Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts


The symbiosis between bacteria and sponges has arguably the longest evolutionary history for any extant metazoan lineage, yet little is known about bacterial evolution or adaptation in this process. An example of often dominant and widespread bacterial symbionts of sponges is a clade of uncultured and uncharacterised Proteobacteria. Here we set out to characterise this group using metagenomics, in-depth phylogenetic analyses, metatranscriptomics, and fluorescence in situ hybridisation microscopy. We obtained five metagenome-assembled-genomes (MAGs) from different sponge species that, together with a previously published MAG (AqS2), comprise two families within a new gammaproteobacterial order that we named UTethybacterales. Members of this order share a heterotrophic lifestyle but vary in their predicted ability to use various carbon, nitrogen and sulfur sources, including taurine, spermidine and dimethylsulfoniopropionate. The deep branching of the UTethybacterales within the Gammaproteobacteria and their almost exclusive presence in sponges suggests they have entered a symbiosis with their host relatively early in evolutionary time and have subsequently functionally radiated. This is reflected in quite distinct lifestyles of various species of UTethybacterales, most notably their diverse morphologies, predicted substrate preferences, and localisation within the sponge tissue. This study provides new insight into the evolution of metazoan–bacteria symbiosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: 16S rRNA phylogenetic tree of gammaproteobacterial orders with Alphaproteobacteria as an outgroup.
Fig. 2: Phylogenomic tree of the Proteobacteria based on GTDB.
Fig. 3: Global distribution of UTethybacterales-containing samples collected for the Sponge Earth Microbiome Project.
Fig. 4: Detection of UTethybacterales species by CARD-FISH in sponge hosts.

Data availability

Raw sequencing data are publicly available at the NCBI Sequence Read Archive (SRA, under Project Accession number PRJNA589708.

RNA-Seq data from Cymbastela concentrica and Crella incrustans is available on request through Bioplatforms Australia ( Sample IDs are found in Supplementary File 1, Table S2.

MAGs can be accessed publicly via JGI GOLD (, GOLD Analysis Project IDs can be found in Supplementary File 1, Table S6.


  1. 1.

    Bergquist PR. Sponges. London, United Kingdom: Hutchinson and Co. Ltd; 1978.

  2. 2.

    Brain CKB, Prave AR, Hoffmann KH, Fallick AE, Botha A, Herd DA, et al. The first animals: Ca. 760-million-year-old sponge-like fossils from Namibia. S Afr J Sci. 2012;108:1–8.

    Article  Google Scholar 

  3. 3.

    Hooper JNA, van Soest RWM. Systema Porifera: a guide to the classification of sponges. New York: Kluwer Academic/Plenum Publishers; 2002.

    Google Scholar 

  4. 4.

    Webster NS. Sponge disease: a global threat? Environ Microbiol. 2007;9:1363–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Bell JJ. The functional roles of marine sponges. Estuar Coast Shelf Sci. 2008;79:341–53.

    Article  Google Scholar 

  6. 6.

    de Goeij JM, van Oevelen D, Vermeij MJA, Middelburg JJ, Osinga R, de Goeij AFPM, et al. Surviving in a Marine Desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  7. 7.

    Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Wehrl M, Steinert M, Hentschel U. Bacterial uptake by the marine sponge Aplysina aerophoba. Microb Ecol. 2007;53:355–65.

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A, et al. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 2010;4:1557–67.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Nguyen MTHD, Liu M, Thomas T. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol Ecol. 2013;23:1635–45.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Reynolds D, Thomas T. Evolution and function of eukaryotic-like proteins from sponge symbionts. Mol Ecol. 2016;25:5242–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Jahn MT, Arkhipova K, Markert SM, Stigloher C, Lachnit T, Pita L, et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe. 2019;26:542–50.e5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Degnan SM. The surprisingly complex immune gene repertoire of a simple sponge, exemplified by the NLR genes: a capacity for specificity? Dev Comp Immunol. 2015;48:269–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol. 2006;55:167–77.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Moitinho-Silva L, Steinert G, Nielsen S, Hardoim CCP, Wu YC, McCormack GP, et al. Predicting the HMA-LMA status in marine sponges by machine learning. Front Microbiol. 2017;8:1–14.

    Article  Google Scholar 

  16. 16.

    Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, et al. The sponge microbiome project. Gigascience. 2017;6:1–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, et al. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol. 2002;68:4431–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Simister RL, Deines P, Botté ES, Webster NS, Taylor MW. Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol. 2012;14:517–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Taylor MW, Tsai P, Simister RL, Deines P, Botte E, Ericson G, et al. “Sponge-specific” bacteria are widespread (but rare) in diverse marine environments. ISME J. 2013;7:438–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Croué J, West NJ, Escande M-L, Intertaglia L, Lebaron P, Suzuki MT. A single betaproteobacterium dominates the microbial community of the crambescidine-containing sponge Crambe crambe. Sci Rep. 2013;3:2583.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. PNAS. 2012;109:E1878–87.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Simister RL, Taylor MW, Rogers KM, Schupp PJ, Deines P. Temporal molecular and isotopic analysis of active bacterial communities in two New Zealand sponges. FEMS Microbiol Ecol. 2013;85:195–205.

    PubMed  Article  Google Scholar 

  23. 23.

    Gantt SE, López-Legentil S, Erwin PM. Stable microbial communities in the sponge Crambe crambe from inside and outside a polluted Mediterranean harbor. FEMS Microbiol Lett. 2017;364:1–7.

    Article  CAS  Google Scholar 

  24. 24.

    Bin JeongJ, Kim KH, Park JS. Sponge-specific unknown bacterial groups detected in marine sponges collected from Korea through barcoded pyrosequencing. J Microbiol Biotechnol. 2015;25:1–10.

    Article  Google Scholar 

  25. 25.

    Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, Imhoff JF. Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol. 2006;59:47–63.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Fieth RA, Gauthier M-EA, Bayes J, Green KM, Degnan SM. Ontogenetic changes in the bacterial symbiont community of the tropical demosponge Amphimedon queenslandica: metamorphosis is a new beginning. Front Mar Sci. 2016;3:1–20.

    Article  Google Scholar 

  27. 27.

    Batani G. Fluorescence in situ hybridisation for the localisation and culturing of marine bacteria: co-localisation of symbionts in sponges (Unpublished PhD thesis chapter). UNSW Sydney. 2018.

  28. 28.

    Waterworth SC, Jiwaji M, Kalinski JCJ, Parker-Nance S, Dorrington RA. A place to call home: an analysis of the bacterial communities in two Tethya rubra Samaai and Gibbons 2005 populations in algoa bay, South Africa. Mar Drugs. 2017;15:95.

    PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Wu S, Ou H, Liu T, Wang D, Zhao J. Structure and dynamics of microbiomes associated with the marine sponge Tedania sp. during its life cycle. FEMS Microbiol Ecol. 2018;94:1–9.

    Article  CAS  Google Scholar 

  30. 30.

    Matcher GF, Waterworth SC, Walmsley TA, Matsatsa T, Parker-Nance S, Davies-Coleman MT, et al. Keeping it in the family: coevolution of latrunculid sponges and their dominant bacterial symbionts. Microbiologyopen. 2017;6:1–13.

    Article  CAS  Google Scholar 

  31. 31.

    Jackson SA, Flemer B, McCann A, Kennedy J, Morrissey JP, O’Gara F, et al. Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges. PLoS ONE. 2013;8:1–8.

    Google Scholar 

  32. 32.

    Steinert G, Taylor MW, Deines P, Simister RL, de Voogd NJ, Hoggard M, et al. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ. 2016;4:e1936.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Gauthier M-EA, Watson JR, Degnan SM. Draft genomes shed light on the dual bacterial symbiosis that dominates the microbiome of the coral reef sponge Amphimedon queenslandica. Front Mar Sci. 2016;3:1–18.

    Article  Google Scholar 

  34. 34.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Cold Spring Harb Lab Press. 2014;25:1043–55.

    Google Scholar 

  35. 35.

    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verezemska O, Isbandi M, et al. Genomes OnLine database (GOLD) v.6: data updates and feature enhancements. Nucleic Acids Res. 2017;45:D446–56.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Huntemann M, Ivanova NN, Mavromatis K, James Tripp H, Paez-Espino D, Palaniappan K, et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v.4). Stand Genom Sci. 2015;10:4–9.

    Article  CAS  Google Scholar 

  37. 37.

    Eddy S. Profile hidden Markov models. Bioinformatics. 1998;14:755–63.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.

    Article  CAS  Google Scholar 

  41. 41.

    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.

    Google Scholar 

  44. 44.

    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Prepr. 2016;4:e1900v1.

    Google Scholar 

  47. 47.

    Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Díez-Vives C, Moitinho-Silva L, Nielsen S, Reynolds D, Thomas T. Expression of eukaryotic-like protein in the microbiome of sponges. Mol Ecol. 2017;26:1432–51.

    Article  CAS  Google Scholar 

  49. 49.

    Öztürk B, De Jaeger L, Smidt H, Sipkema D. Culture-dependent and independent approaches for identifying novel halogenases encoded by Crambe crambe (marine sponge) microbiota. Sci Rep. 2013;3:1–9.

    Article  Google Scholar 

  50. 50.

    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:1–16.

    Article  Google Scholar 

  51. 51.

    Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics. 2010;26:493–500.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  53. 53.

    Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Webster NS, Hill RT. The culturable microbial community of the great barrier reef sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Mar Biol. 2001;138:843–51.

    CAS  Article  Google Scholar 

  55. 55.

    Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 2020;14:1100–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Moitinho-Silva L, Díez-Vives C, Batani G, Esteves AIS, Jahn MT, Thomas T. Integrated metabolism in sponge-microbe symbiosis revealed by genome-centered metatranscriptomics. ISME J. 2017;11:1651–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Lobb B, Tremblay BJM, Moreno-Hagelsieb G, Doxey AC. An assessment of genome annotation coverage across the bacterial tree of life. Microb Genom. 2020;6:e000341.

    PubMed Central  Google Scholar 

  58. 58.

    Lopez JV, Ranzer LK, Ledger A, Schoch B, Duckworth A, Mccarthy PJ, et al. Comparison of bacterial diversity within the coral reef sponge, axinella corrugata, the encrusting coral erythropodium caribaeorum. Proc. 11 Int. Coral Reef Symp. 2008;2:1362–6.

    Google Scholar 

  59. 59.

    Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-smith M, Doud D, Jarett J, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Chuvochina M, Rinke C, Parks DH, Rappé MS, Tyson GW, Yilmaz P, et al. The importance of designating type material for uncultured taxa. Syst Appl Microbiol. 2019;42:15–21.

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Tripp E. Crowell’s handbook of classical mythology. New York: Thomas Y. Crowell Company; 1970.

  64. 64.

    Athanassakis AN. Hesiod: Theogony, Works and Days, Shield. 2nd ed. Baltimore and London: The John Hopkins University Press; 2005.

  65. 65.

    Webster NS, Negri AP, Munro MMHG, Battershill CN. Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol. 2004;6:288–300.

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Coelho FJRC, Cleary DFR, Gomes NCM, Pólonia ARM, Huang YM, Liu LL, et al. Sponge prokaryote communities in Taiwanese coral reef and shallow hydrothermal vent ecosystems. Microb Ecol. 2018;75:239–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Sipkema D, de Caralt S, Morillo JA, Al-Soud WAB, Sørensen SJ, Smidt H, et al. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission. Environ Microbiol. 2015;17:3807–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Bjork JR, Diez-Vives C, Astudillo-Garcia C, Archie E, Montoya JM. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat Ecol Evol. 2019;3:1172–83.

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Gonzalez-Zapata FL, Bongaerts P, Ramírez-Portilla C, Adu-Oppong B, Walljasper G, Reyes A, et al. Holobiont diversity in a reef-building coral over its entire depth range in the mesophotic zone. Front Mar Sci. 2018;5:1–13.

    Article  Google Scholar 

  70. 70.

    Yang S, Sun W, Zhang F, Li Z. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea. Mar Biotechnol. 2013;15:540–51.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Høj L, Levy N, Baillie BK, Clode PL, Strohmaier RC, Siboni N, et al. Crown-of-thorns sea star Acanthaster cf. solaris has tissue—characteristic microbiomes with potential roles in health and reproduction. Appl Environ Microbiol. 2018;84:1–18.

    Article  Google Scholar 

  72. 72.

    Schmitt S, Deines P, Behnam F, Wagner M, Taylor MW. Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiol Ecol. 2011;78:497–510.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Bergquist PR, Kelly-Borges M. An evaluation of the genus Tethya (Porifera: Demospongiae: Hadromerjda) with descriptions of new species from the southwest Pacific. Beagle Rec Mus Art Galleries North Territ. 1991;8:37–72.

    Google Scholar 

  74. 74.

    Hoshino T, Yilmaz LS, Noguera DR, Daims H, Wagner M. Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. Appl Environ Microbiol. 2008;74:5068–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Moran NA, Wernegreen JJ. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol. 2000;15:321–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Vacelet J, Donadey C. Electron microscope study of the association between some sponges and bacteria. J Exp Mar Bio Ecol. 1977;30:301–14.

    Article  Google Scholar 

  77. 77.

    Maldonado M. Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges, with emphasis on intracytoplasmically-compartmented bacterial types. J Mar Biol Assoc UK. 2007;87:1701–13.

    Article  Google Scholar 

  78. 78.

    Ilan M, Abelson A. The life of a sponge in a sandy lagoon. Biol Bull. 1995;189:363–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta Bioenerg. 2011;1807:1398–413.

    CAS  Article  Google Scholar 

  80. 80.

    Lavy A, Keren R, Yahel G, Ilan M. Intermittent hypoxia and prolonged suboxia measured in situ in a marine sponge. Front Mar Sci. 2016;3:1–11.

    Article  Google Scholar 

  81. 81.

    Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, et al. An anaerobic world in sponges. Geomicrobiol J. 2005;22:1–10.

    Article  Google Scholar 

  82. 82.

    Moreno-Vivian C, Cabello C, Martinez-Luque M, Blasco R, Castillo F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol. 1999;181:6573–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Toffanin A, Wu Q, Maskus M, Casella S, Abruña HD, Shapleigh JP. Characterization of the gene encoding nitrite reductase and the physiological consequences of its expression in the nondenitrifying Rhizobium “hedysari” strain HCNT1. Appl Environ Microbiol. 1996;62:4019–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci. 2004;61:682–99.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev. 2011;35:68–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH. Expansion of the APC superfamily of secondary carriers. Proteins Struct Funct Bioinform. 2014;82:2797–811.

    CAS  Article  Google Scholar 

  87. 87.

    Pao SS, Paulsen IT, Saier MH. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62:1–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Ziegler C, Bremer E, Krämer R. The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol. 2010;78:13–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Andrade SLA, Einsle O. The Amt/Mep/Rh family of ammonium transport proteins (Review). Mol Membr Biol. 2007;24:357–65.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K, et al. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J. 2013;7:2287–300.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Clifford EL, Hansell DA, Varela MM, Nieto-Cid M, Herndl GJ, Sintes E. Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean. Limnol Oceanogr. 2017;62:2745–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Karimi E, Keller-Costa T, Slaby BM, Cox CJ, da Rocha UN, Hentschel U, et al. Genomic blueprints of sponge-prokaryote symbiosis are shared by low abundant and cultivatable Alphaproteobacteria. Sci Rep. 2019;9:1–15.

    Article  CAS  Google Scholar 

  93. 93.

    Dahl C, Franz B, Hensen D, Kesselheim A, Zigann R. Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: Identification of SoeABC as a major player and relevance of SoxYZ in the process. Microbiology. 2013;159:2626–38.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Bardischewsky F, Quentmeier A, Friedrich CG. The flavoprotein SoxF functions in chemotrophic thiosulfate oxidation of Paracoccus pantotrophus in vivo and in vitro. FEMS Microbiol Lett. 2006;258:121–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Gregersen LH, Bryant DA, Frigaard NU. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol. 2011;2:1–14.

    Article  CAS  Google Scholar 

  96. 96.

    Lavy A, Keren R, Yu K, Thomas BC, Alvarez-Cohen L, Banfield JF, et al. A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol. 2018;20:800–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Tian R-M, Wang Y, Bougouffa S, Gao ZM, Cai L, Bajic V, et al. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge. Environ Microbiol. 2014;16:3548–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Keller MD, Kiene RP, Matrai PA, Bellows WK. Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. II. N-limited chemostat cultures. Mar Biol. 1999;135:249–57.

    CAS  Article  Google Scholar 

  99. 99.

    Diaz MR, Visscher PT, Taylor BF. Metabolism of dimethylsulfoniopropionate and glycine betaine by a marine bacterium. FEMS Microbiol Lett. 1992;96:61–5.

    CAS  Article  Google Scholar 

  100. 100.

    Sun J, Steindler L, Thrash JC, Halsey KH, Smith DP, Carter AE, et al. One carbon metabolism in SAR11 pelagic marine bacteria. PLoS ONE. 2011;6:e23973.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Equar MY, Tani Y, Mihara H. Purification and properties of glycine oxidase from pseudomonas putida KT2440. J Nutr Sci Vitaminol. 2015;61:506–10.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Karimi E, Slaby BM, Soares AR, Blom J, Hentschel U, Costa R. Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiol Ecol. 2018;94:1–18.

    Article  CAS  Google Scholar 

  103. 103.

    Moreno-Pino M, Cristi A, Gillooly JF, Trefault N. Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach. Sci Rep. 2020;10:1–12.

    Article  CAS  Google Scholar 

  104. 104.

    Mayer J, Huhn T, Habeck M, Denger K, Hollemeyer K, Cook AM. 2,3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. Microbiology. 2010;156:1556–64.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Michael AJ. Polyamines in eukaryotes, bacteria, and archaea. J Biol Chem. 2016;291:14896–903.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Tsukamoto S, Kato H, Hirota H, Fusetani N. Pseudoceratidine: a new antifouling spermidine derivative from the marine sponge Pseudoceratina purpurea. Tetrahedron Lett. 1996;37:1439–40.

    CAS  Article  Google Scholar 

  107. 107.

    Igarashi K, Kashiwagi K. Polyamine transport in bacteria and yeast. Biochem J. 1999;344:633–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Shah P, Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol. 2008;68:4–16.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Schneider BL, Reitzer L. Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli. J Bacteriol. 2012;194:4080–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Mou X, Sun S, Rayapati P, Moran MA. Genes for transport and metabolism of spermidine in Ruegeria pomeroyi DSS-3 and other marine bacteria. Aquat Microb Ecol. 2010;58:311–21.

    Article  Google Scholar 

  111. 111.

    Dasu VV, Nakada Y, Ohnishi-Kameyama M, Kimura K, Itoh Y. Characterization and a role of Pseudomonas aeruginosa spermidine dehydrogenase in polyamine catabolism. Microbiology. 2006;152:2265–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Tofalo R, Cocchi S, Suzzi G. Polyamines and gut microbiota. Front Nutr. 2019;6:1–5.

    Article  CAS  Google Scholar 

  113. 113.

    Sharfstein ST, Keasling JD. Polyphosphate metabolism in Escherichia coli. Ann N Y Acad Sci. 1994;745:77–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc Natl Acad Sci USA. 2015;112:4381–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Wang L, Yan J, Wise MJ, Liu Q, Asenso J, Huang Y, et al. Distribution patterns of polyphosphate metabolism pathway and its relationships with bacterial durability and virulence. Front Microbiol. 2018;9:1–10.

    Article  Google Scholar 

  116. 116.

    Romano S, Schulz-Vogt HN, González JM, Bondarev V. Phosphate limitation induces drastic physiological changes, virulence-related gene expression, and secondary metabolite production in Pseudovibrio sp. strain FO-BEG1. Appl Environ Microbiol. 2015;81:3518–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Bergquist PR. In: eLS (ed) Porifera (Sponges). John Wiley & Sons, Ltd. 2001.

  118. 118.

    Kovacs-Simon A, Titball RW, Michell SL. Lipoproteins of bacterial pathogens. Infect Immun. 2011;79:548–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Aoki S, Ito M, Iwasaki W. From β- To α-proteobacteria: The origin and evolution of rhizobial nodulation genes nodij. Mol Biol Evol. 2013;30:2494–508.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SGE. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet. 2007;23:511–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Kuo CH, Ochman H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol Direct. 2009;4:35.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references


The authors thank Mike Taylor for the T. stolonifera sequencing data, Michael Carnell for helpful advice and support for this study and Başak Öztürk and Bart Nijsse for previous work on Crambe crambe and data generation. We acknowledge Illumina and the Earth Microbiome Project for Crella incrustans metagenomic sequencing, including these individuals: Luke Thompson, Jon Sanders, Rodolfo Salido Benitez, Karenina Sanders, Caitriona Brennan, Jeremiah Minich, MacKenzie Bryant, Lindsay DeRight Goldasich, Greg Humphrey, and Rob Knight. For the generation of Cymbastela concentrica and Crella incrustans RNA-Seq data, we acknowledge the contribution of the Marine Microbes project, which was supported by funding from Bioplatforms Australia and the Integrated Marine Observing System (IMOS) through the Australian Government National Collaborative Research Infrastructure Strategy (NCRIS) in partnership with the Australian research community.


This work was further supported by funds provided through the Australian Research Council and the Betty and Gordon Moore Foundation.

Author information



Corresponding author

Correspondence to Torsten Thomas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taylor, J.A., Palladino, G., Wemheuer, B. et al. Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts. ISME J (2020).

Download citation