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Abstract
Bottom–up selection has an important role in microbial community assembly but is unable to account for all observed variance.
Other processes like top–down selection (e.g., predation) may be partially responsible for the unexplained variance. However,
top–down processes and their interaction with bottom–up selective pressures often remain unexplored. We utilised an in situ
marine biofilm model system to test the effects of bottom–up (i.e., substrate properties) and top–down (i.e., large predator
exclusion via 100 µm mesh) selective pressures on community assembly over time (56 days). Prokaryotic and eukaryotic
community compositions were monitored using 16 S and 18 S rRNA gene amplicon sequencing. Higher compositional
variance was explained by growth substrate in early successional stages, but as biofilms mature, top–down predation becomes
progressively more important. Wooden substrates promoted heterotrophic growth, whereas inert substrates’ (i.e., plastic, glass,
tile) lack of degradable material selected for autotrophs. Early wood communities contained more mixotrophs and heterotrophs
(e.g., the total abundance of Proteobacteria and Euglenozoa was 34% and 41% greater within wood compared to inert
substrates). Inert substrates instead showed twice the autotrophic abundance (e.g., cyanobacteria and ochrophyta made up 37%
and 10% more of the total abundance within inert substrates than in wood). Late native (non-enclosed) communities were
mostly dominated by autotrophs across all substrates, whereas high heterotrophic abundance characterised enclosed
communities. Late communities were primarily under top–down control, where large predators successively pruned
heterotrophs. Integrating a top–down control increased explainable variance by 7–52%, leading to increased understanding of
the underlying ecological processes guiding multitrophic community assembly and successional dynamics.

Introduction

Microbiome compositions across many ecosystems have
been extensively studied, but mechanistic understanding of
successions leading to their formation remains poor,

especially the relative importance of bottom–up and
top–down controls. Historic pure culture approaches, which
remove biotic interactions, have led to a focus on resource
limitations as a mechanism to explain differences in growth
and community composition [1, 2]. However, biotic inter-
actions have the potential to impact microbiome assembly
and composition [3]. Microbiome studies generally report
20–67% [4–6] unexplained composition variance when uti-
lising resource limitations as an explanatory variable.
Unexplained variance represents a fundamental knowledge
gap within the microbial ecology field and suggests that other
processes must be contributing to microbiome changes.

Previous studies have found that communities can be
shaped by two possible overarching processes: stochastic
and deterministic. Stochastic processes increase a commu-
nity’s inherent randomness, producing variable micro-
biomes under identical conditions [7]. Early communities
are commonly stochastic [8], with the inherent randomness
of dispersal and ecological drift driving composition [9, 10].
In contrast, deterministic processes, focused upon in the
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present study, shape communities by selecting for or against
specific organisms [11, 12]. Dispersal rates are stochastic if
they rely on population size, but species traits and their
activity level mean that dispersal can also be deterministic
[9]. These complementary processes shape structure by
representing extremes along the same continuum, and a
process such as dispersal may be equally stochastic and
deterministic in a context and habitat-dependent manner [9].

Both abiotic and biotic deterministic processes can
influence community assembly. Abiotic factors are chemi-
cal or physical environmental components (such as nutri-
ents, pH, temperature, pressure) that affect community
composition and function [13, 14]. Meanwhile biotic factors
can impose selective pressures related to, or resulting from,
living organisms that may affect community composition.
Selective pressures associated with biotic interactions across
taxa can result in the promotion or inhibition of organisms.
For instance, microbial [15, 16] and microbe-higher trophic
level (i.e., larger predators) cooperation can increase both
participants’ abundance. One such example is a copepod’s
ability to affect environmental community compositions by
‘farming’ their own microbiome [17]. In contrast, predation
promotes the growth of one organism at the expense of
another [18, 19], and in some cases facilitating nutrient
transfer to successive trophic levels [20]. Both abiotic [21]
and biotic [22] factors are dynamic throughout space and
time and result in community shifts owing to continuous
selective pressures [21, 23, 24].

Selective pressures enact compositional changes through
autotrophs (i.e., primary producers) in a bottom–up-depen-
dent manner [25], or through predators in a top–down-
dependent manner [26]. Previous studies on environmental
microbiology have typically focused on bottom–up controls
[4, 27]. Field studies concerning top–down controls are
rarer, and bottom–up and top–down selective pressure
interaction effects on microbial communities remain largely
unexplored [28–31]. Bottom–up microbiome studies com-
monly report unexplained variance, which could be partially
driven by top–down controls [32, 33]. Identifying the con-
tribution of top–down controls to total variance is crucial to
better understand community assembly mechanisms. Hence,
our study focuses on comparing the effects of bottom–up
(i.e., different substrate surface) and top–down (i.e., large
predator presence and exclusion via a mesh enclosure) on
compositional variance within marine biofilms.

We aim to quantify the influence of top–down and
bottom–up controls on community assembly in a model
marine biofilm system. We hypothesise that bottom–up
controls drive early assembly, while established communities
are controlled equally by both bottom–up and top–down
mechanisms. Strong early selective pressures during com-
munity establishment will result in growth of environment
(i.e., substrate) dependent organisms, while a lack of

community complexity (i.e., prey richness and availability)
decreases predation’s influence on composition. Within
established communities, nutrient availability will dictate
what can grow, while predators will selectively prune tar-
geted organisms, leading to established communities under
both top–down and bottom–up controls. To test these
hypotheses, we created a model biofilm system using four
different substrates (i.e., plastic, glass, tile, wood) to represent
a degradability and surface property gradient and thus
bottom–up selection. Biofilms were reared in situ under
native (non-enclosed) or enclosed (with 100 µm mesh) con-
ditions to model top–down influence by limiting large pre-
dator (generally > 100 µm owing to exclusion by the 100 µm
mesh) access. Prokaryotic and eukaryotic community suc-
cessions and composition were monitored via 16S rRNA and
18S rRNA gene amplicon sequencing over a 56-day period.
Ultimately, the knowledge derived from this experiment
would be applicable across distinct ecosystems, as we assess
underlying, rather than habitat specific, processes.

Methods

Sample preparation and collection

Individual 75 × 25 mm substrate slides (glass, tile [i.e.,
glazed ceramic], plastic [i.e., acryl], and wood [i.e.,
untreated pine]) were inserted into polyvinyl chloride pipe
sections using polyethylene foam and ethyl cyanoacrylate.
The substrates and their holders were then either sewn into
25.4 × 30.5 cm 100 µm mesh enclosures to protect against
large predators via exclusion or left exposed to the native
environment (Supplementary Fig. 1).

Substrates were submerged in the Otago Harbour, New
Zealand (45.826678S, 170.641684 E). Samples (n= 168)
were suspended from a rope using cable ties 80 cm from the
seabed, remaining exposed during low-tide but submerged
during high-tide. All samples were located in a small geo-
graphic area (<30 m2), 50 metres from shore.

Starting in May 2019, triplicate biofilm sampling was
completed on days 7, 14, 19, 28, 42, and 56. However,
owing to sample loss (n= 27) as a result of the in situ
environment, a total of 141 biofilm samples were obtained
(Supplementary Table 1). Biofilm was scraped off the
entire substrate using a sterile scalpel. Tiles were scraped
only on the glazed side. Samples were suspended in 100 µL
sterile Milli-Q water and stored at −80 °C until further
processing.

Duplicate 1 L water samples were collected 2 metres
from both ends of the substrate suspension structure on days
0, 7, 14, 19, 28, 42, and 56. Samples were filtered through a
0.22 μm (diameter= 47 mm) polycarbonate filter prior to
freezing and storage at −80 °C until further processing.

1086 S. P. Tobias-Hünefeldt et al.



All data analysis was carried out using R version 3.6.1
within RStudio [34], and visualised using the ggplot2
package (version 3.2.1) [35] unless otherwise stated. All
code and associated files are available at https://github.com/
SvenTobias-Hunefeldt/Biofilm_2020/.

DNA extraction and sequencing

DNA was extracted using the Qiagen DNeasy® PowerSoil®
Kit (MoBio Laboratories, Carlsbad, CA, USA) according to
the manufacturer’s protocol. For transport purposes
extracted DNA was dehydrated using rotary evaporation in
an Eppendorf Concentrator 5301 (Eppendorf, Germany) at
30 ˚C for 1 h. Community profiles were generated using
barcoded 16S (targeting the prokaryotic [bacteria and
archaea] V4 region: 515F [5′-NNNNNNNNGTGTGCCA
GCMGCCGCGGTAA-3′] and 806R [5′-GGACTACHVG
GGTWTCTAAT-3′]) or 18S (targeting the microbial
eukaryotic lineage V9 region: 1391f [5′-GTACACACCG
CCCGTC-3′] and EukBr [5′-TGATCCTTCTGCAGGTT
CACCTAC-3′]) SSU rRNA gene primers as per the Earth
Microbiome Project protocol [36]. The 16S primers are
biased against Thaumarchaeota/Crenarchaeota [37] and
the SAR11 clade [38], and for Alphaproteobacteria [39],
although efforts have since been made to minimise bias
[40, 41]. The 18S primers are capable of detecting some
16S rRNA gene targets limiting rare-eukaryote detection, as
well as missing many parasitic taxonomic groups [42].
Barcoded samples were then loaded onto separate Illumina
MiSeq 2 × 151 bp runs (Illumina, Inc., CA, USA) to pro-
duce a total of 13,202,642 and 10,124,722 reads for 16S
and 18S runs, with an average of 63,171 and 48,444 per
sample and a standard deviation of 28,248 and 18,473. All
sequence data from this study has been deposited in NCBI
under BioProject PRJNA630803.

16S and 18S rRNA sequencing reads were quality fil-
tered and assigned to amplicon sequencing variants (ASVs)
using the dada2 R package (version 1.12.1) and associated
pipeline [43]. Taxonomies were assigned in accordance to
the dada2 pipeline from the SILVA rRNA reference data-
base (version 132) using the Ribosomal Database Project
naive Bayesian classifier method [44]. All data were
imported into R for further analysis with the phyloseq R
package (version 1.28.0) [45].

The optimum sequencing depth was identified with a
custom function utilising functions from the phyloseq,
reshape2 (version 1.4.3) [46], plyr (version 1.8.4) [47], base
(version 3.6.1) [34], stats (version 3.6.1) [34], and data.table
packages (version 1.13.0) [48]. Samples were rarefied 10
times at 11,000 reads using rarefy_even_depth() from the
phyloseq package. This depth retains both the maximum
number of samples and sequencing depth (Supplementary
Fig. 2). Independent rarefactions were combined and

underwent sample count transformations using transform_-
sample_counts() from the phyloseq package to account for
multiple rarefactions. To avoid fractional representation of
counts all data was rounded to the nearest whole number
using the round() command from the stats package. All data
analysis used rarefied data unless otherwise stated.

Community analysis

The optimum number of sample clusters based on ASV
community composition was assessed with the use of a
silhouette and ecotone analysis, using the cluster (version
2.1.0) [49] and EcotoneFinder (version 0.2.0) [50] packa-
ges. The EcotoneFinder package was also used to assess
group clustering over time [50].

Observed richness was quantified using estimate_rich-
ness() from the phyloseq package, and significance analysed
using stat_compare_means() from the ggpubr package
(version 0.2.4) [51]. Phyloseq package generated NMDS
plots assessed beta-diversity, with ggplot2 and ggpubr
package adjustments. Clustering was assessed using
ADONIS and ANOSIM statistical tests, with the vegan
package (version 2.5–6) [52], pairwise PERMANOVA tests
identifying significant sample to sample differences.
Spearman correlations were used to assess relationships
between biofilm age and NMDS1 of the whole community
NMDS. Intra-time dissimilarity was calculated with the
vegan and phyloseq package, removing self-comparison
using the dplyr package (version 0.8.3) [53]. Significant
differences between time points were identified with the
stats package. The number of shared organisms was cal-
culated using Zeta.decline.mc() from the zetadiv package
(version 1.1.1) [54].

Comparisons of means between two groups, such as
biofilm succession stages and enclosure conditions, were
done with Wilcoxon tests. In the case of more than two
groups Kruskal–Wallis tests were used (e.g., differences
between biofilm ages and substrates). Pairwise Wilcoxon
tests compared individual time points and substrates.

To test for taxonomic composition changes we determined
what organisms significantly changed over time using the
EdgeR package (version 3.26.8) [55] and an exact test using
only biofilm samples. The legend was ordered according to
mean relative abundance with the forcats package (version
0.4.0) [56]. All p values were false discovery rate adjusted
using Bonferroni. A literature search was used to classify
phyla as either autotrophs [57–60], heterotrophs [61–72],
mixotrophs [63, 64, 73, 74], or unknown if the literature was
lacking. Unknown taxonomies were excluded due to their low
abundance (Supplementary Table 1), and unknown role in
predator-prey dynamics.

Rare taxa (i.e., below 1% of the total abundance) were
identified and combined into one group for ease of
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visualisation using the plyr package and standard error,
standard deviation and the 95% confidence interval calcu-
lated with the Rmisc and dplyr packages.

Results

Biofilm community compositions clustered
into two stages

Silhouette analyses were used to identify the optimum num-
ber of clusters that samples could be grouped into based on
ASV abundance similarities. Prokaryotes were best divided
into two groups (silhouette width= 0.43), predominantly
based on community age, whereas eukaryotic groupings
could not be reliably identified (silhouette width < 0.4).
Although three eukaryotic groups resulted in the highest
average silhouette width (Supplementary Figure 3), average
silhouette widths below 0.4 are considered unreliable [75].
Ecotone analyses compared sample amplicon sequence var-
iants (ASV) abundances to identify both the optimum number
of sample clusters and when communities changed for both
prokaryotes and eukaryotes (Fig. 1). Two clusters corre-
sponded well with Sorensen dissimilarity patterns (Fig. 1c, d),
where only 2 (day 7 and 14 for prokaryotes) and 1 (day 7 for
eukaryotes) out of six time points were classified as early
(Fig. 1e, f). Richness (the number of unique ASVs within a
sample) significantly increased 1.9-fold with biofilm age
(Kruskal–Wallis, χ2 > 19, p < 0.01), from the early to late
stage (Supplementary Figure 4A, B, Wilcoxon, χ > 390, p <
0.01). Pairwise Wilcoxon analyses further confirmed richness
differences between succession stages (Wilcoxon, Supple-
mentary Table 2A) with the exceptions of prokaryote day
14–19 and eukaryote day 7–14 pairings, with non-significant
late successional stage intra-stage differences (Wilcoxon, p >
0.6, Supplementary Table 2A). Compositional patterns also
exhibited stage significant grouping, both when comparing
group means (ANOSIM, R= 0.67, p < 0.01) and when taking
variability into account (ADONIS, R2= 0.13, p < 0.01).
Communities stabilised from day 19–42 (prokaryotes) and
14–42 (eukaryotes) (Supplementary Fig. 4C), with early-stage
samples sharing fewer ASVs across substrates (Supplemen-
tary Fig. 4D). Thus, prokaryotic and eukaryotic communities
across all treatments clustered into two significantly distinct
succession stages: early and late.

Community successions lead to convergence across
substrates

Community successions were detected in response to bio-
film age (Table 1, Fig. 2). Biofilm age significantly corre-
lated with NMDS1 (Fig. 2; Spearman, rho > 0.66, p < 0.01),
and both maturation and sequential clustering coincided

with community convergence across substrates. Community
turnover, in the form of significant dissimilarity differences
between subsequent time points, decreased with biofilm age
(Spearman, rho= 0.89 [prokaryotes p < 0.01] and 0.66
[eukaryotes p= 0.018]; Supplementary Fig. 5). Pairwise
dissimilarity comparisons showed significant community
turnover (Wilcoxon, p < 0.05, Supplementary Table 2B),
with exceptions (prokaryotic day 19–28 and 42–56 pairs,
and all possible eukaryotic pairings between days 19, 28,
42, and 56). Community variance within a single timepoint
decreased over time for prokaryotes (31%; Spearman,
rho=−0.71, p= 0.01) and eukaryotes (9.1%; Spearman,
rho=−0.47, p= 0.13), especially when comparing early to
late time points, such as day 7–56 (Supplementary Fig. 4C;
Wilcoxon, p < 0.01, Supplementary Table 2C). However,
the decreases in prokaryotic variance were more pro-
nounced than for eukaryotes (Supplementary Fig. 4C). Both
prokaryotes and eukaryotes showed increased ASV sharing
across substrates over time (Supplementary Fig. 4D). The
number of shared ASVs across substrates increased from
1.8 (prokaryotes) and 3.3% (eukaryotes) to 22 and 9.4% of
the total ASV number respectively. Enclosed prokaryotic
communities (excluding organisms >100 µm) matured at an
increased rate, with differences quantified as an average
dissimilarity increase to the initial composition of 0.02%
per day. Over 56 days the difference in community suc-
cession turnover lead to a maximum dissimilarity of 11.2%,
whereas, mean dissimilarity between all day 56 prokaryotic
communities was 61%.

Anosim and adonis tests assessed how well community
composition and variance could be explained by either
substrate or enclosure condition. A gradual transition from
bottom–up to top–down control was associated with com-
munity convergence, although more prokaryotic than
eukaryotic dissimilarity variation could be explained
(Table 1, Supplementary Fig. 6). Substrates determined
early clustering (Table 1, Fig. 2), with distinct wood-
associated microbial compositions (pairwise multivariate
analysis of variance, p < 0.01, Supplementary Table 2D),
although enclosure status still played a significant role
(>7.6% of variance; Table 1). Late prokaryotic community
variance could be primarily attributed to enclosure differ-
ences (Table 1, Supplementary Figure 7) with minimal
substrate dependent effects (Fig. 2). Meanwhile, late
eukaryotic compositions were determined by time, although
enclosure conditions explained more community variance
than substrates (Table 1).

Enclosure conditions determine late community
richness, with minor substrate effects

Enclosures increased late stage richness by twofold (Wil-
coxon, p < 0.01) (Fig. 3, Supplementary Figure 4A, B)
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Fig. 1 Two development stages identified through silhouette and
ecotone analysis for prokaryotic (left) and eukaryotic (right)
communities. The optimum number of groups was determined using a
silhouette a–b and ecotone transition zone c–f analysis based on both
prokaryotic a, c, e and eukaryotic b, d, f ASV abundances. Sample
dissimilarity was tested with Sorensen dissimilarity, and the best fitting

number of groups based on both the silhouette analysis and heatmap
was used to identify the transition zones. A darker colour represent
increased dissimilarity, and ecotone grouping colours represent the
two identified groups with the average species abundance and biofilm
age depicted on the y axis and x axis.

Ecological drivers switch from bottom–up to top–down during model microbial community. . . 1089



Fig. 2 Microbial biofilm beta-diversity by time. NMDS plots show
prokaryotes a and eukaryotes b, ellipses depict the 95% confidence
interval grouping effects of time with biofilm age represented as dif-
ferent colours (days 7, 14, 19, 28, 42, and 56 depicted as olive, black,

red, navy, green, and magenta). Substrates are depicted with different
shapes, diamonds represent wood whereas the square, circle, and tri-
angle represent plastic, glass, and tile. Stress is included in the upper
left corner of individual plots.

Table 1 ANOSIM and ADONIS
tests compare time, substrate,
and enclosure correlations over
time on biofilm prokaryotes and
eukaryotes.

Organism Test Biofilm development stage Variable R/R2 p value

Prokaryotes Anosim Early Time 0.3 <0.01

Substrate 0.5 <0.01

Enclosure status 0.19 <0.01

Late Time 0.3 <0.01

Substrate 0.19 <0.01

Enclosure status 0.41 <0.01

Adonis Early Time 0.11 <0.01

Substrate 0.24 <0.01

Enclosure status 0.08 <0.01

Substrate×enclosure status 0.08 <0.01

Late Time 0.19 <0.01

Substrate 0.12 <0.01

Enclosure status 0.12 <0.01

Substrate×enclosure status 0.05 <0.01

Eukaryotes Anosim Early Time NA

Substrate 0.34 <0.01

Enclosure status 0.52 <0.01

Late Time 0.32 <0.01

Substrate 0.06 <0.01

Enclosure status 0.23 <0.01

Adonis Early Time NA

Substrate 0.28 <0.01

Enclosure status 0.15 <0.01

Substrate×enclosure status 0.16 0.09

Late Time 0.16 <0.01

Substrate 0.05 <0.01

Enclosure status 0.07 <0.01

Substrate×enclosure status 0.04 <0.01
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whereas early communities remained unaffected (Wilcoxon,
prokaryote p= 0.08, eukaryote p= 0.26). Early wood-
associated eukaryotes displayed significantly increased rich-
ness compared to all other substrates (Kruskal–Wallis, p <
0.01; pairwise Wilcoxon, p < 0.05, Supplementary Table 2E).
Otherwise substrate-specific differences were enclosure
dependent: 100–250 more ASVs were detected within early
native wood prokaryotic and late enclosed eukaryotic com-
munities compared with more inert substrates (Fig. 3). On
average prokaryotic wood communities contained 46 less
ASVs than inert substrates, whereas eukaryotic ASV numbers
increased by 79 (Fig. 3). Prokaryotic substrate richness dif-
ferences were only significant when wood contained an
increased number of ASVs compared with inert substrates,
such as under native early conditions. Overall, enclosure
conditions exerted significantly more pressure on late com-
munities. Early richness was not consistently driven by either
the enclosure or substrate, whereas late richness differences
were primarily determined by enclosure condition, with only
minor substrate effects (Fig. 3).

Shifts in dominant taxa reflect changes in selective
pressures

Phylum level changes were observed in response to a switch
from bottom–up to top–down control mechanisms (Fig. 4).
Early communities differed primarily by substrates
(Table 1; Supplementary Figure 6); wood displayed more
Proteobacteria (34%) and Euglenozoa (41%), and less
autotrophs (25%) compared with inert substrates (Supple-
mentary Table 3). Enclosure effects became increasingly

important over time, until the enclosure condition primarily
determined late community variance (Supplementary Fig-
ure 6), with no consistent substrate effect. Enclosed biofilms
were dominated by mixotrophs and heterotrophs while
native conditions contained more autotrophs. Late enclosed
community autotroph relative abundance was half that of
native conditions. Relative Ochrophyta abundance
decreased from >36% to ~15% across all substrates.
Meanwhile, relative Cyanobacteria abundance increased in
glass, tile, and acyl plastic from <30% to >53% from days 7
to 14, and then decreased to ~17%, whereas wood Cyano-
bacteria abundance rose by 10%. However, with autotroph
decreases came mixotroph and heterotroph increases. Over
56 days Proteobacteria relative abundance increased by a
mean 16.7%, whereas Bacteroidetes, Ciliophora, and
Arthropoda relative abundance rose by 11%, 21%, and
49%, respectively (Supplementary Table 3). Within native
biofilms Bacteroidetes, Ciliophora, and Arthropoda stayed
<25% relative abundance, whereas Cyanobacteria increased
by 21% within wood and remained >45% within all other
substrates. Early autotroph–heterotroph balances corre-
sponded to substrate differences. Subsequent autotroph–
heterotroph distributions shifted and became enclosure
dependent. Phylum level community trends were conserved
at the genus level (Supplementary Figs. 8, 9).

Discussion

Our results show that the analysis of bottom–up selective
pressures (i.e., substrate differences) are sufficient to determine

Fig. 3 Prokaryotic and eukaryotic observed richness is enclosure
specific in a stage dependent manner. Marine in situ biofilm species
richness for both prokaryotes a and eukaryotes b is shown by devel-
opmental stage grouping. The black horizontal line represents the
organisms and stage specific richness mean, whereas colours separate

the different substrates. Plastic, glass, tile, and wood is depicted in
black, red, navy, and green. Wilcoxon tests assessed the significance of
stage specific enclosure differences, and Kruskal–Wallis tests identi-
fied the significance of substrate effects in a stage and enclosure
specific manner.

Ecological drivers switch from bottom–up to top–down during model microbial community. . . 1091



the majority of community variance when assessing drivers of
early unstable communities, but accounting for top–down
selective pressures (i.e., using a 100 µm mesh enclosure to
exclude large organisms) captures more variance in established
communities. We created a community assembly model
(Fig. 5) describing the effect of sequential bottom–up and
top–down control over time. Following substrate colonisation,
growth resulted in distinct compositions likely owing to
nutrient availability (i.e., degradable vs non-degradable sub-
strates). Early bottom–up control weakens leading to com-
munity convergence over time across all substrates with late
compositions modified by top–down selective pressures. Our
work thus addresses some of the controversy in prior microbial
ecology studies by discussing the relative effects of bottom–up
and top–down selective pressures over time.

Stochasticity and substrate differences drive early
community compositions

Early community stochasticity is common within microbial
models [76], but dependent on resource supply within mac-
robial studies [10]. Stochasticity has a large role during dis-
persal, controlling early community establishment [9]. Our
study controlled for uneven dispersal by limiting geo-
graphical range. However, early communities remained
highly stochastic, reflected in high confidence intervals,
turnover rates, and intra-age dissimilarities. Selection also has
a role during community establishment [7], particularly
substrate surface attachment and mesh enclosure size exclu-
sion. Early colonisers must be capable of adhering to the
surface to establish the biofilm, just as enclosed conditions

Fig. 4 Significant phylum changes in response to biofilm age. The
mean relative abundance of significantly prokaryotic a and eukaryotic
b phyla correlated with biofilm age are depicted with enclosed com-
munities on the left and native (non-enclosed) on the right in a sub-
strate dependent manner. The type of line (solid, dotted, and dashed)

represent the three main types of organisms; autotrophs, heterotrophs,
and mixotrophs. Mean relative abundance was calculated from pooled
significantly correlated taxa and error bars represent the standard error
of the mean abundance based on biological replicates.
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dictate that they must be <100 µm. The exclusion of large
organisms (e.g., macro-algae and macro-eukaryotes) did not
play a large role during community establishment, as they are
not primary settlers, and instead prefer established and
complex communities [77], as such size-based large predator
exclusion was chosen as our top–down control.

Following settlement, deterministic factors become
increasingly important in determining community compo-
sition, whereas stochastic factors retain an important but
secondary role [10, 78]. Wood-associated biofilms con-
sistently contained more ASVs compared with inert sub-
strates. Retainment of terrestrial microbes could have
contributed to the noted high early richness on wooden
substrates, however wood-associated richness (both pro-
karyotic and eukaryotic) remained consistently high
throughout the study. Therefore, early-stage wood richness
increases are more likely owing an inherent property of
wood, such as an increased roughness and degradable
organic carbon, rather than microbes harboured by the
substrate [79, 80]. Grooves within rough surfaces increase
the colonisation surface area, and provide protection from
shear stress and large predators [81]. A significant biomass
increase on wood could have resulted in the lack of sig-
nificant late prokaryotic substrate effects, as less abundant
organisms are excluded in uneven communities during
rarefication. However, it is important to note that substrates
displayed significant eukaryotic richness differences to each
other throughout the study.

Wood contained significantly dissimilar prokaryote and
eukaryote communities compared with other substrates,
under both enclosed and native conditions. Degradable
organic carbon within wood (lignocellulose) could be acting

as an environmental filter for mixotrophic and heterotrophic
organisms (i.e., Proteobacteria and Bacteroidetes [67, 82]).
Inert substrates (i.e., plastic, glass, and tile) cannot be
degraded in the same manner, and their early communities
were instead primarily composed of autotrophs.

Community compositions converged with age

Stochastic fluctuations throughout time and genetic varia-
tion (drift and diversification) are inherent properties of
time-dependent ecological studies [7], leading to divergent
[83–85] or convergent communities [5, 84, 86]. Our study
identified prokaryotic and eukaryotic community con-
vergence over time, with increased numbers of shared
organisms, and decreased turnover rates and variability
associated with established ecosystems [87, 88]. Con-
vergence likely arose owing to preconditioning (i.e.,
selecting for organisms with a history of surface attachment
from a single population pool) [89] and sequential compo-
sitional changes over time selecting for specific taxa [12].

Based on the evidence, we conclude that the more
unpredictable early communities converge into stable late
communities. Community stabilisation occurs in response
to both primary [9] and secondary [76] successions.
Therefore, our observations regarding primary succession
can also be applied to secondary successions.

Enclosure differences control diversity and late
community compositions

Enclosure effects could be owing to a multitude of factors,
such as the nutrient supply, shear stress, light availability,

Fig. 5 Microbial biofilm community assembly is divided into dis-
crete stages associated with distinct compositions and selective
pressures. Communities are a subset from the environmental organ-
ism pool known as the metacommunity and filtered in response to a
selective pressure. Selective pressures filter for distinct community

compositions. First, bottom–up (early stage) substrate differences and
then top–down (late stage) enclosure status determine biofilm com-
munity composition, with decreased bottom–up differences owing to
top–down filtering.
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and differences in predation by large organisms. Enclosed
conditions can experience a decreased flow rate potentially
containing organic nutrients, which would lead to an
increased autotroph abundance. Instead autotrophs (i.e.,
cyanobacteria, florideophycidae, and ochrophyta) made up
less of the enclosed communities. Light availability lim-
itations could explain this, with growth on the mesh
enclosure and the mesh providing shade [90]. Growth on
the mesh enclosure would decrease autotroph abundance
over time, as mesh community density increases. However,
cyanobacteria and ochrophyta relative abundance peaks at
day 14 and 19, suggest that light limitations associated with
growth on the mesh may not be as important as other
compositional drivers. The inherent mesh shade effect
would only weakly contribute to compositional differences,
as early community variance was primarily associated with
substrate differences. Sheer stress acts through biomass
removal [91], which has no effect on relative abundances.
High stress has also been shown to decrease biofilm
maturation rates [92], but neither enclosure-dependent
prokaryotic and eukaryotic community differences could
be solely attributed to maturation rate differences. There-
fore, enclosure differences are more likely owing to pre-
dation rather than other enclosure associated effects.

Predation can modify net community composition and
richness through the direct or indirect selection of specific
lineages [93, 94] (e.g., Arthropoda selection against Cilio-
phora [95]). Our study identified decreased diversity in
response to large organism predation. Although substrate
effects could be identified they remained predominantly
enclosure condition specific (e.g., wood showed increased
richness within early predated prokaryotes and late enclosed
eukaryotes).

In situ conditions exhibit a much larger variety of pre-
datory organisms, opposed to laboratory conditions where
specific predators are introduced to the system. It is there-
fore challenging to link microbial community changes to
specific predators under in situ conditions. Identifying
interactions between microbial taxa within a biofilm is
easier owing to the closer proximity. We identified a series
of inverse relationships between organisms with a history of
predation. The prime example of this is the potential con-
sumption chain from ochrophyta (specifically diatoms) to
ciliophora [96], and arthropoda consuming ciliophora [95].

Large predators affect late communities to a greater
extent than their early counterparts. Early communities lack
the inherent complexity and resources to sustain large pre-
dator and heterotrophic organism abundances unless a
source of organic carbon is available [77]. Enclosed con-
ditions displayed an inverse relationship between prokar-
yotic and eukaryotic heterotrophs and autotrophs over time
(Fig. 5), as heterotrophs drove their prey below detectable

limits [62, 66, 67]. Meanwhile native conditions experi-
enced increased autotroph abundance owing to heterotroph
predation by large predators (Fig. 5). The preference for
heterotrophs could be owing to their increased stoichio-
metric stability and closer ratio matches compared with
autotrophs. Autotrophic stoichiometries reflect environment
ratios, whereas heterotrophs are strongly homoeostatic [97]
with lower C to P ratios [97, 98]. Predators prefer the
ingestion of close stoichiometric matches [99], and have
even been shown to reject nitrogen-depleted prey [100].
Heterotrophic preference also explains the close relation-
ships between heterotrophs and higher trophic levels [101],
such as the previously identified inverse relationship
between Ciliophora (a heterotroph) and Arthropoda (a
eukaryotic predator) [95].

Conclusion

We identified a switch from bottom–up to top–down control
linked to community maturation. This switch in primary
selective pressure highlights the community selection of
primary colonisers, to the emergence of stable and con-
vergent mature communities modified by the presence of
large predators (Fig. 5). Predation selectively removes
organisms, potentially using nutritional value as a criteria.
The integration of a top–down control allowed for the
explanation of more variance than a sole bottom–up focus.
Hence, increased importance should be placed on top–down
controls, particularly for studies concerning stable late
communities. The integration of both bottom–up and
top–down selective pressures in the field of microbial
ecology leads to a better understanding of assembly
mechanism. Studies that assess the underlying processes
ultimately identify not only habitat specific community
compositions, but also what lead to these habitat composi-
tional patterns.
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The sequence data from this study have been deposited in
NCBI under BioProject PRJNA630803. All data generated
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Biofilm_2020/.
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