °C
and 25 °C detected both autotrophic and heterotrophic
activity at a higher level than in bottom seawater [9], but low
rates of metabolic activity were detected in the same fluids at
4 °C using nanocalorimetry [21]. However, these data were
gathered while the North Pond aquifer was recovering from
the initial drilling disturbances, and time series geochemical
data suggests that by 2017, the North Pond aquifer had
recovered [12]. Therefore, fluids collected from North Pond
in 2017 are likely the most representative of microbial
communities in the cold, oxic aquifer.

Here, we present the first metatranscriptomic data from
North Pond, including samples from 2012, 2014, and 2017,
analyzed to reconstruct microbial metabolic potential,
transcript abundance, and community dynamics in the cool,
oxic marine crustal habitat. We also generated new meta-
genomes from 2017 samples and compared results across
all three sampling years, with an emphasis on understanding
the 2017 population as it represents the community furthest
from drilling disturbances. The data support the presence
and activity of a motile microbial community with con-
siderable metabolic flexibility, including the ability to carry
out both autotrophy and organotrophy under oxic and
anoxic conditions. We also present a conceptual model for
the key microbially-mediated carbon, nitrogen, and sulfur
cycling reactions occurring in the North Pond crustal fluids.

Materials and methods

Sample collection

Fluids were collected from the North Pond crustal aquifer
(22°45′N and 46°05′W) in April 2012, April 2014, and

October 2017 using ROV JASON and the Mobile Pumping
System (MPS [20]) as described elsewhere [9, 13, 18]. Both
U1382A and U1383C CORK installations were sampled
via umbilicals that are accessible at the seafloor and ter-
minate at different depths beneath the seafloor (Table 1).
CORK observatory U1382A contains a packer seal in the
bottom of the casing that isolates the aquifer from the
overlying sediment and one sampling depth horizon
extending 90–210 meters below seafloor (mbsf). Observa-
tory U1383C contains three sampling depth horizons below
the sediment-crust interface separated by packer seals:
Shallow (~70–146 mbsf), Middle (146–200 mbsf), and
Deep (~200–332 mbsf). At all sampling time points,
umbilical lines were flushed before sampling began and
both temperature and oxygen were monitored throughout
sampling [9, 12, 13]. To collect microbial biomass for
-omics analyses in 2017, crustal fluid was pumped at a rate
of ~0.5 liters per minute for 80 min through a 0.22 μm,
47 mm GWSP filter (Millipore). These filters were pre-
served on the seafloor using RNAlaterTM (Ambion) as
described in [13, 20]. Bottom seawater was also collected at
4397 m water depth using the MPS. Shipboard, all filters
were placed in fresh RNALaterTM, incubated at 4 °C for
18 h, and then stored at −80 °C until extraction.

DNA/RNA extraction and library construction

DNA was extracted from 2017 North Pond samples (half of
47 mm flat) filters following a method adapted from [22, 23]
(Supplementary Methods). Extracts were quantified using a
Quant-iT PicoGreen dsDNA assay kit (Thermo Fisher
Scientific) according to the manufacturer’s instructions,

Table 1 Samples analyzed in this study with oxygen
concentration data.

Sample Date Collected Depth (m) Oxygen (µM)a

U1382A April 25 2012 90–210 244

U1382A April 5 2014 233

U1382A October 12 2017 228

U1383C Shallow April 30 2012 70–146 216

U1383C Shallow April 2 2014 202

U1383C Shallow October 13 2017 198

U1383C Middle April 30 2012 146–200 n.d.

U1383C Middle October 15 2017 205

U1383C Deep April 20 2012 200–332 213

U1383C Deep March 31 2014 187

U1383C Deep October 11 2017 173

Bottom Water October 14 2017 4397b 250

aOxygen data from [12].
bDepth in meters below surface, remaining depths are in meters below
seafloor (mbsf).
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using a fluorescent plate reader. DNA concentrations of all
samples are shown in Supplementary Table 1.

RNA was extracted from 47 mm flat filter halves from all
three expeditions (2012, 2014, and 2017, Table 1) using a
modified version of the mirVana RNA extraction kit
(Ambion) protocol (Supplementary Methods). Extracts
were quantified using a Quant-iT RiboGreen RNA assay kit
(Thermo Fisher Scientific). One whole and one-half filter
from each sampling horizon from 2017 were extracted in
this manner and the extracts pooled for downstream ana-
lysis. For the 2012 and 2014 samples, one half filter was
extracted. RNA concentrations are shown in Supplementary
Table 1.

Metagenomic libraries were prepared from the 2017
DNA extractions using an Ovation Ultralow V2 DNA-Seq
library preparation kit (NuGEN), according to the manu-
facturer’s instruction as described in the Supplementary
Methods.

RNA yields were too low to use an RNA sequencing
library preparation kit. Instead, we used a SuperScript III
First-Strand Synthesis System (Invitrogen), followed by an
NEBNext Ultra II Non-Directional RNA Second Strand
Synthesis Module (New England Biolabs), to produce
double-stranded cDNA from our RNA extracts. The cDNA
was then purified using a MinElute PCR Purification Kit
(QIAGEN), and libraries were prepared as for DNA, as
described in the Supplementary Methods.

Metagenomes from 2017 and metatranscriptomes from
2012, 2014, and 2017 were sequenced on an Illumina
NextSeq 500 at the W.M. Keck sequencing facility at the
Marine Biological Laboratory, resulting in an average read
length of 151 bp.

Metagenome assembly and mapping

The 2017 metagenomes were sequenced twice due to poor
clustering on the first run. Raw sequence data from both
runs was visualized using fastqc [24] and quality filtered
using Minoche et al. [25] quality filtering scripts [26].
Filtered R1 and R2 reads from each run were interleaved
using fq2fa (https://pypi.org/project/fq2fa/) and the
interleaved files from the two runs were concatenated for
all downstream processing. Assemblies were constructed
using IDBA-UD version 1.1.3 [27] and quality assessed
with MetaQUAST v5.0.2 [28]. Quality filtered metage-
nomic reads from 2012 and 2014 were reassembled
using the same pipeline. Total number of reads, quality
filtering results, and assembly stats are reported in
Supplementary Data.

Metagenome assemblies from all time points were
uploaded to the Joint Genome Institute’s Integrated
Microbial Genomes and Microbiomes (IMG/M) system
[29] for annotation using default IMG parameters [30].

ORF information was extracted from the resulting general
feature format (.gff) and fasta files using gff2seqfeatures.
py (https://github.com/ctSkennerton/scriptShed). The
resulting fasta feature nucleotides (.ffn) files were indexed
in Kallisto [31], and the R1 and R2 quality filtered read
files from each metagenome were mapped to a con-
catenated fasta feature nucleotides (.ffn) file of all meta-
genome ORFs to normalize and quantify gene abundance
in transcripts per million reads (TPM), which accounts for
both gene length and sequencing depth, using kallisto
quant (default parameters). Because the KEGG database
does not differentiate between nxrA and narG or pmoA
and amoA genes as they are highly orthologous, we dis-
cerned nitrite oxidation from nitrate reduction and
methane oxidation from ammonia oxidation as described
in Supplementary Methods.

rRNA was removed from the metagenomes by mapping
the reads against the SILVA small subunit (SSU; 16S/18S)
and large subunit (LSU; 23S/28S) ribosomal databases
(release 132 [32]) using SortMeRNA (default parameters
[33]). Taxonomy was assigned to the rRNA reads using
assign_taxonomy.py in QIIME [34] with the default
assignment method UCLUST [35] against the SILVA v132
SSU and LSU databases.

Metatranscriptome assembly and mapping

Quality filtering was performed on the metatranscriptomes
in the same manner as for the 2017 metagenomes (Sup-
plementary Methods). rRNA was removed from the quality-
filtered metatranscriptome reads using SortMeRNA and
taxonomy was assigned to the rRNA files using the SILVA
SSU/LSU databases and QIIME as above. The metatran-
scriptomes with rRNA removed were mapped to a con-
catenated fasta feature nucleotides (.ffn) file of all
metagenome ORFs in Kallisto.

Binning and metagenome assembled genomes
(MAGs)

Assembled metagenomes from 2017 were binned with
Binsanity [36] and bin quality was assessed using CheckM
version 1.0.11 [37] (Supplementary Methods). High-
completion bins (Supplementary Data), hereafter referred
to as metagenome-assembled genomes (MAGs), were tax-
onomically classified using Phylosift [38] and GTDB-Tk
[39]. The MAGs were then imported into KBase [40] and a
phylogenetic tree with 100 bootstrap replicates was made
using SpeciesTreeBuilder v.0.1.0 with FastTree2 [41]. Tree
formatting was performed using the Interactive Tree of Life
[42]. Functional orthologies as defined by the KEGG
database [43] were annotated using MetaSanity v1.2.0 [44]
(Supplementary Methods). Genes related to iron
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acquisition, storage, and oxidation/reduction were annotated
using the FeGenie tool [45].

Mapping metagenomes and metatranscriptomes
to MAGs

The relative abundance of each MAG in the metagenomes
and metatranscriptomes was calculated using a competitive
recruitment approach (Supplementary Methods). Z-scores
of the normalized relative fractions were calculated using
the average and sample standard deviation of the relative
fraction of each MAG across all metagenomes and across
all metatranscriptomes.

The metagenome and metatranscriptome MAG mapping
data was also used to generate dendrograms using the
pvclust package in R [46]. Relative fraction data was scaled
using z-scoring, p values were calculated using an
unweighted pair group method with arithmetic mean for
hierarchical clustering, and distances between samples
determined using correlation as a measure of similarity.
Dendrograms were then generated with 1000 bootstrap
replications.

Results

While DNA and RNA yields were generally low (<1 ng/µl,
Supplementary Table 1), we were successful in generating the
first metatranscriptomes from this environment. We examined
over one billion high-quality paired-end Illumina sequencing
reads from 11 metagenomes and 10 metatranscriptomes over
three sampling periods spanning 5 years from four different
subseafloor fluid horizons and deep bottom water at the North
Pond site (Table 1, Supplementary Data).

While similar taxa were present across all metagenomic
and metatranscriptomic samples, their relative abundances
fluctuated over time. Most samples were dominated by
Gamma- and Alphaproteobacteria, as well as Bacteroidetes
and Zetaproteobacteria (Fig. 1a; Supplementary Fig. 1A).
Campylobacterota represented a large proportion of the total
microbial community in 2012, but in 2017 they made up a
much smaller percentage of the crustal fluid community
(Fig. 1a), though they remained a significant taxonomic
group in the 2017 bottom water (Supplementary Fig. 1A).
In addition, Nitrospirae and Nitrospinae assigned reads,
which represented ≤3% of each metagenome (Supplemen-
tary Fig. 1A), composed 31% of the metatranscriptome-
mapped rRNA reads in U1383C Shallow in 2017 (Fig. 1a).
Firmicutes-assigned reads (predominantly family Clos-
tridiaceae) accounted for >50% of the mapped rRNA reads
in the 2017 U1383C Shallow metagenome, but represented
only 5% of the mapped metatranscriptome rRNA reads in
U1383C Shallow in 2017 (Fig. 1a).

Metabolic, motility, biofilm, and stress transcript
abundance across samples

To examine functional potential at the community level
across samples, we examined genes encoding the active
sites of key enzymes for cycling carbon, hydrogen, oxygen,
nitrogen, and sulfur. Overall, these genes were equally
abundant in the metagenomes across sampling times and
depth horizons (Supplementary Fig. 1B), while transcript
abundance was much more variable (Fig. 1b).

In most samples, carbon fixation via the
Calvin–Benson–Bassham (CBB) cycle was more abundant
than the reverse tricarboxylic acid cycle (rTCA), as indi-
cated by the number of transcripts for the large subunit of
RuBisCo (rcbL;~10–1400 tpm) versus the ATP citrate lyase
alpha-subunit (aclA;~0–300 tpm; Fig. 1b). In 2017, rcbL
and aclA transcripts were higher in U1382A and U1383C
Deep than in U1383C Shallow by 1–2 orders of magnitude
(Fig. 1b). The catalytic subunit of carbon-monoxide dehy-
drogenase (cooS) was transcribed in U1383C Shallow in all
years and U1383C Deep in 2012 (~1–80 tpm). Aerobic
oxidation of methane (pmoA) transcripts were observed in
2012 and 2017 but not 2014 (Fig. 1b).

Genes for aerobic oxidative phosphorylation (cyto-
chrome c oxidase (coxA), cytochrome o ubiquinol oxidase
(cyoB), and ubiquinol-cytochrome c reductase (UQCRFS1,
rip1, petA)) and cytochromes related to microaerophily and
low oxygen tolerance (cbb3-type cytochrome c oxidase
(ccoN) and cytochrome d ubiquinol oxidase (cydA)) were
transcribed in every sample (Fig. 1b). cbb3-type cytochrome
c oxidases were 3–7x more abundant in 1383C Deep than in
U1382A or 1383C Shallow. NiFe-hydrogenase transcripts
used for anaerobic respiration and oxidative stress response
(hyaB, hybC, hydA3) were highest in U1383C Middle in
2012 and U1383C Deep in 2012 and 2017, and were
30–1000x more abundant in U1383C Deep than in U1382A
or 1383C Shallow in 2017 (Fig. 1b).

Among transcripts involved with nitrogen cycling, the
most abundant were associated with ammonia oxidation,
nitrate reduction, and nitrite reduction. Transcripts for amoA
were most prevalent in U1383C Shallow in 2012 (~465
tpm) and 2014 (~110 tpm), but in 2017 were only found in
U1382A and U1383C Deep, at an order of magnitude lower
abundance (~10–15 tpm) (Fig. 1b). In the metagenomes,
amoA genes displayed the highest counts in the 2017 bot-
tom seawater sample (Supplementary Fig. 1b). The catalytic
subunit of nitrite oxidoreductase (nxrA) was transcribed in
every sample; transcripts were highest in U1383C Shallow
in 2012 (~660 tpm) and 2014 (~380 tpm) and U1382A in
2017 (~390 tpm) (Fig. 1b). Nitrate reduction through either
denitrification (narG) or the dissimilatory reduction of
nitrate to ammonia (DNRA; napA) was also transcribed in
every sample ranging from 0.5 to >250 tpm, but these
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processes were most abundant in 2012, in U1383C Middle
and Deep (Fig. 1b). Nitrite reduction via both DNRA (nirB)
and denitrification (nirK) was more transcribed than nitrate

reduction across samples and years, ranging from ~10 to
640 tpm (Fig. 1b). Nitric oxide reduction to N2 was tran-
scribed primarily in samples taken in 2012, but was also
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observed in U1383C Deep in 2017 (Fig. 1b). Very few
transcripts for nitrogen fixation (nifH) were detected (0–16
TPM). Nitrogen reduction genes were more abundant than
nitrogen oxidation genes in the metagenomes across all
samples and years (Supplementary Fig. 1b).

Genes for the oxidation or assimilation of sulfur were
more transcribed (by 1–2 orders of magnitude) than for
dissimilatory sulfate reduction. The most transcribed sulfur
cycling genes were those involved in thiosulfate oxidation:
thiosulfate oxidase (soxZ, up to ~3800 tpm) and thiosulfate
dehydrogenase (tsdA, up to ~3500 tpm) (Fig. 1b). While
dissimilatory sulfate reduction gene transcripts (dsrB, aprA,
sat, met3) were present in every sample, they were highest
in U1383C Shallow across all sampling years (~100–400
tpm) (Fig. 1b).

Transcripts associated with chemotaxis and flagellum
biosynthesis were far more abundant in the metatran-
scriptomes than those associated with biofilm formation
(Supplementary Fig. 2). Flagellin (fliC) was among the most
abundant transcripts in every sample, and was in the top
three most abundant transcripts in every 2017 sample
(Fig. 1b, Supplementary Data). The top three most abundant
transcripts in U1382A and U1383C Deep in 2017 also
included pilA (type IV pilus assembly protein PilA), asso-
ciated with twitching motility (Supplementary Fig. 2, Sup-
plementary Data). Transcripts for catalases associated
with oxidative stress (katG, katE, CAT, catB, srpA, ahpC),
cold shock, and phage shock proteins were also high in
2017 in U1383C Deep, but displayed far lower
transcription levels in other samples (Supplementary Fig. 2;
Supplementary Data).

Metagenome-assembled genomes (MAGs)

A total of 447 MAGs were obtained from the 2017 meta-
genome using BinSanity. 63 non-redundant, high-quality,
high-completion bins (hereafter referred to as metagenome-
assembled genomes, or MAGs) were chosen for down-
stream analyses (Supplementary Data). MAGs were desig-
nated “NP” (for “North Pond”), followed by the 2-digit
sampling year (“17”), followed by the sampling location
(e.g. 1382A).

The taxonomic identities of these MAGs closely matched
the taxonomic annotations of the 16S/23S rRNA gene
mapping in the metagenomes and metatranscriptomes
(Figs. 1 and 2, Supplementary Data). We compared the
relative abundance of each high-completion MAG across all
metagenome and metatranscriptome samples (Fig. 2). The
most abundant MAGs in the metagenomes were generally
observed in North Pond samples from 2017, while some
MAGs were found in multiple fluid horizons and years.
Transcriptome reads mapping to MAGs correlated with
metagenome reads mapping to MAGs in some cases, and

hierarchical clustering of MAG transcript abundances
showed that the U1383C Middle and Deep horizon samples
clustered together, and the U1383C Shallow samples clus-
tered together (Fig. 3). Clustering of MAG abundances
from the metagenomes indicated all 2012 samples were
most similar to one another (Supplementary Fig. 3).
U1382A 2017 was distinct from other samples in both the
MAG metatranscriptomes (Fig. 3) and metagenomes (Sup-
plementary Fig. 3).

Twenty-two MAGs contained complete or mostly
complete (>80%) carbon fixation pathways (Fig. 4, Sup-
plementary Data). Most (n= 17) of the MAGs with the
potential for carbon fixation contained pathways for the
oxidation of sulfide, thiosulfate, or sulfite, making sulfur
compounds a probable electron donor (Fig. 4, Supple-
mentary Data). Three MAGs contained genes associated
with the oxidation of nitrogen compounds, but only one of
these also had the capability to fix carbon (Fig. 4, Sup-
plementary Data). Nine MAGs possessed genes for the
oxidation of ferrous iron and five of these, one Alpha-
proteobacteria and four Gammaproteobacteria, also con-
tained the genes for RuBisCo and the CBB cycle (Fig. 4).
One alphaproteobacterium and two gammaproteobacter-
ium MAGs contained genes for NiFe and NAD-reducing
hydrogenases (Fig. 4). The majority of MAGs with carbon
fixation pathways also contained numerous extracellular
protease and carbohydrate catabolism genes (Fig. 4,
Supplementary Data). The remaining 42 MAGs lacked
carbon fixation genes, but several had the ability to oxi-
dize sulfur compounds and/or ferrous iron (Fig. 4, Sup-
plementary Data).

U1382A '12

U1382A '14

U1383CS '12

U1383CS '14

U1383CS'17

U1383CM '12

U1383CD '12

U1383CD '14

U1383CD '17

U1382A '17

98
86

97

95

93

94

92

98

0.00.20.40.6

Fig. 3 Hierarchical clustering of MAG abundances in the meta-
transcriptomes produced using multiscale bootstrap resampling.
The scale bar indicates correlation distance between samples.
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Fig. 4 Completeness of select metabolic pathways of interest in
2017 abundant high-completion MAGs determined using
MetaSanity, and Fe oxidation and reduction genes annotated using
FeGenie (Supplementary Data). Genes considered in calculating
pathway completeness are shown in parentheses, with the exception of
carbon cycling pathways, where genes considered are shown in

Supplementary Data. Completeness of each enzymatic pathway is
expressed as a percentage (0–100%). Bar graph at right depicts counts
of extracellular proteases and carbohydrate-catabolism enzymes in
each MAG (complete dataset available in Supplementary Data). Refer
to Fig. 2 for color assignments of taxa.
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While the majority (52) of the MAGs contained cyto-
chromes for aerobic respiration (Supplementary Data), all
but six aerobic MAGs also had the capability to use other
electron acceptors (nitrogen or sulfur) or contained fer-
mentative pathways (Fig. 4, Supplementary Data). All of
the MAGs that contained carbon fixation and sulfur oxi-
dation pathways had the ability to use either oxygen or
oxidized nitrogen compounds as electron acceptors (Fig. 4,
Supplementary Data).

Discussion

Low-temperature, off-axis environments represent the
majority of global hydrothermal fluid circulation in the
ocean, but the microbial communities in the subseafloor of
young ridge flank oceanic crust are sparsely sampled or
understood in comparison to other subseafloor habitats such
as marine sediments. The goal of this study was to recon-
struct microbial metabolic potential, transcript abundance,
and community dynamics in the crustal fluids of the cool,
oxic ridge flank North Pond using metagenomics and
metatranscriptomics, with an emphasis on understanding
the microbial community sampled in 2017, furthest
removed from the disturbances caused by drilling. This
work represents the first metatranscriptomic data recovered

from the cool, oxic subseafloor aquifer, where low biomass
presents significant challenges to microbial studies.

Accessing the crustal aquifer in sedimented regions
requires ocean drilling and observatory CORK installations
to enable collection of crustal fluids, thus all results must be
interpreted in the context of the disturbance caused by
drilling and subsequent recovery from these operations.
Time series sampling at North Pond from 2012–2017 has
therefore been critical to resolve when the crustal aquifer
returned to its pre-drilling state. Geochemical measurements
taken over this 6-year period indicate the fluid chemistry
rebounded by 2017 [12]. Geochemical and heat-flow data
also show that U1382A has greater connectivity to bottom
seawater than U1383C, although all fluids are geochemi-
cally very similar to bottom seawater [9, 47]. Heat-flow data
[48, 49] and tracer experiments [12] indicate rapid lateral
fluid flow from U1382A to U1383C through the porous
crust, while radiocarbon data suggests potential residence
times on the order of hundreds (U1382A) or thousands
(U1383C) of years [10]. Within these important geochem-
ical and hydrogeochemical contexts, we therefore focused
our analyses on understanding the microbial community in
2017, the samples furthest from drilling disturbances, while
also allowing us to examine how the community function
has changed over time by comparing 2017 samples to those
collected in 2012 and 2014 [9, 13].

Fig. 5 Schematic of the nutrient cycling processes occurring in
North Pond, inferred from metatranscriptomic reads mapped to
MAGs, metagenome assemblies, and taxonomic databases. Path-
ways associated with carbon fixation are indicated with white arrows
and respiration is indicated with black arrows. Thicker arrows

represent processes that are particularly abundant in the metatran-
scriptomes. In the case where a gene was not found in a MAG, we
used the taxa annotations performed by IMG (these taxa are indicated
with an asterisk).
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Analysis of metagenomic data from North Pond samples
in 2012–2014 suggested a high degree of functional
redundancy despite differences in community membership
across samples and years [13]. The addition of 2017
metagenomic data as well as time series metatranscriptomic
data broadly supports this finding and shows that while
most examined functional genes are present across many
samples and taxa (Supplementary Fig. 1B), their transcript
abundance varies with both time and location within the
crust (Fig. 1b). Our analysis of the presence and transcrip-
tion of metagenome-assembled genomes further indicates
that while some members of the community are present and
transcribed in multiple years and sampling horizons, many
were only abundant and active in 2017 samples (Fig. 2).
This is not surprising given the MAGs were constructed
only from 2017 samples, but despite this, we found many
MAGs at U1383C Shallow that were transcribed across all
years in that horizon. Conversely, most MAGs at U1382A
and U1383C Deep were only transcribed in 2017, with few
shared members between these two locations, consistent
with heat-flow and geochemical data [12]. Hierarchical
clustering of MAG abundances in the metatranscriptomes
suggests that overall, the same MAGs were active in
U1383C Shallow and in U1383C Deep across all sampling
years, while U1382A was more variable (Fig. 3), which
may reflect a higher frequency of bottom seawater intru-
sions at this sampling horizon [12].

Thus, based on mapping 2017 transcripts to annotated
metagenome ORFs, the taxa identified in the metatran-
scriptomes, and the predicted metabolisms of the most
abundantly transcribed MAGs, as well as building on pre-
vious work at North Pond, we constructed a conceptual
model for the key carbon, nitrogen, and sulfur cycling
reactions most likely occurring in the North Pond crustal
fluids in 2017 and the microbial taxa which carry out these
reactions (Fig. 5). We distinguished reactions that are
connected to carbon fixation (oxidation of nitrogen or sul-
fur) and respiration (reduction of nitrogen or sulfur). The
model is a simplified representation of the most abundant
microbially-mediated processes occurring at different loca-
tions and depths in the North Pond crustal aquifer.

Our analyses also indicated a number of lifestyle strate-
gies and adaptations of microbial communities in the crustal
fluids. For example, the abundance of transcripts associated
with chemotaxis and flagellar motility, and the concurrent
lack of transcripts for biofilm formation, suggest that the
microbial community captured in these samples is motile, as
biofilm formation is generally preceded by inhibition of
flagellar gene transcription [50–53]. A prevalence of moti-
lity and chemotaxis genes has been described in warm,
anoxic crustal fluids in Juan de Fuca Ridge flank [54]. In
addition, we found evidence for several stress response
mechanisms which were highly transcribed in U1383C

Deep in 2017, including oxidative stress response, survival
under nutrient- and energy-limited conditions (phage shock
protein A) [55], and cold shock (CspA) [56] (Supplemen-
tary Fig. 2, Supplementary Data). These results suggest that
especially at greater depth in the basement at North Pond,
microbial communities experience multiple stressors that
may be linked to energy and temperature fluctuations.

Carbon fixation and turnover

Based on the numerous extracellular protease and carbo-
hydrate metabolism genes detected in the majority of
MAGs, combined with the presence of carbon fixation
pathways in 22 of the 63 MAGs, the microbial community
of the North Pond aquifer appears to be predominantly
organotrophic or mixotrophic. Carbon fixation transcripts
were detected in all sites and years, and in 2017 samples,
carbon fixation transcripts were more abundant in U1383C
Middle and Deep than at U1382A or U1383C Shallow
(Fig. 1b). MAGs that possessed both carbon fixation and
organic carbon degradation genes were highly expressed in
both the U1383C Shallow and U1383C Deep metatran-
scriptomes (Figs. 2 and 4). These mixotrophs may perform
heterotrophy in U1383C Shallow, and carbon fixation in the
Deep horizon. These observations are consistent with
radiocarbon data from North Pond, which suggests rapid
turnover of semi-labile DOC sourced from the deep ocean,
followed by slower removal of more refractory components
of the DOC pool [10]. Chemosynthetic DOC produced
in situ is likely turned over rapidly in the shallow crustal
fluids, but Δ14C values in the Deep horizon of U1383C
suggest a net contribution of 14C-enriched DOC from che-
moautotrophy [10]. Two recent microbial studies of sub-
seafloor rocks recovered via ocean drilling showed a
dominance of heterotrophic bacteria and little evidence for
autotrophic processes [57, 58].

Fixation of carbon is most likely linked to the oxidation
of sulfide and thiosulfate, as evidenced by both the meta-
transcriptomic (Fig. 1b) and MAG data (Fig. 4, [13]).
Oxidation of sulfur compounds is a well-characterized
source of electrons for chemolithoautotrophy in the deep sea
[59, 60]. Most of the sulfur-oxidizing chemoautotrophic
MAGs were capable of using more than one type of sulfur
compound, including oxidation of thiosulfate (soxZ, tsdA),
as well as sulfide:quinone oxidoreductase (sqr) in U1383C
Deep (Fig. 1b). While hydrogen sulfide has not been
detected in the borehole fluids [9, 12], the oxidation of iron
in sulfide complexes in the crustal rocks may allow access
to both sulfide [61] and thiosulfate [62] for carbon fixation.

Previous metagenomic work at North Pond suggested the
potential for some microbes to use H2 and Fe2+ to drive
biomass production [13], by using the redox gradient
between reduced material in basalt and oxygenated aquifer
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fluids [63, 64]. Oxidation of ferrous iron has been described
in a low temperature deep-sea environment near the Juan de
Fuca hydrothermal field [65]. Our results indicate that some
members of the North Pond crustal fluid microbial com-
munity may use H2 and/or Fe2+ as electron donors for
carbon fixation. We identified six MAGs that contained the
CBB cycle and a NiFe hydrogenase and/or the iron oxida-
tion gene Cyc2 (Fig. 4, Supplementary Data), an outer-
membrane cytochrome that has been characterized in mul-
tiple iron-oxidizing bacterial lineages [66]. NiFe-
hydrogenases catalyze the conversion of H2 to protons
and electrons and are generally inhibited by oxygen, but
oxygen-tolerant and aerobic NiFe hydrogenases have been
described in marine Gammaproteobacteria [67, 68]. We also
identified three MAGs with high transcription in U1383C
Shallow and high abundance in the U1383C Deep 2017
metagenome that were taxonomically assigned as Desulfo-
capsa (Desulfobulbaceae), two of which contained NiFe
hydrogenases (Fig. 4; Supplementary Data). Members of
this clade simultaneously oxidize and reduce sulfur com-
pounds for energy while using electrons from H2 to fix
carbon via the Wood-Ljungdahl pathway [69]. Transcripts
of the carbon-monoxide dehydrogenase catalytic subunit
(cooS/acsA) were present in the U1383C Shallow meta-
transcriptome in 2017 (Fig. 1b), on contigs annotated as
Desulfobulbaceae (Supplementary Data).

Respiration, oxygen, and anaerobiosis

MAGs possessing carbon fixation pathways all contained at
least one aerobic or microaerophilic terminal oxidase
(Fig. 4), suggesting that carbon fixers in the aquifer use
oxygen as a terminal electron acceptor. However, if oxygen
is limiting or unavailable, nitrate or nitrite may be used as
an alternative (Fig. 4, [13]). The coupling of sulfur, sulfide,
and thiosulfate oxidation to denitrification is well docu-
mented in multiple bacterial clades (e.g., [70, 71]). Anae-
robic oxidation of sulfur [72] and sulfide [73] coupled to
DNRA has also been described in marine environments.

The complete suite of transcripts for denitrification
from NO3- to N2 was identified in U1382A and U1383C
Deep (Fig. 1b). However, transcripts for the final two
steps of denitrification were not abundant in U1382A (<2
tpm; Fig. 1b), and none of the abundant MAGs in
U1382A were capable of reduction of NO to N2O (Figs. 2
and 4). Reduction of nitrogen species from NO to N2

therefore appears to occur primarily in U1383C Deep,
carried out by the Alphaproteobacteria, Gammaproteo-
bacteria (Alteromonadales), and Planctomycetota (Phyci-
sphaerales) (Fig. 5). The majority of MAGs that contained
denitrification genes also contained aerobic terminal oxi-
dases, except for two of the Planctomycetota (Fig. 4).
While denitrification is generally a strictly anaerobic

process, aerobic denitrifying bacteria have been described
[74, 75].

Sulfur reduction was a less common anaerobic respira-
tion strategy, both in the metatranscriptomic data
(Fig. 1b) and in the MAGs (Fig. 4). Six MAGs in total had
the capability to reduce sulfite to sulfide, all of which
contained pathways for carbon fixation: two Desulfo-
bacterota, two Alphaproteobacteria, and two Gammapro-
teobacteria (Fig. 4). One MAG, a gammproteobacterium
(NP171383CS-2), contained a complete pathway for the
reduction of dimethyl sulfoxide (Supplementary Data).
Hydrogen sulfide has never been detected in North Pond
crustal fluids [9, 12].

Anaerobic processes appear to only be relevant in
U1383C Deep, based on the presence of denitrification
transcripts and denitrifying MAGs, cbb3-type cytochrome c
oxidases, NiFe hydrogenases, and catalases associated with
oxidative stress. This is consistent with the lower (173 μM
[12]) oxygen concentrations present in this horizon com-
pared to other horizons [12, 13]. In addition, samples col-
lected in 2012, 6 months after borehole drilling ceased,
included particle-laden fluids which have not been observed
since [9, 12]. Organic aggregates provide microenviron-
ments of anoxia in otherwise oxic seawater, vastly
expanding the available niche space of denitrifying and
sulfate-reducing bacteria in the global ocean [76]. This may
explain why we observed high abundances of NiFe-
hydrogenase transcripts associated with anaerobic metabo-
lisms in 2012, and why abundances of these genes were
mostly confined to the Deep horizon of U1383C in 2017,
post-drilling recovery (Fig. 1b). It is possible that the crustal
environment may contain slower flow paths or stagnant
zones where oxygen becomes depleted, allowing for the
anaerobic metabolisms we observed to take place. Fur-
thermore, the abundance of motility and flagellar genes in
the metatranscriptomes and the lack of genes for biofilm
formation (Supplementary Fig. 2) also suggests that the
microbial community captured in these samples is highly
mobile and capable of seeking out organic particles to
colonize and consume. Fractures in the basaltic basement
may host more sedentary, surface-associated microbial
communities with metabolisms not represented in the data
presented here.

Nitrification

Cross-hole tracer experiments during the most recent cruise
to North Pond detected an increase in nitrate concentrations
relative to bottom seawater, most likely the result of
microbial nitrification:[12] the oxidation of ammonia to
nitrite and nitrite to nitrate. Ammonium concentrations in
borehole fluids are usually low (<0.1 μM ammonium), and
metatranscriptomic evidence for nitrogen fixation to
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ammonia was lacking in the aquifer (Fig. 1b). Dissimilatory
nitrate reduction to ammonia (DNRA) transcripts, however,
were present in all three 2017 samples (Figs. 1b and 5) and
the DNRA pathway was present in 23 of the 64 MAGs
(Fig. 4). Ammonia produced by this pathway may be
rapidly consumed by nitrifying archaea (Nitrososphaeria)
and bacteria (Nitrospinia) [77].

amoA transcripts were present in all of the 2017 samples
(Fig. 1b) and were found exclusively on Nitrososphaeria-
annotated contigs. We did not detect the 4-hydroxybutyrate/
3-hydroxypropionate cycle used by ammonia-oxidizing
archaea for carbon fixation [78] in any of our samples.
However, culturing, DNA stable isotope probing, and MAG
data suggest many of these archaea may be mixotrophic or
heterotrophic [79–83].

Marine nitrite oxidation is generally associated with
Nitrospira and Nitrospinia bacteria, which may grow auto-
trophically or mixotrophically [84–87]. While these phyla
were most abundant in the 2017 U1383C Shallow meta-
transcriptome (Fig. 1a), nxrA transcript abundance was
relatively low in this sample (11–15 tpm; Fig. 1b). nxrA
transcripts were most abundant in U1382A in 2017 (Fig. 1b)
and associated with unbinned contigs that could broadly be
assigned to the Nitrospinia (Supplementary Data). While we
obtained one Nitrospinia and three Nitrospira MAGs, all of
them were missing nxrA (Fig. 4, Supplementary Data). nxrA
was identified on only one MAG, which belonged to phylum
Bacteroidetes (genus Thiocapsa; Fig. 4, Supplementary
Fig. 4). Based on 16S/23S data and the taxonomic annotation
of the metatranscriptomic contigs, we assume that oxidation
of nitrite to nitrate is being carried out primarily by Nitros-
pinia in U1382A and U1383C Shallow (Fig. 5).

Together, our results show that the microbial community
in the North Pond crustal aquifer is populated by motile
mixotrophic and organotrophic bacteria that are active
under both oxic and anoxic conditions. This snapshot of
subseafloor microbes at North Pond represents the fluids in
their most pristine state, furthest removed from the dis-
turbances caused by drilling. While low biomass presents
significant challenges for such studies, this first examination
of transcripts from the cool, oxic subseafloor aquifer high-
lights the spatial heterogeneity of life in such fluids and the
ability of microbes to respond and adapt to different regimes
in the crustal matrix.

Data availability

Data from 2017 metagenomes and 2012, 2014, and 2017
metatranscriptomes has been deposited at SRA under the Bio-
Project accession numbers PRJNA554681 and PRJNA522799,
respectively, and raw sequence reads are available with acces-
sion numbers SRR9705319-SRR9705323, SRR8590998-
SRR8591005, and SRR10499325-SRR10499326. Assembled

contigs for each 2017 metagenomic library are publicly
available via IMG/MER under submission numbers
3300029216 and 3300029223–3300029226. Contigs for
each individual 2017 MAG are available through FigShare
at https://figshare.com/articles/dataset/North_Pond_2017_
High_Completion_Bins/12389789. Raw sequence reads
from Meyer et al. [9] constituting the metagenomic samples
from 2012, are available under the BioProject accession no.
PRJNA280201. Data from Tully et al. [13], including the
2013 and 2014 metagenomes, are available under the
BioProject accession no. PRJNA391950 and raw sequence
reads are available with accession no. SRX3143886-
SRX3143902. Reassembled 2012–2014 metagenomes used
in this study are available via IMG/MER under submission
numbers 3300029924–3300029927 and 3300029949–
3300029950. All accession numbers are available in
Supplementary Data.
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