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Abstract
The overwhelming taxonomic diversity and metabolic complexity of microorganisms can be simplified by a life-history
classification; copiotrophs grow faster and rely on resource availability, whereas oligotrophs efficiently exploit resource at
the expense of growth rate. Here, we hypothesize that community-level traits inferred from metagenomic data can
distinguish copiotrophic and oligotrophic microbial communities. Moreover, we hypothesize that oligotrophic microbial
communities harbor more unannotated genes. To test these hypotheses, we conducted metagenomic analyses of soil samples
collected from copiotrophic vegetated areas and from oligotrophic bare ground devoid of vegetation in an arid-hyperarid
region of the Sonoran Desert, Arizona, USA. Results supported our hypotheses, as we found that multiple ecologically
informed life-history traits including average 16S ribosomal RNA gene copy number, codon usage bias in ribosomal genes
and predicted maximum growth rate were higher for microbial communities in vegetated than bare soils, and that
oligotrophic microbial communities in bare soils harbored a higher proportion of genes that are unavailable in public
reference databases. Collectively, our work demonstrates that life-history traits can distill complex microbial communities
into ecologically coherent units and highlights that oligotrophic microbial communities serve as a rich source of novel
functions.

Introduction

Microorganisms represent the vast majority of organisms
and possess enormous functional versatility [1, 2]. They are
essential to a multitude of biogeochemical cycles and have a
profound role in ecosystem functioning [3]. This tre-
mendous complexity poses a daunting challenge to building
a general understanding of the ecological role of microbes.
Such generalizations could be achieved if we simplify the
complexity by categorizing the microbes into ecological
groups on the basis of shared morphological, physiological,

or life-history traits [4, 5]. A classic life-history classifica-
tion of microbes is the copiotroph-oligotroph dichotomy.
Copiotrophs grow faster and rely on resource availability,
whereas oligotrophs efficiently exploit resource at the
expense of growth rate [6]. Therefore, these distinct life-
history strategies represent a fundamental trade-off between
growth rate and resource use efficiency. This life-history
framework enables us to directly link microbial perfor-
mance to environmental regimes; copiotrophs grow faster in
resource-rich environments, whereas oligotrophs grow
slower in resource-poor environments [7, 8].

Deciphering the genomic underpinnings of microbial
life-history strategies requires a consensus on genomic traits
that distinguish copiotrophs and oligotrophs. One of the
most often invoked traits is copy number of ribosomal RNA
(rRNA) genes [9]. Copiotrophic bacteria are hypothesized
to encode more rRNA copies in their genomes to promote
the higher ribosomal content required by rapid growth [10].
Fast-growing copiotrophs are also predicted to enhance the
usage of synonymous codons (i.e., different codons
encoding the same amino acid) in their ribosomal genes
because they underwent translational selection, leading to
greater codon usage bias in the ribosomal genes of
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copiotrophs [11]. Thus, greater codon usage bias is typically
found to be associated with higher maximum growth rate
[12], a pivotal trait representing the ability of copiotrophs to
grow rapidly in response to resource pulses. With the
advances in shotgun metagenomic sequencing, community-
level measurements of these life-history traits have been
developed to improve our perception of the ecological
strategies of complex microbial communities [12, 13]. We
hypothesize that these traits can serve as important life-
history traits to facilitate the differentiation of copiotrophic
and oligotrophic microbial communities. Such knowledge
will provide a rigorous framework for trait-based under-
standing of microbial communities.

Copiotrophs and oligotrophs differ in a myriad of func-
tional genes encoding metabolic pathways, environmental
sensing, substrate uptake mechanisms, among others [14].
These functional attributes provide critical insights into the
genetic mechanisms underlying the adaptive responses of
copiotrophs and oligotrophs to resource availability. How-
ever, a considerable fraction of genes remains unannotated
[15]. The unannotated genes can account for ~80% of the
total gene pool in microbial communities [16]. The root of
this limitation is that functional annotation relies on refer-
ence databases (e.g., [17]), which are mostly based on
cultured organisms and heavily biased toward a relatively
small set of model organisms. However, most bacteria are
still uncultured [18] and we do not even have cultivated
isolates and genomic information for the most cosmopolitan
bacteria [19]. The massive incompleteness of reference
genome databases hinders our ability to chart the full extent
of functional capacities of copiotrophic and oligotrophic
microbial communities, and our inability to characterize the
unannotated genes might obscure important ecological
patterns [20]. Given that oligotrophs are known to be
challenging to culture due to their small sizes and slow
growth [21, 22], we hypothesize that oligotrophic microbial
communities harbor a higher proportion of unannotated
genes.

We contend that hyperarid ecosystems provide a unique
opportunity to test our hypotheses within a single envir-
onment. Arid landscapes are typically characterized by
vegetation patchiness, in which bare ground is interspersed
with sparse vegetation spots [23]. Soils beneath vegetation
patches show higher nutrient levels and water storage
capacity [24]. In contrast, soils in adjacent bare ground
devoid of vegetation are exposed to higher rates of soil
erosion, higher temperature and more intense radiation,
leading to nutrient depletion [25]. In this study, we con-
ducted metagenomic analyses of 24 soil samples collected
from four sites (each site had three samples beneath vege-
tation patches and three samples in bare ground) in western
Arizona of the Sonoran Desert (Fig. S1). By calculating
average 16S rRNA copy number, codon usage bias in

ribosomal genes and maximum growth rate using metage-
nomic data, we would expect that these trait values are
higher in copiotrophic vegetated soils than oligotrophic bare
soils. Moreover, we would expect that microbial commu-
nities in bare soils harbor more unannotated genes.

Materials and methods

Study sites and sampling

The study was conducted in western Sonoran Desert, Ari-
zona, USA; a region in which vegetation density is con-
trolled by increasing aridity [26]. In October 2017, soil
samples were collected from four sites along a 77 km north-
south transect in the Sonoran Desert (Fig. S1). The transect
traversed an arid-hyperarid region with aridity index ran-
ging from 0.041 to 0.052 (Kushwaha et al. unpublished
data). At each site, three 30-m transects were established.
From each transect, two composite soil samples (each
consists of three samples at 0–20 cm depth, and they were
collected from equidistant locations along the transect)
under vegetation patches and from bare ground area devoid
of vegetation were collected. Biological crusts were not
present in any of the locations sampled. The shrub species
Larrea tridentata and Ambrosia dumosa comprised the
dominant vegetation (~70%). A total of 24 soil samples
were collected. Samples were sealed in sterilized plastic
bags, and they were immediately transported on ice to the
laboratory. Soil samples were sieved through 2-mm mesh
and homogenized, and any visible living plant material
(e.g., roots) was removed. For each sample, a subsample
was placed into a sterilized tube and stored at −80 °C until
DNA extraction, and the remaining soils were used for soil
physiochemical analyses.

Molecular analyses and sequencing

Total soil genomic DNA was extracted using a Fast DNA
SPIN for Soil Kit™ (MP Biomedicals, Solon, OH) and
further purified using a DNeasy PowerClean Pro Cleanup
Kit (Qiagen, Hilden, Germany) according to the manu-
facturers’ instructions. To assess the taxonomic profiles of
bacterial and archaeal communities, the V4 region of the
16S rRNA gene was sequenced using Illumina MiSeq
platform (Supplementary methods). The amplicon sequence
variants (16S rRNA phylotypes hereafter) were obtained
using DADA2 pipeline (Supplementary methods; [27]).

To assess the functional attributes of microbial commu-
nities (Supplementary methods), total genomic DNA was
fragmented and ligated to Illumina adapters using the
QIAseq FX DNA Library Kit (Qiagen, Hilden, Germany).
The quality and quantity of all libraries were determined
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with Agilent 4150 TapeStation DNA bioanalyzer. All
samples were shotgun-sequenced on a 2 × 150 bp Illumina
NextSeq550 platform at the Microbiome Core, Steele
Children Research Center, University of Arizona.

Metagenomic data analyses

Raw reads were preprocessed by removing adapters with
Cutadapt v. 2.1 [28]. Reads shorter than 50 bp and low-
quality bases were removed using Trimmomatic v. 0.38
[29]. A total of 69,333,926 to 356,676,854 reads per sample
remained after quality trimming (Table S1). Reads from
each sample were de novo assembled using Megahit v. 1.1.4
[30], with the k-mer length increasing from 21 to 141 in
steps of 20. The contig N50 ranged from 715 to 964 bp
among samples (Table S1). Protein-coding genes were
predicted on assembled contigs longer than 500 bp using
Prodigal v. 2.6 [31]. After discarding genes shorter than
100 bp, genes from all samples were clustered at ≥95%
identity and ≥90% overlap with MMseqs2 [32]. This
resulted in a catalog containing 32,930,898 non-redundant
genes. Paired-end reads of each sample were mapped to the
gene catalog using BWA v. 0.7.16 [33]. Functional infor-
mation of genes was annotated by comparison to Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
using GhostKOALA because KEGG database is one of the
most widely used reference databases for pathway mapping
[34]. Moreover, genes were annotated with the eggNOG
database using eggNOG-mapper [35, 36].

Calculation of life-history traits

For each soil sample, we calculated a set of traits from
metagenomic data to shed light on the microbial life-history
strategies. First, we estimated the average 16S rRNA copy
number and average genome size as described in Pereira-
Flores et al. [13]. Briefly, the number of genomes was first
estimated as the mean coverage of the 35 single-copy genes
(Supplementary methods). The average 16S rRNA copy
number was estimated as the coverage of 16S rRNA genes
divided by the number of genomes. The average genome
size was estimated as the number of base pairs divided by
the number of genomes. Second, we calculated the codon
usage bias in ribosomal genes and minimum generation
time (hours, h) as described in Vieira-Silva & Rocha [12].
Briefly, the ribosomal genes were retrieved by blasting on a
database of ribosomal proteins of all sequenced genomes
[12]. The codon usage bias in each ribosomal gene was
calculated using effective number of codons (ENC′) [37].
The codon usage bias of a community was calculated as the
inverse mean ENC′ of all ribosomal genes. The minimum
generation time was predicted using codon usage bias
as described in Vieira-Silva & Rocha [12] (available at

https://galaxy.pasteur.fr/?tool_id=toolshed.pasteur.fr%
2Frepos%2Fkhillion%2Fgrowthpred%2Fgrowthpred%2F1.
07&version=1.07&__identifer=unl8nld8ngn). We then
calculated the maximum growth rate as the inverse of
minimum generation time (h−1) [38]. Third, we calculated
the GC content and the variance of GC content of the
quality-filtered reads as described in Barberán et al. [39].

Statistical analyses

Statistical analyses were implemented in R [40]. To test
the differences in microbial life-history traits between
bare and vegetated soils, we used linear mixed-effects
models to fit life-history trait values as a function of soil
environment (i.e., bare and vegetated soils), using lme4
and lmerTest packages. Soil environment was used as a
fixed effect, and site was treated as a random effect. R2-
value of the fixed effect was estimated following Naka-
gawa and Schielzeth [41]. We used a negative binomial
distribution model as implemented in DESeq2 package
[42] to identify KEGG pathways that were significantly
abundant in bare or vegetated soils. P-values for multiple
testing were corrected using the Benjamini–Hochberg
method [43]. To explore the potential sources of unan-
notated genes in bare and vegetated soils, we examined
the correlation between the proportion of genes without
KEGG annotation and the proportion of phylotypes that
were unclassified at different taxonomic levels (i.e.,
phylum, class, order, family, genus and species). To
examine whether our results are robust to the use of
functional annotation database, we calculated the pro-
portion of genes without eggNOG annotation and repe-
ated the correlation analyses.

Results and discussion

Life-history traits

The contents of total organic carbon, dissolved organic
carbon, dissolved nitrogen and bioavailable phosphorus
were significantly higher in vegetated than bare soils
(Fig. S2). The higher soil nutrient availability in vegetated
areas is mainly ascribed to the effects of desert plants such
as leaf litter and root exudates on soil nutrients, which is
known as the fertility island effect [44, 45]. In contrast, this
effect is absent in bare ground devoid of vegetation. In
particular, the low nitrogen availability in bare ground is
considered to be a primary limiting factor to ecosystem
productivity in arid ecosystems [46]. Therefore, our results
indicate that vegetated soils represent a copiotrophic
environment and bare soils represent an oligotrophic
environment.
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Microbial communities in vegetated soils had a higher
average 16S rRNA gene copy number than those in bare
soils (linear mixed-effects model, F1,19= 12.91, P= 0.002,
R2= 0.36; Fig. 1), suggesting that soil microbes in vege-
tated areas have a higher cellular ribosome content than
microbes in bare soils. In addition, microbes beneath
vegetation patches exhibited a greater codon usage bias in
their ribosomal genes (F1,19= 10.40, P= 0.004, R2= 0.28;
Fig. 1). The greater codon usage bias in vegetated soils
represented a differential preference of the ribosomal genes’
codons because ribosomal genes are highly expressed dur-
ing fast growth [12]. As a result, we found that maximum
growth rate was higher for microbial communities in
vegetated soils than those in bare soils (F1,19= 28.30, P=
3.91 × 10−5, R2= 0.53; Fig. 1). Result of these trait com-
parisons suggest that high-resource conditions in vegetated
soils favored copiotrophic microbial communities and bare
soils selected for oligotrophic microbial communities
adapted to resource scarcity. Consistent with our hypoth-
esis, these life-history traits play pivotal roles in distin-
guishing copiotrophic and oligotrophic microbial
communities.

Average genome size was not significantly different
between microbial communities in bare and vegetated soils
(F1,19= 0.01, P= 0.91, R2= 0.001; Fig. 1). Most studies in
aquatic habitats showed that oligotrophs tend to have
smaller genomes [14, 47], whereas a grassland study
demonstrated that soil copiotrophs have smaller genomes
[48]. The mixed evidence provided by previous studies and
our observation might reflect a habitat difference of selec-
tive pressure on genome size, different methods of genome
size estimation, or a disparity between community and
species/genome level comparison. Moreover, microbial
communities in bare soils had a higher GC content (F1,19=

15.57, P= 0.0009, R2= 0.31; Fig. 1). A higher genomic
GC content can enhance the thermotolerance of a micro-
organism because the GC base pair is known for its high
thermal stability [49, 50]. This thermotolerance ability is
particularly relevant for oligotrophs in bare soils because
they are exposed to higher radiation and temperature [44].
The higher GC content in bare soils was also mirrored by
the greater relative abundance of Actinobacteria (Fig. S3).
Members of Actinobacteria represent a well-defined clade
of GC-rich taxa, and their exclusive tolerance to desiccation
facilitates their widespread distribution in desert soils [51].
Furthermore, bare soil microbial communities had a lower
variance of genomic GC content (F1,19= 16.97, P=
0.0006, R2= 0.30; Fig. 1), suggesting that the stressful
environment in bare soils enriched microbes with similar
GC contents and limited their variability.

Trait-based approaches have elicited recent interest in
microbial ecology, but the complexities of microbial traits
and trait measurements make the integration and general-
ization among trait-based microbial studies challenging
[52]. Moreover, it has been well-recognized that microbes
can be differentiated into broad ecological categories
according to a copiotroph-oligotroph framework [7]. On the
one hand, average 16S rRNA copy number, codon usage
bias in ribosomal genes and maximum growth rate can
serve as universal and mechanistic life-history traits to
classify microbial communities as fast-growing copio-
trophic communities or slow-growing oligotrophic com-
munities. More generally, these life-history traits can extend
the copiotroph-oligotroph dichotomy to a continuum run-
ning from copiotrophic to oligotrophic microbial commu-
nities, which is analogous to the “fast-slow” plant
economics spectrum [53]. We advocate that grounding such
a trait-based approach into an established life-history
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Fig. 1 Microbial life-history
traits. Box plots show the
comparisons of life-history trait
values between bare and
vegetated soils. The medians in
these box plots are as follows
(bare soil vs vegetated soil):
average 16S rRNA copy number
(3.34 vs 3.74), codon usage bias
(0.0178 vs 0.0180), maximum
growth rate (0.093 h−1 vs
0.102 h−1), average genome size
(5.48 Mb vs 5.58 Mb), GC
content (68.06% vs 67.39%),
variance of GC content (56.84
vs 70.96).
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framework would help to develop a more mechanistic pic-
ture of microbial responses to changing environmental
conditions. For example, recent research has shown that
shifts in microbial growth-related traits can explain suc-
cessional trajectories associated with changes in resource
availability [54, 55]. On the other hand, average genome
size, GC content, and GC variance represent habitat-specific
properties of copiotrophic and oligotrophic communities.
For example, GC content and GC variance reflect thermo-
tolerance in desert soils. It is worth noting, however, that
these traits do not take into account the abundance of par-
ticular species or the intraspecies trait variance, a limitation
that should be addressed in future studies. Despite this
limitation, these traits facilitate the comparisons of micro-
bial life-history strategies across contrasting environments
and hold great promise for distilling complex microbial
communities into important ecological attributes.

Functional attributes

Microbial communities with contrasting life-history strate-
gies exhibited different functional attributes (Fig. 2). Bare
soil microbes had greater relative abundances of genes
associated with metabolism functions (Fig. 2a), suggesting
that metabolic versatility is an essential trait of oligotrophic
microbial communities. This metabolic versatility likely
reflects an important adaptive strategy of oligotrophs in
coping with resource scarcity. For example, although plant-

derived carbon inputs are rare in bare soils, bare soil
microbes had more abundant genes associated with meta-
bolizing a broad range of saccharides including pentose,
amino sugars, nucleotide sugars, among others (Fig. 2b).
This observation is in line with a previous study showing
that oligotrophs might be capable of scavenging a broad
range of carbon substrates [56]. Moreover, microbes in bare
soils had more abundant genes encoding homologous
recombination, base excision repair, nucleotide excision
repair, and mismatch repair (Fig. 2c), likely representing
stress-tolerant traits enabling oligotrophs to maintain gen-
ome integrity by preventing radiation-induced DNA
damage in bare soils [44]. We further found that maximum
growth rate was negatively associated with relative abun-
dances of genes involved in DNA repair (Fig. S4). This
result reflects a trade-off between growth rate and resistance
[57], where oligotrophs allocate more resources into stress-
resistance at the expense of growth rates [58].

Microbial communities in vegetated soils had greater
relative abundances of genes involved in environmental
information processing (Fig. 2a). The inflated relative
abundances of genes encoding ATP-binding cassette
transporters (ABC-transporters) and transporters in the
phosphotransferase system (PTS; Fig. 2d) would facilitate
copiotrophs to uptake readily available extracellular com-
pounds in soils or plant root exudates [59]. The enrichment
of genes encoding two-component system (Fig. S5) might
facilitate copiotrophs to sense and respond to changes in
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environmental conditions. In addition, a larger proportion of
genes encoding flagellar assembly and chemotaxis (Fig. 2e)
might represent motility-enabling traits of copiotrophs in
vegetated soils. While cell motility is widely suggested as
an important trait for copiotrophs in aquatic habitats [14], it
might be important for copiotrophs in vegetated soils to be
recruited as members of microbial communities in rhizo-
sphere [60].

Potential sources of unannotated genes

Results of KEGG annotation showed that the proportion of
unannotated genes ranged from 57 to 60% among samples
(Fig. 3a), suggesting that a substantial fraction of functional
attributes remain poorly described in desert soil microbes. The
proportion of unannotated genes was higher for microbial
communities in bare soils than those in vegetated soils
(F1,19= 6.97, P= 0.01, R2= 0.23; Fig. 3a, see a consistent
pattern for genes without eggNOG annotation in Fig. S6). In
addition, bare soils harbored a higher proportion of 16S rRNA
phylotypes that were unclassified at different taxonomic levels
(Fig. S7). These results can be attributed to the fact that oli-
gotrophs are less readily culturable than copiotrophs, and thus
their taxonomic and functional information are under-
represented in current reference databases [61]. Therefore,
bare soils serve as a reservoir for uncharacterized microbial
taxonomic and functional diversity in arid ecosystems. In
support of our hypothesis, these results indicate that

oligotrophic microbial communities harbor more unannotated
genes than copiotrophic microbial communities.

Experimental characterization of gene-function rela-
tionship is the most promising way to tackle the unan-
notated genes, but it is labor-intensive [62]. The
development of a strategy to identify which taxa the
unannotated genes most likely arise from can provide
practical hints on prioritizing microbial members for
experimental investigations. In this study, we found that
the primary sources of unannotated genes were different
in copiotrophic and oligotrophic microbial communities
(Fig. 3b). For the copiotrophic communities in vegetated
soils, we found that the proportion of unannotated genes
was positively related to the proportion of unclassified
16S rRNA phylotypes at different taxonomic levels
(Fig. 3b, Fig. S6), suggesting that the unannotated genes
in copiotrophs might originate from unclassified copio-
trophs. In other words, taxonomically known copiotrophs
are most likely to have available genomic information.
While we do not exclude the possibility that there are
some copiotrophs that are taxonomically known but have
unavailable reference genomes, our results suggest that
the most productive way to obtain novel genes of copio-
trophs is to culture isolates of taxonomically unknown
copiotrophs and investigate their gene functions [63]. In
contrast, in the oligotrophic communities in bare soils we
found that the proportion of unannotated genes was not
related to the proportion of unclassified 16S rRNA
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Fig. 3 Potential sources of unannotated genes. For each sample, the
proportion of unannotated genes was measured as the number of genes
without KEGG annotation divided by the total number of genes, the
proportions of unclassified 16S rRNA phylotypes at different taxo-
nomic levels were measured as the number of unclassified 16S rRNA
phylotypes divided by the total number of 16S rRNA phylotypes.

a Comparison of the proportion of genes without KEGG annotation
in bare (median= 58.68%) and vegetated soils (median= 58.28%).
b Relating the proportion of genes without KEGG annotation to the
proportion of unclassified phylotypes at different taxonomic levels.
Results of Pearson correlations are shown.
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phylotypes (Fig. 3b, Fig. S6). A plausible explanation is
that the unannotated genes in oligotrophs come from two
sources: (i) oligotrophs that are taxonomically unknown,
and (ii) oligotrophs that are taxonomically known but
have unavailable genomic information. Thus, the novel
genes of oligotrophs are hiding in plain sight: we should
preferentially investigate the genes of taxonomically
known oligotrophs in hand. These correlational analyses
provide a preliminary strategy for unraveling unannotated
genes, more complicated computation approaches are
required to prioritize microbial lineages that enrich
unannotated genes.

Conclusions and perspectives

Metagenomics has greatly expanded our ability to character-
ize the functional capacities of microorganisms, but it remains
limited in providing new ecological insights. We demon-
strated that multiple ecologically informed traits inferred from
metagenomic data can advance the trait-based characterization
of microbial communities within a copiotroph-oligotroph
framework. This trait-based classification opens new oppor-
tunities for reducing the complexity of microbial commu-
nities. For example, microbial communities that vary across
different geographic regions can be simplified by the classi-
fication of community-level ecological strategies [64]. In
addition, we showed that oligotrophic microbial communities
have a higher proportion of functionally unknown genes than
copiotrophic microbial communities. We provided a pre-
liminary strategy for unraveling these unknown genes. In
copiotrophic communities, the priority should be placed on
taxonomically unknown phylotypes, whereas in oligotrophic
communities the priority should be placed on phylotypes that
are taxonomically known. With the increasing amount of
metagenomic data being generated across a wide range of
ecosystems, an important avenue for future work will be to
facilitate the global integration and generalization of our
results.

Data availability

The sequence data have been deposited in the NCBI
Sequence Read Archive under BioProject accession code
PRJNA664514.
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