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Abstract
Exploitation of plant growth promoting (PGP) rhizobacteria (PGPR) as crop inoculants could propel sustainable
intensification of agriculture to feed our rapidly growing population. However, field performance of PGPR is typically
inconsistent due to suboptimal rhizosphere colonisation and persistence in foreign soils, promiscuous host-specificity, and in
some cases, the existence of undesirable genetic regulation that has evolved to repress PGP traits. While the genetics
underlying these problems remain largely unresolved, molecular mechanisms of PGP have been elucidated in rigorous detail.
Engineering and subsequent transfer of PGP traits into selected efficacious rhizobacterial isolates or entire bacterial
rhizosphere communities now offers a powerful strategy to generate improved PGPR that are tailored for agricultural use.
Through harnessing of synthetic plant-to-bacteria signalling, attempts are currently underway to establish exclusive coupling
of plant-bacteria interactions in the field, which will be crucial to optimise efficacy and establish biocontainment of
engineered PGPR. This review explores the many ecological and biotechnical facets of this research.

Introduction

To meet the food demands of a near 10-billion strong
human population projected to exist on Earth by 2050,
agricultural productivity must increase by up to 70% [1–3].
This onerous challenge must be met without expansion of
arable land, and using current or lower inputs of envir-
onmentally deleterious agrochemicals (fertilisers and pesti-
cides) or we risk further loss of natural ecosystems and
depletion of rock phosphate reserves [2, 4]. Plant growth
promoting (PGP) rhizobacteria (PGPR) offer many services
to plants that could substitute the roles of agrochemicals to
boost primary food production [5]. Exploitation of PGPR as
inoculants of high-yielding cereals such as wheat, maize
and rice, that constitute 42.5% of human caloric intake [6],
has specifically emerged as a promising strategy to drive the
sustainable intensification of agriculture.

While some PGPR have already been commercialised
and can significantly improve crop yield [7–10], field per-
formance of PGPR is typically inconsistent [11, 12], in-part
due to underdeveloped inoculation technology which falls

outside of the scope of this review, but also as a con-
sequence of the following issues (Fig. 1): Firstly, coloni-
sation of the rhizosphere – the root-soil interface where
nutrient exchange occurs between bacteria and plants – may
be suboptimal due to competition with resident microbes
that have become well-adapted to the soil conditions over
years of natural selection. Secondly, while plants exert some
control over the composition of the root associated micro-
biome (rhizomicrobiome), colonisation by PGPR typically
lacks stringent host-specificity [13]. As a result, wild or
invasive plant species may benefit from the services of
PGPR, enhancing their ability to compete with the target
crop for resources. Lastly, some PGPR have evolved agri-
culturally undesirable modes of genetic regulation to repress
PGP traits when they are not beneficial to the bacteria,
helping them to conserve energy and resources [14, 15], but
consequently rendering them of reduced benefit to the plant.

While some highly competitive and stress-tolerant cereal
rhizosphere colonising bacteria have been isolated from
different soil types, the key genetic aspects underlying their
efficaciousness remain to be defined [16]. In contrast, many
mechanisms of PGP including nitrogen (N)-fixation, phos-
phate (P)-solubilisation, phytohormone biosynthesis, rhi-
zoremediation of xenobiotic pollutants and biocontrol of
pathogens have been elucidated in fine enough detail to be
genetically engineered. Transfer of these traits on domes-
ticated mobile genetic elements (MGEs) into selected rhi-
zobacterial “chassis” or entire populations can be used to
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tailor effective PGPR with desirable traits for agricultural
use in specific soil types. By utilising recently developed
synthetic host-specific plant-to-bacteria signalling [17], it
has become possible to establish exclusive coupling of
plant-bacteria interactions in the field, which will subse-
quently will allow us to begin optimising various aspects of
engineered PGPR ecology, including enrichment, PGP
efficacy and biocontainment. In this review, we highlight
ecological and biological limitations of natural PGPR in
agriculture and discuss how genetic engineering and syn-
thetic biology are being applied to develop improved PGPR
tailored for agricultural use.

Limitations of natural PGPR

Suboptimal rhizosphere colonisation and
persistence in foreign soils

In comparison to the oligotrophic bulk soil, the rhizosphere
is a highly favourable environment for microbial prolifera-
tion due to the secretion of root exudates rich in sugars,
organic acids and amino acids [18, 19]. PGPR must first
colonise the rhizosphere to exert their beneficial effects on
plants (Box 1). Most of the natural rhizosphere microbiota
is inherited vertically from the bulk-soil and forms a com-
plex community which matures and becomes structurally
stable after only 2 weeks [20]. PGPR used to inoculate
crops are typically applied directly to the seed but despite

their initial proximity to the developing root, PGPR must
compete for colonisation of the rhizosphere with resilient
resident microbiota that may have become well-adapted to
the soil conditions over years of evolutionary selection
(Fig. 1a).

Competitive rhizobacteria may utilise adaptive structural
or metabolic traits that enhance nutrient acquisition or
provide tolerance to abiotic stresses such as pH, drought,
salinity and soil chemistry [21]. Environmental pH is the
main determinant of microbiome selection at the phylum
level. Acidic soils are dominated by Acidobacteria, whereas
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Fig. 1 Limitations of natural PGPR. The benefits of PGPR in
agriculture are restricted by three factors. a Inoculant bacteria may fail
to colonise the rhizosphere of target crops to exert their beneficial
effects due to competition with resilient resident microbes that may
have become well-adapted to the soil conditions over years of evo-
lutionary selection. Abiotic stresses may also impact negatively on
persistence in the bulk-soil. b Although plants can exert some control
over the structure of their rhizomicrobiome, there is no stringent host-

specificity for bacterial colonisation of plant roots. Thus, inoculant
PGPR may provide their beneficial services to non-target invasive
species, creating competition for the target plant. c Some PGPR have
evolved agriculturally undesirable modes of genetic regulation that
repress expression and/or activity of PGP traits when conditions are
not conducive for the bacteria (See Fig. 2 for additional information).
Such regulation can assist the bacteria in conservation of energy and
resources but renders the bacteria of little benefit to plants.

Box 1. Bacterial colonisation of the rhizosphere

Bacterial colonisation of the rhizosphere first involves a dispersal
phase, where the bacteria recognise primary metabolites in root
exudates and migrate towards the rhizoplane (root surface) by
chemotaxis [19]. Epiphytic bacteria attach to the rhizoplane leading
to the establishment of micro-colonies or biofilms. Subsequently,
endophytic bacteria colonise the root endosphere, entering plant
tissues through natural wounds or fissures formed at the base of
lateral roots. Endophytes can alternatively force entry into the
intercellular environment by secretion of cellulases or other
enzymes that degrade the plant cell wall [19, 143]. The genetics
of root colonisation are immensely complex and are therefore
generally probed using “omic” approaches [16]. Transposon
insertion sequencing experiments suggest that over one-hundred
amino acid catabolism, stress adaptation, detoxification, signal
transduction and transport genes contribute to the fitness of the
epiphyte P. aeruginosa PGPR2 during colonisation of maize roots
[144]. Motility, polysaccharide and other general surface attach-
ment factors are likely also important for this process [145].
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Proteobacteria colonise soils with neutral-pH and phyla are
evenly distributed in high-pH soils [22]. Competitive PGPR
may additionally harbour microbial weapons such as type
IV, VI and VII secretion systems, contact-dependent growth
inhibition, nanotubes for delivery of toxins and outer
membrane exchange. Remarkably, bacteria have even
mastered phage weaponry such as tailocins to disrupt
opponent membranes and can harbour active phage in their
genomes for targeted bacterial killing [23].

Although very few genetic determinants of rhizosphere
colonisation, persistence and competition under stress have
been elucidated, bioprospecting for efficacious rhizosphere
colonising bacteria in different soil types has been fruitful.
For example, drought tolerant PGPR that stimulate seedling
germination and growth of Setaria italica (foxtail millet)
have been isolated from semi-arid regions in northeast
China [24], whereas many halotolerant PGPR have been
described [25]. Utilising competitive PGPR that are well-
adapted to their environment is crucial to achieve optimal
colonisation of target crops, but ultimately limits the scope
of PGP traits available for agricultural exploitation.

Promiscuous host-specificity

Establishment of intimate N-fixing endosymbioses between
rhizobia and legumes involves a complex dialogue of
molecular communication utilising plant-derived flavonoids
and bacterial-derived Nod-factors to achieve a “lock and
key” type strategy for partner-specific infection [26]. In
contrast, rhizosphere colonisation and subsequent PGP by
both epiphytic and endophytic rhizobacteria lack active
mechanisms for stringent partner-specificity (Fig. 1b),
which could be problematic in the field due to promiscuous
colonisation and growth promotion of wild or invasive plant
species which compete with target crops for light, resources
and space, negatively impacting yield [27]. Plants can exert
some control over the composition of the rhizomicrobiome
by producing root exudates with distinct compositions of
metabolites that stimulate or repress microbial proliferation
[28]. In a key study where natural blends of phytochemicals
derived from Arabidopsis root exudates were added to soil
in lieu of the plant, pyrosequencing of 16s rRNA revealed
that phenolic compounds dramatically increase the number
of unique operational taxonomic units (OTUs), whereas
sugars and amino acids had a similar, but less profound
effect [29]. Analysis of the rhizomicrobiome structure of
an Arabidopsis ABC transporter mutant, which exhibits
increased export of phenolics and decreased export of
sugars, has further revealed selective stimulation of
PGPR relative to a wild-type control [30]. In addition to
the above-mentioned phytochemicals, camalexin, coumar-
ins, triterpenes, benzoxazinoids, and in some cases, their
degradation products, have been shown to influence

rhizomicrobiome structure [31, 32]. Importantly, the com-
position of an individual plants root exudates are not static,
but rather, are dynamically influenced by the plant devel-
opmental stage, presence of abiotic stresses and by the
rhizomicrobiome itself [28]. Thus, it is difficult to predict
root exudate composition in the field.

Undesirable regulation of PGP traits

In the context of PGP, many processes beneficial to the plant
are energetically costly to the bacterium. As such, PGPR
have evolved tight regulatory systems to control expression
of PGP genes and activity of PGP traits in response to
environmental or internal conditions, enabling conservation
of energy and resources (Fig. 1c). The existence of this
agriculturally undesirable regulation means that some PGPR
may perform sub-optimally in the field. Epiphytic and
endophytic diazotrophic rhizobacteria that reduce chemically
inert atmospheric N2 gas into NH3

+ for plant assimilation are
prime examples (Fig. 2). Most catalyse N-fixation via
molybdenum-dependent nitrogenases that are highly sensi-
tive to O2 and may require expression of up to 35 nif and
accessory genes for their assembly and function [33].
N-fixation is extremely energy intensive, consuming 16mol
ATP per mol N2 fixed in vitro. However, the in vivo cost of
N-fixation may reach as high as 42mol ATP per mol N2

fixed when factoring nitrogenase expression, O2 protection
mechanisms and metabolic rerouting of electron allocation
[34–36]. To reduce energy consumption, diazotrophs have
evolved strict multi-layered regulation of nitrogenase, pri-
marily in response to NH3

+, O2 and in some species, C [14].
O2 and C regulation ensure nitrogenase is only expressed
when conditions are conducive (i.e. O2, high energy) pre-
venting futile expression. In contrast, NH3

+-regulation,
which has become integrated into global bacterial N-meta-
bolism, provides negative feedback for N-fixation preventing
production of excess NH3

+ that is not required for assim-
ilation [14]. Because of this feedback regulation, natural
diazotrophic bacteria secrete little of their fixed N for
assimilation by plants.

Phosphate-solubilising bacteria represent a second key
example to illustrate the problem of undesirable genetic
regulation in PGPR. Bacterial phosphatase and phytase
enzymes that release available phosphorus (P) from various
sources of organic matter are typically regulated via the
Pho regulon [15] which permits expression of the genes
only under P limitation [37–39]. Because plants likely
become starved of P before bacteria, this regulation may
prevent phosphate-solubilising bacteria reaching their full
potential for phosphatase/phytase expression, and thus PGP
in the field. Considering the strong selective pressure fast
growing bacteria in the rhizosphere [18], it seems is likely
that many modes of gene regulation which favour
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preservation of bacterial fitness over plant fitness remain to
be identified.

Engineering and transfer of PGP traits

In recent decades, a plethora of gene clusters conveying
distinct PGP traits have been assembled on domesticated
broad-host-range MGEs for transfer into rhizobacterial
chassis’ [40]. By mobilising PGP traits into stress-resistant,
competitive, and efficacious root-colonising rhizobacteria
(Box 2), we can tailor strains with desirable PGP traits for
specific soil types. Transfer of such gene clusters may
additionally suffice to overcome natural modes of undesir-
able genetic regulation where essential factors are absent in
the recipient strain [41], though the genomes of recipients
occasionally require further metabolic tweaking to optimise
functionality. In this section, we provide an overview of
some the key PGP traits that have been genetically engi-
neered (Table 1), successfully transferred and, in some
cases, optimised in rhizobacteria.

N-fixation

Current agricultural productivity is largely dependent on
supplementation of crops with N that has been synthesised
through the Haber-Bosch process [42]. The production of

this nitrogenous fertiliser alone consumes 1–2% of global
annual energy supply and accounts for 1.5% of global
carbon emissions [43], whereas excess application of
nitrogenous fertiliser can result in unintended contamination

nifH nifD nifK

NifA

N2

NH3

Nitrogenase

GlnK-UMP

nifA nifL

NifL
(inactive)

GlnK

nifH nifD nifK

NifA

Nitrogenase

nifA nifL

NifL
(active)

NtrC (active)NtrB (active)

P

PNtrC
(inactive) NtrB (inactive)

Low [NH3+]High [NH3+]

A. Klebsiella pneumoniae
Low [NH3+]High [NH3+]

B. Azospirillum brasilense

nifH nifD nifKnifH nifD nifK

NifA

Nitrogenase

DraT
(active)

DraG
(inactive)

Nitrogenase

DraT
(inactive)

DraG
(active)

NifA

N2 NH3

nifA nifA

GlnB-
UMP

GlnZ-
UMP

GlnB GlnZ

Fig. 2 Examples of multi-layered NH3
+-dependent repression of N-

fixation. NH3
+-dependent negative feedback regulation of N-fixation

is ubiquitous in diazotrophic bacteria and involves diverse multi-
layered strategies that primarily target the “master regulator” of N-
fixation NifA, which acts in association with the sigma factor σ54 to
drive expression of a large suite of nitrogenase (nif) and accessory
genes. For simplicity, σ54 is not shown here, and only the structural
nitrogenase genes nifHDK are shown as induced by NifA. In all
bacteria, the N-status of the cell is sensed via GlnD, which under low
N-conditions, uridylylates one or more global N-regulatory PII
protein(s) (GlnK, GlnB and GlnZ in the depicted systems) [14].
a In Klebsiella pneumoniae, uridylylated GlnK phosphorylates NtrB

leading to subsequent phosphorylation of NtrC which in turn activates
transcription of nifLA [141]. NifL is able to bind NifA and inhibit its
activity, but is itself inactivated by binding to uridylylated GlnK under
low NH3

+ conditions. b In Azospirillum brasilense, nifA expression is
constiutitve but the NifA protein requires binding to uridylylated GlnB
for activation [142]. Nitrogenase activity is additionally regulated via
the DraT-DraG system in this strain [142]. Under high NH3

+ condi-
tions, DraT binds to de-uridylylated GlnB and inactivates nitrogenase
through ADP-ribosylation, whereas DraG binds to de-uridylylated
GlnZ and is sequested to the membrane. Under low NH3

+ conditions,
nor DraT or DraG bind their cognate PII protein and DraG subse-
quently re-activates nitrogenase by reversal of ADP-ribosylation.

Box 2. Strategies for transfer of PGP traits

Engineering of PGPR can be achieved using bottom-up or top-
down strategies [135]. The traditional bottom-up strategy first
involves isolation of rhizobacteria followed by introduction of
PGP gene clusters on broad-host-range plasmids through conjuga-
tion or phage-transduction. Relative to conjugative plasmids that
are readily lost from bacterial populations, integrative and
conjugative plasmid systems such as mini-Tn7 [146] and
chassis-independent recombinase-assisted genome engineering
(CRAGE) [147] offer the advantage of long-term stability and
are the gold standard for transfer. The more recently defined top-
down strategy for transfer of PGP genes does not require isolation
of single bacteria but can be used to introduce foreign genes into
undomesticated populations in situ via a conjugal donor strain. To
illustrate this technology, a miniaturised mobilisable derivative of
the integrative and conjugative element ICEBs1 has been
mobilised into diverse bacteria inoculated into sterile soil via a
donor strain B. subtilis XPORT [148]. in situ conjugative transfer
of extrachromosomal and integrative BHR plasmids into the
mammalian gut microbiota was also recently achieved in a similar
fashion [149]. The ability to transfer PGP into bacterial
populations in situ will be instrumental in driving high-
throughput generation of repurposed PGPR and has sparked the
emergence of microbiome engineering as a defined field of study.
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of ecosystems with severe cumulative effects [42, 43].
Exploitation of bacterial N-fixation offers a highly sustain-
able and efficient alternative to the use of N-fertilisers in
agriculture.

For decades, engineering PGP traits has focussed pri-
marily on N-fixation which has seen rampant progression
since the transfer of the Klebisiella oxytocaM5a1 nif cluster
into Escherichia coli in 1972 [44]. A single study recently
demonstrated transfer of 12 nif gene clusters between 15
diverse bacterial species [45]. It has become clear that the
effectiveness of N-fixation is strongly influenced by the
genotype of the nif recipient bacteria. Transfer of a single 9-
gene nif operon from the cereal epiphyte Paenibacillus
polymyxa WLY78 into E. coli initially resulted in 10%
nitrogenase activity compared to the wild-type donor strain
[46], but this could be boosted to 50% by co-expression of
the P. polymyxa electron transporter genes pfoAB-fldA and
the K. oxytoca nitrogenase Fe-S cluster assembly genes
nifSU [47]. In a separate study, transfer of 24 N-fixation
genes from the photosynthetic cyanobacterium Cyanothece
sp. into Synechocystis sp. PCC 6803 conveyed 30% nitro-
genase activity in anoxic conditions compared to the donor
strain. Although N-fixation was strongly inhibited under
microaerobic conditions, co-expression of a hydrogenase
gene cluster hupSLW increased N-fixation 2–6-fold pre-
sumably by improving the oxygen tolerance of nitrogenase
[48]. These studies highlight the necessity for broad-scope
engineering of nitrogenase accessory genes and oxygen
tolerance mechanisms to achieve optimal N-fixation in
naturally non-diazotrophic bacteria.

Overcoming natural NH3
+-dependent feedback regula-

tion of N-fixation represents one of the principal chal-
lenges for the generation of strains that readily release
fixed N for assimilation by plants [14]. Interestingly, while
Pseudomonas stutzeri A1505 does not fix N in the pre-
sence of NH3

+, transfer of the nif genes into the cereal
endophyte P. protogens Pf-5 enabled the recipient to
undergo NH3

+-insensitive N-fixation. The recipient
released fixed N into the environment and promoted var-
ious aspects of Arabidopsis, alfalfa, tall fescue, wheat and
maize growth under N-limiting gnotobiotic conditions
[41, 49]. Similar NH3

+-insensitive regulation of N-fixation
was observed for 3/5 alternative Pseudomonas species
receiving the P. stutzeri nif genes, whereas NH3

+-regula-
tion was preserved in the remaining two species. Inter-
species transfer of nif genes can abolish native modes of
regulation due to the absence of regulatory factors in the
recipient, but remarkably, N-regulation was preserved
when the P. stutzeri nif genes were transferred into E. coli
[50]. Strong evidence suggested that GlnG, an E. coli
homologue of NtrC (Fig. 2b), was repressing expression of
the nif master regulatory nifLA genes in the presence of
NH3

+. Transfer of nif clusters between more distantly

related bacteria, for example from gamma-proteobacteria
to alpha-proteobacteria and vice versa, typically results in
the generation of non-fixing strains due to transcriptional
incompatibility [45]. Thus, the origin of nif clusters and
the recipient must be carefully considered to produce
compatible and effective N-fixing strains.

Modular refactoring of nif clusters under artificial tran-
scriptional control offers a controlled strategy to circumvent
native regulation but perplexingly requires accurate repro-
duction of Nif protein stoichiometry for optimal nitrogenase
assembly and function. Although, initial refactoring of the
K. oxytoca nif cluster under transcriptional control of a
T7-polymerase in E. coli gave only 10% of nitrogenase
activity relative to the donor strain [51], this was boosted to
57% by introducing a variant nif cluster v2.1 which had
been optimised by combinatorial optimisation of modules
[52]. Surprisingly, transfer of nif cluster v2.1 into the cereal
endophytes P. protogens Pf-5 and Rhizobium sp. IRBG74
did not convey these bacteria with the capacity for
N-fixation [45] but subsequent introduction of a v3.2 nif
cluster with natural operonic structure and IRGB74-
optimised genetic components conveyed low rates of
N-fixation in these strains [45]. A “fuse-and-cleave” virus-
derived polyprotein strategy has also been used to refactor
14 K. oxytoca nif genes into five translational reading
frames that convey N-fixation in E. coli that is 72% as
effective as K. oxytoca [53]. This strategy has the potential
to revolutionise engineering of complex PGP traits that
require precise reproduction of protein stoichiometry.

Ultimately, if engineered N-fixing rhizobacteria are to be
utilised for agriculture, they must release significant quan-
tities of fixed N for plant assimilation. Considering the
plethora of research involving transfer of nif clusters, it
seems inconceivable that P. protogens Pf-5 carrying the P.
stutzeri nif genes remains the only nif recipient strain that
has been shown to secrete N and promote plant growth
[41, 49]. For nif recipients that fail to secrete fixed N, it is
possible to force secretion through conditional suppression
of the NH3

+ assimilation pathways, albeit such modifica-
tions can severely impact on viability and fitness, rendering
strains poorly suited to field conditions [14, 54]. The
development of less debilitating strategies to force
N-secretion will be invaluable for the development of effi-
cacious N-fixing bacteria for agriculture.

Phosphate solubilisation

Although phosphorus (P) is abundant in soils in both
organic and inorganic forms, only around 0.1% of the total
P content is available to plants due to poor solubility [55].
Akin to the “nitrogen crisis”, current agricultural pro-
ductivity is also heavily reliant on supplementation of crops
with P-fertilisers, but these are in finite supply and
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ecosystem scale disturbance to P cycling is environmentally
deleterious [4, 56, 57]. Phosphate-solubilising bacteria
release metabolically inaccessible P in soil and therefore,
could be agriculturally exploited to reduce dependency on
P-fertilisers and improve the efficiency of P use within agro-
ecosystems [57].

The principal mechanism for inorganic phosphate (Pi)
solubilisation in natural bacteria involves lowering of soil
pH by secretion of strong organic acids [58]. Engineering
strategies have attempted to replicate this. Overexpression
of Synechococcus elongatus PCC 6301 phosphoenolpyr-
uvate carboxylase (ppc) in P. fluorescens was shown to
enhance glucose metabolism, increasing production of
gluconate, pyruvate and acetate, which mildly improved Pi
solubilisation [59]. An artificial citrate operon containing an
E. coli derived NADH-insensitive citrate synthase (gltA1)
and citrate transporter (citC) has also been successfully
cloned and integrated into the genomes of six PGP P.
fluorescens strains, elevating secretion of citric and gluconic
acids and increasing solubilisation of mineral phosphate
[60]. Although the above-mentioned bacteria mobilise P
under laboratory conditions, artificially enhanced organic
acid production and secretion demands substantial inputs of
C, likely exceeding what is available in most rhizospheres.
Therefore, the efficacy of P mobilisation by these bacteria
would presumably be suboptimal in the field.

Organic phosphate also represents a crucial P reservoir in
the soil, typically accounting for 20–60% of total P [61], but
reaching as high as 90% in high organic matter soils [62].
Bacteria can produce diverse enzymes, such as alkaline
phosphatases, acid phosphatases, phytases, phosphonatases,
nucleases and phosphodiesterases, which release P from
various sources of organic matter [15, 57]. A recent study
used a combinatorial synthetic biology-based approach to
generate 82 biochemically diverse phytase enzymes which
were integrated into the genomes of P. putida, P. simiae and
Ralstonia sp. strains [63]. Of 185 strains generated, 41
mobilised P from phytate in liquid culture and 12/14 tested
promoted increased biomass and rosette size of Arabidopsis
grown under gnotobiotic conditions with phytate as a sole
source of P. Crucially, enzymatic release of P offers a far
less carbon-intensive strategy to release phosphates in the
soil for plant assimilation, but it remains to be discerned
whether experimental results can be replicated in the field.

Auxin and naringenin biosynthesis

The ability of PGPR to influence plant development through
production of phytohormones and other developmental
effectors can enhance biomass, provide tolerance to
abiotic stresses and improve root colonisation by resident
rhizobacteria [64–67]. A P. savastanoi derived indole-3-
acetamide biosynthesis pathway facilitating production

of the auxin phytohormone indole-3-acetic acid (IAA)
from L-tryptophan has been expressed in Cupriavidus
pinatubonensis [68]. When inoculated onto Arabidopsis,
the resulting strain increased lateral root number, root
length, fresh weight, and rosette area. Alternative synthetic
indole-3-pyruvic acid pathways for IAA biosynthesis from
L-tryptophan have also been engineered into E. coli [69, 70].
Crucially, these pathways rely on the presence of large
intracellular quantities of the precursor L-tryptophan that
may not be present in the rhizosphere. To circumvent this
issue, several genetic modifications have been made to an E.
coli strain carrying IAA biosynthesis genes that increase
flux through the shikimate pathway and drive increased
production of L-tryptophan from glucose [69]. The resulting
strain produced IAA when grown on glucose as a sole
carbon source.

Engineering of biosynthesis pathways to produce the
plant-derived flavone naringenin in E. coli has received
much attention in recent times mainly owing to the medical
benefits associated with these molecules [71–74]. Impor-
tantly, direct application of naringenin to cereals also pro-
motes formation of lateral roots and improves endophytic
colonisation by the diazotrophic PGPR Azorhizobium cau-
linodans [65–67]. A recent study demonstrated use of an
optimised pathway for de novo biosynthesis of (2S)-nar-
ingenin in E. coli capable of producing over 100 mg/L−1

(2S)-naringenin from glucose [71]. While there are cur-
rently no reports pertaining to the introduction of engi-
neered naringenin biosynthesis clusters into rhizobacteria,
this simple experiment could have significant value for
agricultural research.

Biocontrol

While pesticides are of significant benefit to agricultural
productivity, most contain organic pollutants which persist
in the environment, can be transported over vast distances,
and may eventually bioaccumulate at toxic levels in
organisms that occupy high trophic levels of the food-chain,
including humans [75–77]. Use of plant colonising bacteria
to control plant pathogens could reduce dependency on
pesticides in agriculture. Pseudomonas spp. have been of
particular interest in this regard due to their ability to
competitively antagonise pathogens and produce a wide
range of antifungal metabolites [78]. Four P. fluorescens
BL915 genes prnABCD involved in biosynthesis of the
broad-spectrum antifungal pyrrolnitrin have been expressed
in the cotton colonising P. fluorescens strains BL914 and
BL922, conveying upon them the ability to supress Rhi-
zoctonia solani-induced damping-off disease [79, 80].
Additionally, the broad-spectrum antifungal 2,4-diace-
tylphloroglucinol (DAPG) biosynthetic gene clusters
phlDACB from Pseudomonas sp. G22 and P. protegens Pf-

956 T. L. Haskett et al.



5 have been expressed in the diazotrophic wheat endophyte
Pseudomonas sp. WS5 [81]. Culture extracts from these
strains showed antagonistic effects against the fungal
pathogens Magnaporthe oryzae B157 and R. solani and the
strains promoted various aspects of growth for rice and
sorghum infected with these pathogens.

Although often overlooked, one of the possible rami-
fications of engineering rhizobacteria for increased pro-
duction of broad-spectrum antifungal compounds as
biocontrol agents is the unintended antagonism of the
arbuscular mycorrhiza (AM) symbiosis that is crucial for
growth and survival of most land plants. This issue has
been explored in engineered phenazine-1-carboxylic acid
(PCA) producing derivatives of P. fluorescens SBW25
carrying the PCA biosynthesis genes phzABCDEFG from
P. synxantha 2-79. The engineered PCA producing strain
exhibited an improved ability to reduce Pythium ultimum
induced damping-off disease of pea seedlings, even when
the pathogen was present at over 100-fold field infestation
levels [82], and promoted various growth aspects of P.
ultimum infected pea, wheat and sugar beet [83].
Remarkably, inoculation with engineered PCA producing
strain had no deleterious effect on the percentage of nat-
ural field margin pasture plants infected with AM relative
to the wild-type strain SBW 25 [83]. Despite these pro-
mising early-phase results, the development of more tar-
geted biocontrol mechanisms will be instrumental moving
forward with engineering of biocontrol PGPR for agri-
culture. Such systems could utilise targeted release of
narrow spectrum toxins and bacteriocins [84, 85] or in situ
conjugal transfer of DNA sequence-specific antagonism/
killing mechanisms based on CRISPR-Cas9 technology
and pathogen-inducible expression systems [86–88]. The
latter strategies could be particularly useful for biocontrol
in the rhizosphere, which is a hotspot for horizontal gene
transfer [89].

Rhizoremediation

Bacteria that sequester, detoxify, or degrade heavy metals
and xenobiotic pollutants can be useful to remediate agri-
cultural soils and reduce phytotoxicity. Engineering of rhi-
zoremediating bacteria is a strong and rapidly expanding
area of research [90–92] with several studies demonstrating
direct reduction of phytotoxicity. This has been achieved for
example, through heterologous expression of 1-aminocy-
clopropane-1-carboxylate-(ACC)-deaminases, which reduce
in planta levels of the root elongation inhibitor ethylene that
accumulates in response to various environmental stresses
[93–95]. Additionally, crude transfer of the entire 108-kb
Burkholderia cepacia G4 plasmid pTOM, encoding a
toluene mono-oxygenase, into the lupin endophyte B.
cepacia L.S.2.4, conveyed the capacity to degrade toluene

in non-sterile sand and increased biomass of yellow lupine
grown under toluene stress [96].

Regarding heavy metals, soil bacteria have been engineered
for cell surface biosorption of Cd2+ using heterologously
expressed eukaryotic metallothioneins (MTs) and phytoche-
latins (PCs). In a ground-breaking study, a mouse MT protein
was fused to immunoglobulin A (IgA) protease of Neisseria
gonorrhoeae, producing a chimeric Mtb protein which, when
expressed in Ralstonia eutropha CH34, was transported to the
cell surface [97]. The resulting strain adsorbed Cd2+ from the
external environment with increased effectiveness and sig-
nificantly decreased Cd2+ phytotoxicity of Nicotiana ben-
tamiana. Heterologous expression of a cell-surface targeted
MT in the Cd2+-resistant PGPR P. aeruginosa Pse-w also
promoted Cd2+ adsorption by the bacteria which, when
inoculated into Cd2+ rich soil, increased biomass and leaf
chlorophyll content of green pea [98]. In a separate study,
expression of a synthetic PC in Pseudomonas putida 06909
improved intracellular Cd2+ binding and alleviated the cel-
lular toxicity of Cd2+. Inoculation of sunflower roots with this
strain resulted in a marked decrease in Cd2+ phytotoxicity and
a 40% increase in Cd2+accumulation in the plant root [99].

Controlling engineered PGPR in the
rhizosphere

Plant host-specific control of gene expression

During the early phases of bacterial engineering, introduced
genes are commonly overexpressed at aberrantly high levels
to accentuate observable phenotypes for screening under
controlled laboratory conditions. Consequentially, the
increased metabolic load can impair viability and fitness of
the host bacteria, driving strong selection for silencing
mutations. Utilisation of tuneable expression systems to
regulate introduced genes is essential to preserve the native
ecological characteristics of recipient bacteria and stabilise
gene function [100, 101]. Utilisation of plant-derived sig-
nals to control expression of PGP genes can be particularly
useful for rhizobacteria, as this strategy ensures that intro-
duced genes are only expressed upon colonisation of the
rhizosphere. Bacterial allosteric transcription factors (TF)
and cognate inducible promoter pairs responding to primary
and secondary metabolites present in root exudates have
been identified for this purpose [45, 102]. For example,
legume-derived flavonoid-inducible expression systems
from rhizobia have been used to regulate PCB degradation
in P. fluorescens [103] and N-fixation in P. protogens Pf-5
[45]. Signals that are prevalent in the exudates of a broader
range of plants, such as salycilate, vanillate, and arabinose,
have also been used to control expression of N-fixation
genes in root-colonising bacteria [45, 102].
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Metabolomics of plant root exudates have revealed
that some plants produce unique secondary metabolites
[104, 105] raising the possibility of utilising plant species-
specific signals to control bacterial gene expression. This
strategy offers an unprecedented opportunity to establish
exclusive PGP interactions between bacteria and target
plants in the field, which could prevent growth promotion of
non-target weed species following promiscuous colonisa-
tion, but is currently restricted by the lack of identified
cognate bacterial TFs and inducible promoters. To cir-
cumvent this restriction, regulatory mRNAs termed ribos-
witches can be artificially selected in bacteria to regulate
gene expression in response to binding virtually any small
molecule [106]. Alternatively, biosynthesis pathways for
specific signalling molecules with pre-characterised cognate
bacterial gene expression circuitry can be engineered into
target plants and bacteria (Fig. 3a-b). Transgenic Medicago
and barley have been developed that carry a constitutively
expressed synthetic biosynthesis pathway for scyllo-

inosamine (SI), an inositol-derived rhizopine which is
naturally produced by a select few Rhizobium and Sinor-
hizobium strains housed within legume nodules during N-
fixing endosymbiosis [17, 107, 108]. SI is well suited as
plant-to-bacteria signal as it is readily exuded into the rhi-
zosphere, but is rare in nature and both metabolically and
genetically inaccessible to most bacteria [108]. Moreover,
the genetic components of SI-inducible expression systems
have been characterised in detail, allowing complete control
of the system. SI signalling will not only be crucial for
establishing control engineered PGPR traits in the rhizo-
sphere but will be invaluable for other applications (Fig. 3c)
discussed in the following subsections.

Enrichment of target bacteria

Maintaining a sufficiently large population of target bacteria
in the rhizosphere remains one of the key challenges
for improving plant-bacteria interactions. Pathogenic
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Fig. 3 Rhizopine signalling to control PGPR. a To enable signalling
between plants and bacteria, a synthetic biosynthesis pathway has been
engineered into barley and Medicago that facilitates production of the
rhizopine scyllo-inosamine (SI) from myo-inositol [17]. b SI biosensor
plasmids encoding the periplasmic rhizopine-binding protein MocB
and rhizopine-dependent transcription factor MocR can be introduced
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inducible promoter PmocB to be expressed under rhizopine control. c SI
signalling circuitry can be used to establish plant host-specific
expression of rhizobacterial PGP genes, effectively coupling interac-
tions in the field and preventing growth promotion of non-target
plants. SI signalling could also be used to enrich the rhizosphere for
engineered bacteria that carry the catabolic moc gene which permits

utilisation of SI as a sole carbon and nitrogen source [108, 115, 116].
Like most signalling circuitry, the functionality of SI signalling is not
ubiquitous across bacterial taxa. By bringing biosynthesis of a sec-
ondary signalling molecule such as DAPG depicted here, under SI
control, the SI signal could be relayed to diverse bacteria carrying a
second cognate inducible or derepressible promoter system such as the
DAPG-dependent system controlled by PhlF. SI signalling could also
be integrated to control multi-layered biocontainment systems such as
that described by Ronchel et al. [127] where the essential acdS gene
and lacI repressor, targeted for the gef toxin, are each expressed in
response to an external stimulus. Integration of this signal could
restrict proliferation of engineered rhizobacteria to the rhizosphere.
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Agrobacterium spp. have naturally evolved a successful
strategy to overcome this issue, transforming plant cells to
stimulate formation of crown galls or hairy roots that syn-
thesise low molecular weight opines. Opines regulate con-
jugal transfer of the Agrobacterium pathogenic Ti plasmid
and expression of pathogenicity genes [109], but are also
utilised as a source of C and N by Agrobacterium and a
narrow range of other soil bacteria [110, 111]. It has been
categorically demonstrated that opine catabolising bacteria
have a competitive advantage for rhizosphere colonisation
of transgenic opine producing plants grown in sterile con-
ditions [112] and are enriched in the rhizosphere of these
plants grown in non-sterile soils [113, 114].

SI production by transgenic barley and Medicago plants
may also favour proliferation of bacteria carrying natural or
introduced catabolic moc genes (Fig. 3c) which enable
utilisation of rhizopines as a sole source of C and N source
[108, 115, 116]. Although this is yet to be experimentally
tested, it has been demonstrated that bacteria capable of
synthesising and catabolising rhizopines have a competitive
advantage for nodulation of legumes [117]. Moreover, the
presence of moc genes in natural bacteria is inherently
linked with the presence of the rhizopine biosynthesis mos
genes [108]. These findings form the basis of the “rhizopine
concept” hypothesis which depicts rhizopine biosynthesis
and catabolism as a form of kin selection [107]. It remains
unclear as to whether introduction of a constant supply of SI
in the soil would drive the rapid evolution of rhizopine
catabolising bacteria, though considering that Sinorhizo-
bium moc genes are encoded on the conjugative plasmid
pSymA which is actively disseminated in the rhizosphere
[115], this remains a distinct possibility.

Relay signalling

Like most inducible gene expression systems present in
bacteria, the functionality of SI-inducible expression is not
ubiquitous across taxa, restricting our ability to control gene
expression in diverse PGPR. To circumvent this issue, SI
or other narrow host-range signals can be relayed to
incompatible bacteria through a “messenger” capable of
secondary signal production (Fig. 3c). For example, acyl-
homoserine lactone (AHL) biosynthesis could be placed
under SI control, enabling secondary activation of quorum-
sensing (QS) systems that have been designed to regulate
IAA biosynthesis and N-fixation in engineered C. pinatu-
bonensis and E. coli, respectively [45, 68]. While using
specific or engineered AHL synthases and cognate receptors
could avoid interference with native regulation [118], the
enormous diversity of QS and quorum-quenching bacteria
present in the rhizosphere would undoubtedly result in
significant interference of QS circuits [119]. The same
problem rings true for other engineered extracellular

signalling molecules such as DAPG, DHBA and naringenin
[71–74, 81, 100, 120], which have been used to control N-
fixation in diverse bacteria [45]. This problem highlights a
pressing need for the development of heterologous and/or
synthetic bacteria-to-bacteria signalling circuitry that can be
used in the rhizosphere to control gene expression.

Biocontainment

Escape of engineered PGPR and their genetic material from
the intended environment has potential to endanger natural
community dynamics. To prevent this escape, biocontain-
ment mechanisms can be embedded within rhizobacterial
genomes that restrict viability and proliferation outside of
the target rhizopshere and block horizontal gene transfer
(HGT) [121–123]. One strategy involves implementing
synthetic auxotrophy through deletion of one or more
essential metabolic genes, such that the bacteria becomes
dependent on an exogenous supply of a metabolite for
growth and survival. For biocontainment in the rhizosphere,
this strategy would require the target plant to exude
essential metabolites at high enough concentrations to
support growth of the auxotrophic bacteria. Alternatively,
plant-to-bacteria signals such as SI could be used to activate
expression of essential genes [124, 125] or control expres-
sion of toxins or genetic “kill-switches” such as deadman
and passcode [126, 127] (Fig. 3c). While such single bio-
containment mechanisms rarely satisfy the U.S. National
Institute of Health’s recommended safety criteria of an
escape frequency below 1 in 108 cells [128, 129], com-
bining strategies can be highly effective. An escape fre-
quency of <1 in 109 cells was achieved for P. putida MC8,
which encoded an essential 3-methylbenzoate inducible
aspartate-semialdehyde dehydrogenase gene (asd) gene and
repressible gef toxin [127]. MC8 colonised the rhizosphere
of maize seedlings doused with 3-methylbenzoate at levels
reminiscent of the wild-type strain and was not detectable
after 25 days in the absence of the pollutant. An escape
frequency of <1 in 1012 cells has also been achieved using
chemically-inducible riboregulators to control expression of
the essential gene glmS in combination with an engineered
addiction module capable of cleaving the E. coli chromo-
some [125].

Prospects for utilisation of engineered
rhizobacteria in agriculture

As we have alluded to throughout this review, the use of
genetically modified (GM) organisms (GMOs) could be
instrumental for the sustainable intensification of agri-
culture. However, there remains significant public concern
surrounding their use, and at present, release of GMOs in
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most countries is strictly regulated [130]. GM crops have
been commercially produced for over two decades, being
planted over 191.7 million hectares by 17 million farmers in
26 countries in 2018 [131]. Despite this, a recent report by
the U.S. National Academies of Sciences, Engineering, and
Medicine found little evidence to connect GM crops with
adverse agronomic or environmental problems compared to
current agricultural practices, and found no evidence
implicating a higher risk to human health from eating GM
foods compared to non-GM counterparts [132]. Compared
to plants, bacteria can be more elaborately engineered, are
faster growing, and are more prone to horizontal gene
transfer, making them potentially more difficult to manage
and monitor. Nevertheless, since the first field trials in the
Netherlands, 1986, comparing the effects of siderophore
producing P. putida strains against genetically modified
siderophore null Tn5 mutants [133], the release of GM
bacteria has been studied for over three decades without
notable environmental impacts, suggesting that they might
be safely used [128, 134].

Today, many scientists argue that current regulations for
risk assessment of GMOs fail to use a scientifically
defensible approach and do not account for the level of
actual hazard or risk [128, 135, 136]. Because foreign
inoculant bacteria in agricultural settings are typically
outcompeted by the natural microbiota, it seems plausible
that risk assessment of parental strains may be sufficient to
evaluate the prospects and impacts of some GM bacteria
[128]. With continued development of molecular tools such
as CRISPR for “markerless” genome editing [137], com-
bined with novel strategies to establish stringent bio-
containment of bacteria [121] and their genetic material
[138–140], the prospect of creating safe GM bacteria that
can be controlled in the environment has never been closer.
Considering our pressing need to transition into more
sustainable agricultural practices, while at the same time
increasing food production, now is the ideal time for a
thorough review of global regulations governing release of
GMOs in agriculture.

Concluding remarks

Over the last few decades, the development of novel
genetic engineering and synthetic biology tools have driven
unprecedented advances regarding engineering and transfer
of PGPR traits. With a suite of successfully engineered
PGP traits and vectors for transfer available, the research
focus is beginning to shift towards optimisation of engi-
neered PGPR to develop strains which do not suffer the
ecological shortfalls of their natural progenitors (Fig. 1).
Many laboratories now routinely test constructs in resilient
and competitive rhizobacteria isolated from the

environment, and attempt to more accurately replicate field
conditions in their experimental design. Tuneable expres-
sion systems are now frequently implemented into genetic
circuitry permitting more robust control over engineered
traits and reducing metabolic load on the host. With the
advent of synthetic host-specific plant-to-bacteria SI sig-
nalling [17], it has become possible to exclusively couple
engineered bacteria-plant interactions in the field, which
could prevent the possibility for growth promotion of non-
target plant species following promiscuous colonisation.
Expanding the functionality of SI signalling in the rhizo-
sphere through use of secondary signals, and utilising SI
signalling to both enrich the rhizosphere for target bacteria
and establish stringent biocontainment will represent key
milestones in the development of more effective and safe
engineered PGPR. Through integration of the technologies
discussed in this review, we envisage the future possibility
of constructing entire synthetic communities of engineered
PGPR as biostimulants for crops grown under given con-
ditions. Ensuing a global overhaul of restrictions governing
the release of GMOs in the environment, utilisation of
tailored synthetic communities could play a crucial role in
the sustainable intensification of agriculture over the
coming years.
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