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Abstract
The space in which organisms live determines health and physicality, shaping the way in which they interact with their peers.
Space, therefore, is critically important for species diversity and the function performed by individuals within mixed
communities. The biotic and abiotic factors defined by the space that organisms occupy are ecologically significant and the
difficulty in quantifying space-defined parameters within complex systems limits the study of ecological processes. Here, we
overcome this problem using a tractable system whereby spatial heterogeneity in interacting fungal wood decay communities
demonstrates that scale and patchiness of territory directly influence coexistence dynamics. Spatial arrangement in 2- and 3-
dimensions resulted in measurable metabolic differences that provide evidence of a clear biological response to changing
landscape architecture. This is of vital importance to microbial systems in all ecosystems globally, as our results demonstrate
that community function is driven by the effects of spatial dynamics.

Introduction

Space determines the nature of and scale over which
individuals meet and interact. The characteristics of the
discrete spatial habitat which an organism occupies affects
individual competitive success with a bottom-up effect on
population-wide colonisation, speciation and extinction
[1]. There is a dynamic link between spatial ecology and
competitive success where transitive (where species A

outcompetes B, which outcompetes C) communities with
a strict competitive hierarchy become intransitive (A > B;
B > C; C > A, like the game of rock–paper–scissors) when
competing in a spatially more complex system [2],
allowing individuals outcompeted under some scenarios
to coexist with their competitors [3]. Dimensionality of
habitat landscapes influences individual behaviour [4],
and stochasticity of species interactions results in changes
to the pool of community-produced metabolites [5],
altering individual combative ability, community succes-
sion and structure between 2- and 3-dimensional land-
scapes [6]. Despite these findings, the mechanisms that
influence stability and succession in the context of how
communities occupy and exploit space are rarely ade-
quately quantified as most ecological study systems are
too complex and largely intractable. A model system is
needed that allows such quantification, and understanding
of how altered dynamics, coexistence and community-
scale biodiversity in the context of space underpins
changes in community function.

The functional diversity–area relationship, i.e., the cor-
relation between increased habitat size and greater func-
tional diversity, is one theory explaining how space
mediates function in biodiverse communities [7]. However,
the model does not account for effects of distributions and
patch dynamics of species within habitats of varied area,

* Lynne Boddy
BoddyL@cardiff.ac.uk

1 Cardiff School of Biosciences, Cardiff University, Cardiff CF10
3AX, UK

2 Institute for Molecules and Materials, Radboud University, 6525
AJ Nijmegen, The Netherlands

3 NERC Biomolecular Analysis Facility—Metabolomics Node
(NBAF-B), School of Biosciences, University of Birmingham,
Birmingham B15 2TT, UK

4 Department of Biosciences, Swansea University, Swansea SA2
8PP, UK

Supplementary information The online version of this article (https://
doi.org/10.1038/s41396-020-00808-7) contains supplementary
material, which is available to authorised users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00808-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00808-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00808-7&domain=pdf
http://orcid.org/0000-0003-3502-2755
http://orcid.org/0000-0003-3502-2755
http://orcid.org/0000-0003-3502-2755
http://orcid.org/0000-0003-3502-2755
http://orcid.org/0000-0003-3502-2755
http://orcid.org/0000-0002-8205-2896
http://orcid.org/0000-0002-8205-2896
http://orcid.org/0000-0002-8205-2896
http://orcid.org/0000-0002-8205-2896
http://orcid.org/0000-0002-8205-2896
http://orcid.org/0000-0001-5898-4119
http://orcid.org/0000-0001-5898-4119
http://orcid.org/0000-0001-5898-4119
http://orcid.org/0000-0001-5898-4119
http://orcid.org/0000-0001-5898-4119
http://orcid.org/0000-0002-7015-0739
http://orcid.org/0000-0002-7015-0739
http://orcid.org/0000-0002-7015-0739
http://orcid.org/0000-0002-7015-0739
http://orcid.org/0000-0002-7015-0739
http://orcid.org/0000-0003-1845-6738
http://orcid.org/0000-0003-1845-6738
http://orcid.org/0000-0003-1845-6738
http://orcid.org/0000-0003-1845-6738
http://orcid.org/0000-0003-1845-6738
mailto:BoddyL@cardiff.ac.uk
https://doi.org/10.1038/s41396-020-00808-7
https://doi.org/10.1038/s41396-020-00808-7


yet these factors cause competitive communities to shift
between hierarchical transitive and non-hierarchical
intransitive relationship states [2, 8]. Non-hierarchical
intransitivity is an established mechanism of coexistence
[9, 10] and is thought to be associated with an intrinsically
related functional-diversity mechanism [11, 12]. Wood
decay fungi offer an ideal ecologically relevant model for
the study of these processes as individual mycelia occupy
columns of decay forming complex 3-dimensional com-
munities in wood and, through their decomposition activ-
ities release carbon and nutrients [13]. They typically form
a hierarchical community structure (tertiary/late stage
colonists outcompete secondary colonists which in turn
outcompete primary/earliest colonists) [14] and competi-
tive interactions between species can be easily observed
[15]. In addition to compounds that primarily function in
the exploitation and decomposition of lignocellulose
[16, 17], these fungi produce a plethora of potentially
antagonistic compounds which function in changing terri-
tory, and differ in quantity and identity during interspecific
competition [6, 18–20].

Here, we used a tractable system of wood decay fungi to
quantify the impact of space on the mechanisms of coex-
istence and community composition, in the context of its
occupation and exploitation. We compared the combative
abilities of fungi in linear 2-dimensional systems and spe-
cies richer 3-dimensional systems. The study system
allowed more detailed analysis of community dynamics
between 3-dimensional systems where fungi were dispersed
in evenly spaced patches and 3-dimensional systems where
the weakest member of the community occupied the same
volume but as a larger adjacent patch size. Previously, our
data revealed an emergent property where intransitivity
promoted biodiversity in more spatially diverse 3-
dimensional systems where territory was less fragmented
[2]. Here, we assess the underlying mechanisms causing
community stability and coexistence dynamics to change.
We do this by measuring the metabolic response of an
individual to changing coexistence dynamics across spatial
scales. Our large-scale untargeted metabolomics and other
chemical methods analysed a comprehensive network of
intracellular, extracellular and gas-phase metabolic products
produced during community interactions. We hypothesised
that stochasticity of species would influence functional
biochemical processes, and that changes to metabolites
involved in pathways for resource utilisation and antagon-
ism would alter coexistence dynamics and community
composition. Spatially heterogeneous systems containing
non-hierarchical communities promote biodiversity [2, 21],
and here we deepen our understanding of this concept with
the novel finding that space occupied alters metabolic
function and coexistence, therefore, moderating the
diversity–function relationship.

Methods

Experimental design and sampling

We constructed pair-wise interactions of 2 cm3 Fagus syl-
vatica (beech) blocks that had been precolonised for
12 weeks by placing on agar (5 gL−1 malt extract, 15 gL−1

agar; Lab M, UK) cultures of field isolates (fruit body/
wood) of Vuilleminia comedens (strain VcWvJH1; a pri-
mary coloniser), Trametes versicolor (strain TvCCJH1; a
secondary coloniser) and Hypholoma fasciculare (strain Hf
DD3; a late secondary coloniser) wood decay fungi
(maintained in the Cardiff University fungus culture col-
lection), which all co‑exist in nature, at 20 °C (as in [2]).
Interactions were performed in all combinations including,
self-pairings (n= 10). We also constructed 3 × 3 × 3 27-
block cubes containing 9 blocks of each species. In total,
27-block cubes were arranged: (1) with all three species
dispersed and no two blocks of the same species in contact
(n= 10); (2) so that all 9 blocks of the weakest competitor,
V. comedens, occupied an adjacent volume while the other
two fungi were dispersed (n= 10); (3) entire 27-block
assemblages containing each fungus alone (Fig. 1) [2].
Blocks in pair-wise interactions were arranged with cut
vessel ends touching, and in 27-block cubes blocks were
joined such that some cut vessel ends were touching but
others were not, but all vessels were parallel (Fig. 1). Fungal
species and specific strains were selected based on their
successional order and expected combative hierarchy in the
natural environment: H. fasciculare > T. versicolor > V.
comedens [22–24] (Supplementary Table 1). Interacting
combinations of wood blocks were incubated individually

Fig. 1 Spatial distribution of species interactions. Interactions were
constructed in pair-wise (a–d) and 3-dimensional 27-block (e–g)
arrangements. a–d pair-wise interactions in all conceivable combina-
tions, plus T. versicolor self-pairing; e dispersed cube (fungi were
dispersed throughout the system and arranged so that no two blocks
containing the same species had adjacent faces); f ‘wall’ distribution
cubes (all fungi occupied the same total volume of wood but the
adjacent territory occupied by V. comedens was larger; the other two
competitors were arranged so that no two blocks containing the same
species were adjacent); g single species, T. versicolor 27-block cube.
Cut vessels in pair-wise interactions and rows within 27-block layers
were touching so that the wood grain ran in the same parallel direction
as denoted by arrows.
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at 20 °C in 70 and 500 ml polypropylene pots for pair-wise
and 27-block cubes, respectively, and were laid upon a layer
of perlite (20 and 85 ml) containing 2 and 12 ml of water
respectively which was maintained by weekly addition of
water to retain the original water content, as detailed in [2].
After 1 and 28 days volatile organic compound (VOC)
production was measured (described below), and we
deconstructed n= 5 systems. Each individual block was
split along the grain into quarters, and three of the quarters
from each block were foil wrapped, flash frozen in liquid
nitrogen and stored at −80 °C. These were subsequently
analysed for enzyme activity and metabolomics (see
below). For the remaining quarter, two chips (~2 mm3) were
taken from an inside face and inoculated onto 2% malt
agar, incubated at 20 °C, then emerging mycelia identified
morphologically, to determine which species occupied
the wood (Fig. 2). We removed the chip excised face from
the quarter by splitting with a chisel, and determined
final density as dry weight (80 °C for in excess of 72 h)
per fresh volume (cm3) (blocks sampled at 28 days only),
and the rate of decay estimated by comparison with
density of blocks scarified (n= 10) at the end of the pre-
colonisation period.

Overview of metabolite analysis

To quantify changes to metabolic function (antagonistic
chemicals and compounds for habitat exploitation/wood
decomposition) associated with different spatial dynamics
in response to changing community composition, we
extracted and measured: the profile of VOCs from the
headspace of interactions, and the activity of 12 targeted
enzymes, chosen because they are directly involved in
interspecific competition [6, 19]. We also conducted ultra-
high performance liquid chromatography-mass spectro-
metry (UHPLC-MS) metabolomics analysis. All analyses

were conducted after 1 and 28 days interactions in blocks
originally colonised by T. versicolor (n= 5), and in 27-
block interactions ‘pseudo’-replicates representing different
spatial locations within 3-dimensional cube arrays were
analysed (all n= 5). We chose to target T. versicolor since
the fungus has been well characterised in the past
[16, 19, 25], and because it neither dominated systems (as
did H. fasciculare) nor was it driven to near extinction (as
was V. comedens). There were no significant differences
(ANOVA: p > 0.05) in enzyme activity or small metabolite
levels between pseudoreplicates of T. versicolor in 3-
dimensional cubes, so we pooled activities of all pseudor-
eplicates for each system (therefore, n= 15).

VOC extraction and data preprocessing

We collected VOCs from the headspace of interactions after
1 and 28 days (n= 3) by inserting pots individually and
lidless into a multi-purpose roasting bag (46 × 56 cm;
Lakeland, UK), which was sealed for 30 min to allow VOCs
to equilibrate in the headspace. Then, 500 ml headspace gas
was collected onto thermodesorption (TD) tubes (Tenax TA
& Sulficarb, Markes International Ltd) using an EasyVOC
manual pump (Markes International Ltd, UK).

VOCs were desorbed using a TD100 TD system (Markes
International Ltd, UK) with the following settings: tube
desorption 10 min at 280 °C, at a trap flow of 40 ml min−1;
trap desorption and transfer 40 °C s−1 to 300 °C, with a split
flow of 20 ml min−1 into gas chromatograph (GC; 7890A;
Agilent Technologies Inc., USA). VOCs were separated
over 60 m, 0.32 mm I.D., 0.5 μm Rx5ms (Restek, UK) with
2 ml min−1 helium as carrier gas under constant flow con-
ditions using the following temperature programme: 35 °C
for 5 min, 5 °C min−1 to 100 °C, hold 5 min. Mass spectra
were recorded from m/z 30 to 350 on a time-of-flight mass
spectrometer (BenchTOF-dx, Markes International Ltd,
UK). C8–C20 alkane standard (0.5 μl, Supelco) was loaded
onto a blank TD tube as a retention standard and quality
control (QC).

GC-MS data checked with MSD ChemStation software
(E.02.01.1177; Agilent Technologies, Inc.) and chromato-
grams were deconvoluted and integrated with AMDIS
(NIST11) using a custom retention-indexed mass spectral
library. MS spectra from deconvolution were searched
against the NIST 2011 library (Software by Stein et al.,
version 2.0 g, 2011). VOCs scoring > 80% in forward and
backward fit and a retention index (RI) match of +15 were
included into the custom mass spectral library as putatively
identified VOCs; VOCs scoring > 80% in forward and
backward fit and no RI match were included as chemical
class, e.g., alkane, alkanol and recurrent components that
did not show either the required mass spectral fit or RI
match were added as ‘unknown’. Peak list from integration

Fig. 2 Sampling and deconstruction of wood blocks. Individual
blocks were split along the grain into quarters, and three of the quarters
from each block were foil wrapped, flash frozen in liquid nitrogen and
stored at −80 °C. For the remaining quarter, two chips (~2 mm3) were
taken from an inside face and inoculated onto 2% malt agar, then
emerging mycelia identified morphologically.
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with AMDIS were aligned using the pivot function in Excel
in preparation for subsequent statistical analysis.

Enzyme assays

For enzyme assays, we freeze dried the T. versicolor frozen
blocks for 48 h (Edwards Modulyo, UK), then ground them
to sawdust using a spice and coffee grinder (Wahl James
Martin, UK). In total, 0.5 g of sawdust was added to 5 ml of
50 mM sodium acetate buffer and shaken overnight at 4 °C.
For pair-wise interactions, T. versicolor blocks from all
interactions and one block from its respective self-pairing
were used (n= 5). In 27-block cubes, each fungus occupied
3 different spatial positions in both of the mixed-species
assemblages, and T. versicolor occupied 4 spatial positions
within the assemblage which it fully occupied. For each
spatial position for T. versicolor blocks within 27-block
systems (excluding the central-cube position which T. ver-
sicolor occupied when it was the sole occupant, as this was
not represented in the mixed-species assemblages), 5
replicates were used for assays (full details in Supplemen-
tary Table 2).

The activities of the following terminal hydrolases were
measured using 4 methylumbelliferol (MUF)-based sub-
strates: β-glucosidase (EC 3.2.1.21), α-glucosidase (EC
3.2.1.20), cellobiohydrolase (EC 3.2.1.91), β-xylosidase
(EC 3.2.1.37), N-acetylglucosaminidase (EC 3.2.1.30),
phosphodiesterase (EC 3.1.4.1), phosphomonoesterase (EC
3.1.3.2) and arylsulfatase (EC 3.1.6.1). Briefly, substrates
(40 μl in dimethylsulfoxide) at final concentration of
500 mM were combined with three technical replicates of
200 µL of samples (diluted 1:10) in a 96 well plate. Back-
ground fluorescence was determined by combining 200 µL
sample (diluted 1:10) with 40 μl MUF standards. The 96
well plates were incubated at 40 °C and fluorescence
recorded at 5 and 125 min using a Tecan Infinite microplate
reader (Tecan, Switzerland) with an excitation wavelength
of 355 nm and an emission wavelength of 460 nm. Quan-
titative enzymatic activities were calculated after blank
subtraction based on a standard curve of MUF. One unit of
enzyme activity was defined as the amount of enzyme
releasing 1 nmol of MUF min−1.

Laccase (phenoloxidase; EC 1.10.3.2) activity was
determined by monitoring the oxidation of 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) diammonium salt
(ABTS) in citrate phosphate buffer (100 mM citrate,
200 mM phosphate, pH 5.0), by monitoring the formation
of green colouration spectrophotometrically at 420 nm.
Three technical replicates were performed for each sample.

Manganese peroxidase (MnP; EC 1.11.1.13) activity was
determined by monitoring spectrophotometrically at 595 nm
the purple colouration from oxidative coupling of 3-methyl-
2-benzothialone-hydrazone hydrochloride (MBTH) and

3-(dimethyl amino)-benzoic acid (DMAB) in succinate-
lactate buffer (100 mM, pH 4.5). Three technical replicates
were performed for each sample. The results were corrected
by activities of samples without manganese, and with
ethylene diamine tetraacetate to chelate any Mn2+ present in
the samples, allowing detection of Mn2+-independent per-
oxidases (versatile peroxidase). The results were also cor-
rected by activities of samples in the absence of H2O2,
allowing detection of oxidase (but not peroxidase) activity.

For each enzyme, n= 3 technical replicates were per-
formed and enzyme activities were normalised to the pro-
tein content of each sample, which was determined using
QubitTM fluorometric assays (Thermo Fisher Scientific
Inc., UK).

Metabolomics analysis

As for enzyme assays, we selected blocks precolonised by
T. versicolor (n= 5) upon which to perform UHPLC-MS
(Supplementary Table 2). In total, 0.5 g of sawdust was
added to 1666 μl of each of H2O, methanol and chloroform,
vigorously vortexed and sonicated for 15 min (Elmasonic
S150, Singen, Germany). The extracts were allowed to sit
until the polar (containing H2O and methanol) and non-
polar (containing mostly chloroform) layers separated, and
we then removed 1500 μl of the upper layer containing the
polar metabolite extracts. The extracts were centrifuged for
5 min at 17,000 × g (Biofuge, Thermo Fisher Scientific,
MA, USA), and 200 μl of supernatant removed and dried in
vacuo (Thermo Savant, NY, USA) for ca. 3 h. We then
stored extracts at −80 °C until metabolomics analysis.

An intrastudy QC sample was prepared by pooling small
aliquots of all samples, and the single extract was removed
and dried down by centrifugation (20,000 × g for 10 min at
4 °C, Biofuge). UHPLC-MS-based metabolomics was per-
formed (20 µl per sample) on a Thermo Dionex Ultimate
3000 RS system with a Thermo Scientific Q Exactive
Orbitrap mass spectrometer. Samples (20 µl) were separated
over a 100 × 2.1 mm, 1.9 µm particles, C18 column
(Thermo Hypersil Gold) at a flow rate of 400 µl min−1 using
a 14 min linear gradient programme from 0.1% formic acid
in water to 0.1% formic acid in methanol. MS acquisition
started at 0.1 min, with the flow up to 0.45 min directed
towards waste. We acquired data in positive ion and profile
mode from m/z 100–1000 at 70,000 resolution. Samples
were analysed in a controlled randomised order, with the
intrastudy QC sample repeatedly analysed equidistantly
between the biological samples.

Metabolomics data processing

To process the UHPLC-MS data, the Thermo.raw data files
in profile mode were converted into mzML format in
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centroid mode using MSConvert (Proteowizard 3.0.7665).
Data were then aligned using an R (3.2.0) based XCMS and
CAMERA script (both R packages [26, 27]) which resulted
in a csv file intensity matrix (containing 9309 features, i.e.,
peaks in the mass spectra). This matrix was imported into
MatLab and inserted into a direct infusion mass spectro-
metry SIMStitch workflow [28] where a blank filter of >2x
sample over blank signal was applied, and a sample filter of
peak presence of at least 50% of all samples [29]. The
matrix was further processed by probabilistic quotient
normalisation and subsequently missing values were
imputed using K-nearest neighbour with k= 5. The imputed
data matrix was used as an input to univariate statistics,
including calculation of fold changes (FC). For multivariate
statistics, a g-log transformation of the imputed data matrix
was additionally applied, using an assessment of the tech-
nical variance across the repeated measurements of the
intrastudy QC sample [29].

We putatively annotated UHPLC-MS features by input-
ting m/z values and their associated mean intensities into
MI-Pack software version 2 beta [30], where metabolites
were compared against the Kyoto Encyclopaedia of Genes
and Genomes (KEGG) database. A set of highly significant
metabolites (ANOVA: p < 0.001) were further searched
against the KEGG database to determine possible roles
within metabolic pathways.

Statistical analysis

To analyse the rate of decay and progression of interactions,
we used R statistical software [31]. For each interaction, we
assigned every species an individual score of combative
ability, expressed as the percentage of the total system that
it finally occupied. Briefly, each competitor scored between
0 and 2 for each block within a system (since two regions of
every block were isolated; no outgrowth of a competitor
from either isolation point scored 0, outgrowth from one
isolation point scored 1, outgrowth from both isolation
points scored 2). Scores for all blocks within a system were
combined for each competitor individually, normalised to
the number of replicates and converted to a percentage of
the total system colonised. The data were analysed using a
General Linear Model combined with Tukey post hoc tests,
with individual block position (i.e., number of faces of that
block involved in direct combat) and access to water (water
was added to the perlite, as such, in 27-block interactions
the layer laid on the perlite has greatest access to water)
factored into the model. The rate of decay of wood in all
interactions was compared using a one-way ANOVA fol-
lowed by Tukey post hoc tests.

For enzyme activities, we used a one-way ANOVA with
Tukey post hoc tests to compare mean activity (from five
replicates), or Kruskal–Wallis tests followed by a Dunn’s

test post hoc procedure when data were non-normally dis-
tributed, in R statistical software [31].

For GC-MS (VOCs) data, the entire data set was ana-
lysed by principal components analysis (PCA) to check for
clustering of the QCs and, therefore, robustness of the data
set (see Supplementary Fig. 1 for QC clustering), using
MetaboAnalyst 3.0 [32]. We then removed QCs from the
matrix, and orthogonal projection to latent structures-
discriminant analysis (OPLS-DA) (Q2= 0.93, R2= 0.96),
chosen for its cross-validation method which reduces false-
positive results [33], was applied to the standardised binned
data to determine the degree of separation between the four
major sample groups: pair-wise samples 1 and 28 days after
interaction set up, and 27-block samples 1 and 28 days after
interaction set up. Next, we separated the data and applied
OPLS-DA to pair-wise (Q2= 0.57, R2= 0.61) and 27-block
(Q2= 0.37, R2= 0.55) sample groups separately. The
modelled covariance and correlation were used to identify
the features contributing most to the discriminant model
separation, and one-way analysis of variance (ANOVA)
with a 5% Benjamini–Hochberg false discovery rate (FDR)
correction for multiple comparisons [34], and Tukey post
hoc tests were applied to those features.

Lastly, for UHPLC-MS data we applied PCA to the g-log
transformed data to explore the separation between control
samples (T. versicolor growing alone), interaction samples
and QCs. The median Relative Standard Deviation for the
intrastudy QC samples was 11.15%, indicating that the MS
data were of sufficiently high quality for further statistical
analysis (see Supplementary Fig. 2 for QC clustering). After
removing the QCs, ANOVA simultaneous components
analysis (ASCA) was applied, and the model was permu-
tation tested (5000 permutations) to determine the sig-
nificance of factors (sample day, and block position within
systems) [35, 36]. An additional ASCA model was tested to
determine the significance of species distribution patterns
within cubes, i.e., species being dispersed, V. comedens
occupying a larger adjacent volume, or T. versicolor com-
prising the entire system, but did not include spatial location
within assemblages as a factor. Pair-wise comparisons using
ASCA were carried out for post hoc testing of significant
effects, and the p values were adjusted for multiple testing
using a 5% Bonferroni–Hochberg multiple testing correc-
tion [37]. Univariate ANOVA was applied to the whole
normalised matrix with a 5% FDR correction [34] to test for
significant metabolites. Finally, we determined FC between
significant groups.

Network analytics

We investigated the synergy of metabolites produced by
T. versicolor during all interactions by creating a co-
occurrence Force Atlas2 [38] network analysis plot using
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Sci2 [39] and Gephi [40]. Data were filtered such that only
significantly abundant features (ANOVA/ASCA: adjusted
p < 0.05) relative to the baseline were included in the ana-
lysis, and abundancies of <10% the maximum were
removed from the matrix, resulting in 908 retained vari-
ables. The weighted degree of nodes was calculated, and
nodes were partitioned based on their weighting to facilitate
removal of those which did not cluster into a discrete
module. A final network was constructed from the refined
data set, with edges weighted by count of occurrence and
clusters coloured by weighted degree. The average abun-
dance of all features within a cluster was calculated, and we
used a one-way ANOVA with Tukey post hoc tests with a
5% FDR correction [34] to compare mean abundance
between interacting systems after 28 days, in R statistical
software [31].

Results

Hierarchy and coexistence dynamics

Typical transitive hierarchy of the focus decay species, T.
versicolor, was established in paired block interactions
(Fig. 1), i.e., H. fasciculare > T. versicolor, H. fasciculare >
V. comedens, and T. versicolor > V. comedens (Fig. 3). This
hierarchy reflected the general niche occupied in wood
decomposition: least competitive V. comedens an early/
primary decay species, T. versicolor a secondary colonising
species, and H. fasciculare a later/tertiary decay species, the
most competitive. Transitivity was also exhibited when the
three fungi were dispersed throughout more spatially het-
erogeneous 3-dimensional systems (Fig. 1e): 15% of the
original territory (defined as the relative proportion of a
block occupied by a single fungus) of T. versicolor was
captured by H. fasciculare, and 69% of the original territory

of V. comedens was captured by its competitors. However,
when spatial dynamics within the 3-dimensional cubes were
changed such that V. comedens occupied a larger adjacent,
but same total, volume as its competitors (Fig. 1f),
V. comedens was displaced from just 6% of its original
territory, and T. versicolor was displaced from 46% of its
original territory. The three species coexisted without
V. comedens being driven to near extinction (within a
closed community network loop) as it was when territory
was patchy, which is a characteristic of an intransitive
relationship (Fig. 3).

Metabolite network function

In addition to our 12 targeted enzyme assays, our untargeted
analyses yielded 67 VOCs, and 2825 LCMS signals of
which 1597 were putatively annotated against existing
compound libraries (Supplementary Table 3). Univariate
ANOVA analysis (with FDR correction of p values) and
ASCA multivariate analyses provided evidence of sig-
nificant differences in the quantity of individual functional
metabolites from blocks originally colonised by T. versi-
color between community systems which showed divergent
coexistence dynamics. Network analysis of the detectable
metabolome, VOCs and enzymes throughout all interac-
tions (average weighted degree= 3230), revealed 10 dis-
tinct clusters of synergistic metabolites (both antagonistic
and lignocellulose decaying), plus an additional 11 inde-
pendently functioning compounds with a high network
degree. Namely, toluene (VOC: C66), an undefined oxidase
enzyme, MnP, manganese independent peroxidase (perox-
idase), arylsulfatase, phosphodiesterase, and five uni-
dentified small metabolites (Fig. 4; cluster identity Table 1).

By comparing the average abundance of individual
clusters of metabolites produced in blocks precolonised by
T. versicolor in pair-wise competitive systems, we found
that production of seven clusters of antifungals was induced
in significantly greater quantities when H. fasciculare was
T. versicolor’s opponent, compared to three clusters when it
was paired against the weaker V. comedens, relative to
single species controls (Fig. 5). This particular response was
consistent, and in 3-dimensional community interactions
there was a stronger competition response shown in T.
versicolor precolonised blocks when V. comedens was more
combative when occupying a larger adjacent patch size
(Clusters 6 and 9 were significantly more abundant
(ANOVA: p < 0.05)), compared to when all fungi were
dispersed in 3-dimensions. Cluster 6 contained the puta-
tively annotated metabolite swainsonine, which functions in
the biosynthesis pathway of piperidine- and pyridine-based
antimicrobial alkaloids, and isolongifolene, a sesquiterpene
with known antifungal properties, featured in Cluster 9
(Table 1). Although only putatively identified, the increased

Fig. 3 Interaction progression after 28 days in pair-wise and 3-
dimensional interactions. Bars show the proportion of territory
occupied by each species at the end of the experiment (mean of n= 5,
SEM= ±12.2) in pair-wise interactions (T. versicolor (Tv) against V.
comedens (Vc); T. versicolor against H. fasciculare (Hf); H. fascicu-
lare against V. comedens), and 3-dimensional cubes in which all three
species were evenly dispersed (Fig. 1e), and where V. comedens
occupied a larger adjacent volume (Wall; Fig. 1f).

Space and patchiness affects diversity–function relationships in fungal decay communities 725



abundance of these combative/defensive compounds in
T. versicolor-colonised blocks correlates with the increased
combative ability of competitor V. comedens and longer
coexistence of the three fungi within an intransitive rela-
tionship loop (Fig. 3).

In addition to our findings in competitive systems, we
found distinct metabolic differences between 2-dimensional
and more spatially complex 3-dimensional controls where
T. versicolor was the sole occupant of these resource
habitats. For example, the unclustered enzyme arylsulfatase
and Cluster 10, which comprised another six similarly
functioning enzymes (Table 1), were significantly more
highly abundant (ANOVA: p < 0.05) when T. versicolor
solely occupied a 3-dimensional cube compared to when it
was solely paired in 2-dimensions (Fig. 5).

The presence of other species affected metabolic func-
tion, as for example Clusters 7 and 8, amongst others,
comprising compounds such as antifungal sesquiterpenes
(Table 1), were significantly more abundant (ANOVA: p <
0.05) when T. versicolor was paired in an interaction
compared to when it decayed wood alone. Similarly, when
we compared whole T. versicolor 3-d cubes with 3-d
community interactions, clusters 2, 3 and 4 which contain
metabolites such as ankorine and fortimicin involved in
antibiotic biosynthesis pathways, were significantly more
abundant (ANOVA: p < 0.001) in the more species-rich

systems. Within this experimental time frame the process of
decomposition was not affected by spatial dynamics or
species diversity (ANOVA: p > 0.05; Supplementary
Fig. 3).

Discussion

Our results indicated that coexistence dynamics and meta-
bolic function are directly affected by spatial occupation
and patchiness of territory and can be translated into
mechanistic functional processes. Furthermore, we provide
evidence of a metabolic response to shifts in community
structure as a result of altered connectivity. Landscape
architecture changes combative mechanisms [2] and con-
sequently may cause variation in expenditure of metabolic
products between systems of varied levels of spatial het-
erogeneity. Community composition may be altered by a
change in combative mechanisms as a result of landscape
structural complexity [2], possibly due to stochastic effects
within community assemblages [3] or different gaseous
regimes throughout 3-dimensional structures and altered
edge effects in 2-dimensions vs 3-dimensions. A study in
which individuals of a community were paired against each
other in artificial media [21] found negligible effects of
species diversity alone on community function, but that a
diverse community comprising weak competitors with high
intransitivity exhibited a positive diversity–function rela-
tionship, i.e., the structure of a competitive network impacts
community-level function. The more realistic complexity of
the model system used in the present study revealed very
different relationships: T. versicolor changed its mechanism
of combat in systems where V. comedens occupied a larger
adjacent volume, as clusters of metabolites functioning in
the biosynthesis pathways of antagonistic antimicrobial
compounds were produced in greater abundance. Pre-
sumably this emergent property was as a result of the
greater combative strength of V. comedens (i.e., more
antifungals were needed to attack the connected V. come-
dens), or as a result of a change of strategy by H. fasciculare
which focused its attention on antagonising the now
weakest competitor with whom it shared the most antag-
onistic fronts, T. versicolor, which responded to this change
with increased antimicrobial compound production, or, the
emergent property could have resulted from both simulta-
neously. Additionally, in this scenario H. fasciculare was
able to capture some of the territory of T. versicolor which
would result in a change to species-specific biochemical
production. When V. comedens was dispersed it was less
competitive than when connected, and connectivity of
V. comedens altered the community dynamic such that the
usually stronger competitor, T. versicolor, came under
survival pressure. The change in mechanisms led to

Fig. 4 Metabolic network of the full complement of significant
compounds produced by T. versicolor throughout all interactions.
Synergistic clusters of putatively annotated metabolites are clearly
visualised and grouped based on their weighted degree (WD) (number
of weighted edges, i.e., connections to other nodes, for a node.
Average WD= 3230) and grey nodes labelled with compound names
denote metabolites that did not form clusters (note that unlabelled grey
nodes lack putative identifications). Clusters and their WD are detailed
in Table 1. Edges are weighted by the count of occurrence of syner-
gistic metabolites within samples, and node sizes and cluster colours
represent weighted degree.
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coexistence of the three species with more similar relative
abundances and a closed community network loop (char-
acteristic of intransitivity), compared to transitive commu-
nity dynamics when the individuals were dispersed, where
V. comedens was outcompeted to near extinction. It is worth
noting that in natural dead wood species diversity would be
greater than that presented here, and the presence of other
fungal species as well as bacteria would influence interac-
tion outcomes and, therefore, metabolism [41]. Some
fungal–bacterial interactions are mutualistic [42], which
could give individual fungal species a competitive advan-
tage against their competitors, and further alter expected
community hierarchies.

In the present study, production of seven substrate pro-
cessing enzymes functioning in resource exploitation was
boosted when spatial scale was increased from linear 2-
dimensions to more heterogeneous 3-dimensions. The dif-
ferences in functional metabolic processes across spatial
scales, and between the more diverse community exhibiting
intransitive characteristics and the transitive community is,
therefore, reflective of a relationship between diversity and
function that is regulated by space. The impact of the nature
(space occupancy) of communities in directing community
structure should be considered when looking at complex
communities where outcomes are less predictable, and
metabolic quantification to potentially inform predicted
outcomes is, therefore, very useful.

That species diverse communities promote coexistence
and positively impact community function is well known
[21, 43–45]. Our results confirm this relationship between
function and diversity, i.e., metabolic function changed
significantly between systems with different numbers of

species (single species assemblages vs multi-species
assemblages), but we also show that spatial scale and dis-
tribution of species (patch dynamics) affect metabolic
function as well. While these effects were not directly
translated into ecosystem services (i.e., the rate of wood
decay was not significantly affected), decay in the natural
environment occurs over much larger time scales than used
here [46]. So it might be predicted that given a greater
length of time spatial heterogeneity and species diversity
would have resulted in changes to the rate of decomposi-
tion, since substrate utilisation was affected over the short
time scale measured in this study. The decomposition
activities of wood decay fungi determine the rate of nutrient
cycling in forest ecosystems which impacts forest function
[47]. The relationship between spatial dynamics, species
diversity and function highlighted in our study is, therefore,
a key mechanism in the release of carbon from organic
substrates into the carbon cycle, which drives global change
[48]. Microbial communities in every global ecosystem
carry out an array of functions as important as that of wood
decayers [49–51], but the effects of spatial dynamics and
species diversity on these functions have not previously
been measured and quantified by experimental studies. The
ecologically pertinent systems presented here are pioneering
in their quantitative capture of 3-dimensional spatial
dynamics into the experimental study of microbial, com-
munity and landscape structural ecology, which can be
adapted, reconfigured and reimagined for the study of
communities with a range of interaction types (e.g., neutral,
mutualistic, facilitative). Our 3-dimensional experimental
design, and the finding that spatial dynamics directly impact
coexistence, diversity and function, are not only translatable

Fig. 5 Significant differences in the average abundance of meta-
bolic clusters (details of composition of clusters in Table 1)
between interactions. Orange denotes cluster abundance is sig-
nificantly higher (ANOVA: p < 0.05) in the interaction on the left of
the colon; blue denotes significantly lower (ANOVA: p < 0.05) cluster
abundance in the interaction on the left; and no colour denotes no

significant difference (ANOVA: p > 0.05) between a pair of interac-
tions. Tv, T. versicolor; Vc, V. comedens; Hf, H. fasciculare; Wall, 3-
dimensional cube where V. comedens occupied a larger adjacent
volume; Dispersed, 3-dimensional cube where all three species were
dispersed; TvCube, 3-dimensional cube colonised entirely by T. ver-
sicolor (colour figure online).
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to the understanding of diversity in existing microbiomes
but may also provide key insights into extinctions and
predictions of future ecological trends and community-level
evolution.
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