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Abstract
Ecologically relevant genes generally show patchy distributions among related bacterial genomes. This is commonly
attributed to lateral gene transfer, whereas the opposite mechanism—gene loss—has rarely been explored. Pseudogenization
is a major mechanism underlying gene loss, and pseudogenes are best characterized by comparing closely related genomes
because of their short life spans. To explore the role of pseudogenization in microbial ecological diversification, we apply
rigorous methods to characterize pseudogenes in the 279 newly sequenced Ruegeria isolates of the globally abundant
Roseobacter group collected from two typical coastal habitats in Hong Kong, the coral Platygyra acuta and the macroalga
Sargassum hemiphyllum. Pseudogenes contribute to ~16% of the accessory genomes of these strains. Ancestral state
reconstruction reveals that many pseudogenization events are correlated with ancestral niche shifts. Specifically, genes
related to resource scavenging and energy acquisition were often pseudogenized when roseobacters inhabiting carbon-
limited and energy-poor coral skeleton switched to other resource-richer niches. For roseobacters inhabiting the macroalgal
niches, genes for nitrogen regulation and carbohydrate utilization were important but became dispensable upon shift to coral
skeleton where nitrate is abundant but carbohydrates are less available. Whereas low-energy-demanding secondary
transporters are more favorable in coral skeleton, ATP-driven primary transporters are preferentially kept in the energy-
replete macroalgal niches. Moreover, a large proportion of these families mediate organismal interactions, suggesting their
rapid losses by pseudogenization as a potential response to host and niche shift. These findings illustrate an important role of
pseudogenization in shaping genome content and driving ecological diversification of marine roseobacters.

Introduction

Gene gains and losses play a major role in shaping genome
content and ecological diversification of bacteria [1]. In
bacteria, gene acquisition through lateral gene transfer
(LGT) has been well studied [2, 3]. Compared with gene

gains, the mechanisms and roles of gene losses in microbial
evolution and ecological diversification are less clear. One
of the most common ways of gene loss is pseudogenization
[4]. Pseudogenes, first discovered in Xenopus laevis [5],
have long been considered as a paradigm of neutral evo-
lution [6]. They represent genes lost as a result of disabling
mutations, fixed in the population by genetic drift because
the effected gene becomes dispensable in the organism’s
current niche and thus not subject to strong functional
constraints [7]. Recently, accumulating evidence implies
pseudogenization as an important contributor to genetic
variation and evolution of microbial genomes [4, 8].
Despite being predominantly neutral, there are cases in
which gene losses via pseudogenization increase fitness and
are thus adaptive [9, 10]. A few characterized pseudogen-
ization events are associated with increases in virulence
[11], such as the marT gene in Salmonella Typhi, which
likely contributes to the surV-dependent survival to oxida-
tive stress imposed by abundant H2O2 inside human mac-
rophages [12]. Further, pseudogenes may serve as raw
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materials from which novel genes and noncoding RNAs
arise [13]. From the evolutionary perspective, pseudogenes
provide a rapid way for ecological adaptation because (i) a
single mutation could lead to the inactivation of a gene, and
(ii) pseudogenes have the potential to be re-activated by
back mutation or recombination, particularly when the
functionality of the gene is selectively favored in a new
environment [14]. Besides, pseudogenes represent unequi-
vocal cases of ongoing gene loss, which is often inaccu-
rately predicted by canonical methods [15, 16] based on the
presence/absence pattern of a functional gene across a
phylogenetic tree.

Despite their prevalence in eukaryotic genomes, pseu-
dogenes are relatively infrequent in prokaryotes [17, 18].
Pseudogenes are known to be absent or depleted in
streamlined free-living marine bacterioplankton lineages,
such as Prochlorococcus, SAR11 and SAR86 among others
[19, 20]. However, they are rarely explored in metabolically
versatile lineages with larger and more fluid genomes.
Members of the Roseobacter group comprise up to 20% of
bacterial communities in coastal marine habitats [21]. In
addition to their well-established free-living and patch-
associated lifestyles in the pelagic environments [22],
roseobacters often represent a significant fraction in the
microbiomes associated with various marine algae and
invertebrates [21, 23]. For instance, on average 19% of the
epiphytic bacterial cells of a green Ulvacean alga fall within
the Roseobacter group [24]. In coral species Acropora
tenuis on the Great Barrier Reef, Roseobacter-affiliated
sequences make up to 63% of the clone library [25].

Roseobacters and other marine bacteria are found in
three unique niches in corals: the surface mucus layer, coral
tissue, and skeleton [26, 27]. Coral nutrition is largely
supported by Symbiodinium in coral tissue through trans-
location of photosynthates, and up to 50% of the net fixed
carbon is released as mucus by corals [28]. Coral skeleton is
characterized as a separate and relatively stable environment
well-protected from external surroundings. Endolithic algae,
shown as green bands beneath the coral tissue layer, have
been reported in a wide array of coral species [29],
including those in the genus Platygyra [30] sampled in the
present study. While the photosynthetic rate is considerably
lower in coral skeleton than that in coral tissue due to the
extremely low intensity of light that reaches skeleton, the
coral skeleton is subject to diurnal fluctuations in oxygen
and pH levels as coral tissue [29, 31]. Members of the
Roseobacter group are also commonly found in the mac-
roalgal ecosystems, capable of degrading a variety of algal
osmolytes [32]. For mutualistic relationship between mac-
roalgae and bacteria, the algae provide nutrients and oxygen
for epiphytic bacteria, which in turn mineralize organic
substrates and provide CO2, essential vitamins, minerals,
and growth factors to the host [33, 34]. Macroalgae release

a large portion of their fixed carbon in the form of carbo-
hydrates to the surrounding environment [35]. Therefore,
the ambient seawater and sediments are typically rich in
organic carbon [36, 37].

In line with their habitat diversity, roseobacters exhibit
tremendous genomic diversity and metabolic versatility
[38]. Strikingly, even between closely related members
sharing nearly identical 16S rRNA gene sequences, the
genome contents can vary greatly, as shown in 42 globally
distributed strains of the roseobacter species Epibacterium
mobile (formerly known as Ruegeria mobilis) [39]. Such
intraspecific variation could be associated with habitat
diversity, as illustrated by two Sulfitobacter sp. strains
(NAS-14.1 and EE-36) and two Phaeobacter gallaeciensis
strains [40, 41]. In fact, a patchy distribution of ecologically
relevant genes is often observed among roseobacters
[23, 42]. This may, to some extent, reflect their adaptation
to the diverse ecological niches. However, the evolutionary
mechanisms underlying the tremendous amount of diver-
sity, especially how the genome content diverged among
closely related lineages, are poorly understood.

Many previous studies have investigated the genetic
diversity in members of the Roseobacter group and its
relationship to ecological niches [23, 38, 39, 43, 44].
However, these studies were based on canonical methods of
gene gain/loss inferences which ignored pseudogenes, or
focused on distantly related species where traces of most
pseudogenes have been eliminated from the genome. Here,
we inferred the evolutionary history of pseudogenization
events among closely related strains and linked them to the
ancestral switches between niches of the coral and macro-
algal ecosystems. Closely related genomes were analyzed
because, according to previous studies, most bacterial
pseudogenes are strain-specific, and of the few that are
shared across strains, many may have been generated
independently since pseudogenes are retained in bacterial
genomes for only a short time on an evolutionary scale [45–
47]. In terms of the ecosystem type, we chose a coral
ecosystem represented by Platygyra acuta and a macroalgal
ecosystem represented by Sargassum hemiphyllum. This is
because these two species are ecologically significant and
globally widespread throughout coastal environments
including Hong Kong [48–51], serving as important nursery
habitats for various marine organisms [52]. To minimize the
effect of confounding biological and stochastic factors that
may also explain the evolutionary changes of functional
genes, we collected most samples at the same season and
from locations nearby in Hong Kong. We isolated bacteria
and sequenced 279 genomes of closely related strains
affiliated with the genus Ruegeria of the Roseobacter group.
Ruegeria is widely distributed among various habitats
provided by marine eukaryotes [53], and is among the few
bacterial genera associated with the greatest number of coral
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species according to a recent comprehensive review [53].
We tested the hypothesis that genes dispensable in new
niches were likely lost via pseudogenization by showing the
correlations between inferred pseudogenization events and
corresponding niche shifts. We elaborated on specific eco-
logically relevant genes contributing to microbial diversifi-
cation in these niches from the novel perspective of the gene
loss processes.

Materials and methods

Bacterial isolation and pseudogene identification

We collected most microbial samples from the brown alga
Sargassum hemiphyllum ecosystem and the coral Platygyra
acuta ecosystem at the same season during 2016–2018 and
from locations nearby in Hong Kong waters (Fig. 1b;
Supplementary Table S1). Focusing on different niches in
the macroalgal ecosystem (algal tissue, ambient seawater,
and sediment) and the coral ecosystem (mucus, tissue,
skeleton, and ambient seawater), we isolated and performed

genome sequencing of 279 closely related strains affiliated
with the roseobacter genus Ruegeria.

Next, we used the program suite Psi-Phi [45] for pseu-
dogene identification. This program uses a conservative
criterion considering a pseudogene only when it lost >20%
of its original length, and has been widely employed in
other studies [46, 47, 54]. Applying a comparative method,
this approach enhances pseudogene recognition among
closely related strains both in annotated regions by identi-
fying incorrectly annotated open reading frames (ORFs) and
in intergenic regions by detecting new pseudogenes [45].
We further applied the following three steps to filter out
misidentified pseudogenes. First, Psi-Phi only works on
complete chromosomes. However, all of our newly
sequenced genomes contain contigs (Supplementary Data-
set S1). We therefore modified the original scripts to make
them capable of searching for pseudogenes based on
merged contigs followed by removing identified pseudo-
genes whose locations spanned contigs (Supplementary
Fig. S1A). Second, we removed those identified by a query
of less than 100 amino acids, since the vast majority of such
short annotated ORFs are less likely to be genuine genes
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[47, 55], which accounted for 19.7% of the original output.
Last, as noted by Lerat and Ochman [45], if the query gene
is annotated as being longer than its actual length, some
“real” genes could be misidentified by this query ORF as
pseudogenes truncated by a premature stop codon. The
logic is that, if an ORF identified a lot of (here we used 10
as an arbitrary cutoff) pseudogenes as a single query, then it
was highly suspicious that the query was annotated to be
longer than its actual length (see Supplementary Fig. S1B
for an example). Applying this criterion further removed
18.8% of the pseudogenes originally identified by Psi-Phi.

For pseudogene identification, annotated proteins of each
genome were queried against the complete nucleotide
sequence of every other genome. For the vast majority of
identified pseudogenes (>93%), all of the query ORFs of

each pseudogene were from the same gene family, and these
pseudogenes were therefore referred to as “strict-consistent”
pseudogenes. Approximately 6% of the pseudogenes had
less than half of their query ORFs from different families,
and these were named as “relaxed-consistent” pseudogenes.
Both strict-consistent and relaxed-consistent pseudogenes
were retained for subsequent analyses (Fig. 2). Further
technical details were provided in Supplementary Text S1.

Phylogenomic analysis and ancestral state
reconstruction

Amino acid sequences from core single-copy gene families
identified by OrthoFinder v2 [56] were concatenated for the
maximum likelihood (ML) phylogenomic tree inference
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ancestral states
reconstruction. Flowchart of
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family IDs assigned by
OrthoFinder. Pseudogenes with
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using IQ-TREE v1.6.2 [57]. To choose proper candidates
for ancestral state reconstruction (ASR), we explored all
homologous gene families with assigned pseudogenes.
Gene families containing both ORFs and pseudogenes from
the same genome were designated as “multi-state” gene
families (Fig. 2). In contrast, gene families in which each of
the involved genomes corresponds to only one functional
state, containing either ORFs or pseudogenes, were called
“single-state” gene families (Fig. 2). In the case of the
multi-state gene families, since pseudogenes likely evolved
from a functional ancestor originating from vertical descent,
or gene duplication, or LGT, it is difficult to identify (i) how
the pseudogenes were formed, and (ii) whether the
remaining ORF copy has changed its function. Thus, only
single-state gene families were used for ASR (Fig. 2).

ASR was performed for functional state and ecological
trait separately using the “MPR” (most-parsimonious
reconstruction) algorithm implemented in the Phangorn R
package [58]. Based on the inferred functional states for
ancestral nodes, pseudogenization, where an ancestral ORF
became a pseudogene, or a back event, which refers to the
functional restoration from an ancestral pseudogene to an
ORF, was identified for each single-state gene family. By
mapping the inferred functional transitions and niche shifts
along the phylogeny for each single-state gene family, we
identified cases where these two were matched on the same
branch, i.e., an ORF became a pseudogene (or vice versa)
during a niche shift. Gene families with at least one match
were summarized (see details in Supplementary Text S1).

Results and discussion

Phylogenomic analysis of the 279 newly isolated
Ruegeria strains

Our phylogenomic tree of the 279 new strains together with
the 166 publicly available roseobacter genomes (Fig. 1a;
Supplementary Dataset S2) showed that the new strains
were in general related to several described species of the
genus Ruegeria, which together formed a monophyletic
group phylogenetically distinct from the model roseobacter
R. pomeroyi DSS-3 (Fig. 1a; Supplementary Dataset S1).
The mean pairwise average 16S rRNA gene identity and the
mean whole-genome average nucleotide identity (ANI)
were around 98% and 82%, respectively (Fig. 1c),
strengthening the argument that these new isolates were
members of multiple different species within the Ruegeria.
Even closely related strains did not necessarily share the
same ecological niche (Fig. 1a), indicating their rapid shift
in habitat. Overall, the 279 newly sequenced isolates greatly
expanded the genetic and ecological diversity of Ruegeria
than previously appreciated (Supplementary Dataset S1).

Overview of the identified pseudogenes

In an attempt to explore the correlation of pseudogene
formation with niche shifts, we first performed genome-
wide pseudogene identification among all of the 279 iso-
lates (Fig. 2). We tested whether increasing the number of
analyzed genomes could identify more pseudogenes by
grouping genomes using different cutoffs of the phyloge-
netic depth (which considers phylogenetic distance and
topology to cluster all isolates into subclades; see Supple-
mentary Fig. S2 for a schematic illustration). As shown in
Fig. 3a, the number of genomes within each cluster
increased as the phylogenetic depth gradually increased,
and accordingly, the number of both the identified pseu-
dogenes and gene families per genome became larger
(Fig. 3a). Importantly, the trend suggests that the identified
pseudogenes represent a conservative set of the pseudogene
repertoire within surveyed genomes, which awaits a more
complete sampling of Ruegeria species in future. Hence, in
the following analyses, we pooled all 279 genomes together
for pseudogene identification. This showed that the number
of pseudogenes per genome ranged from 70 to 365 (median:
177). Approximately 16% of the families of the accessory
genomes of the newly sequenced isolates contained pseu-
dogenes. No significant differences in the number of
pseudogenes per genome across niches were detected (p >
0.05 for both ANOVA and Kruskal–Wallis test; Fig. 3b).

Approximately 99% of the total pseudogenes (strict- and
relaxed-consistent; see “Materials and methods”) were
assigned to corresponding homologous gene families
according to their query ORFs. A proportion of 62% of the
gene families with assigned pseudogenes occurred as either
ORFs or pseudogenes in a given genome. These gene
families were thereafter referred to as “single-state” famil-
ies, which make 9.6% of the accessory genomes. The
remaining families, where both ORFs and pseudogenes
were found within a single genome, were termed as “multi-
state” gene families. Due to the uncertainties in multi-state
gene families, only single-state gene families were used in
ancestral state reconstruction (ASR; see “Materials and
methods”). Occasionally, pseudogenes can be converted to
ORFs by back mutation, nonsense suppression or site-
specific recombination [14]. Such events, referred to as
“back events”, may reflect that a pseudogene in an ancestral
niche became “activated” in a new habitat. Overall, pseu-
dogenization events exceeded back events by a factor of
four. The “transposable elements” appeared to be the only
functional category overrepresented in pseudogenes com-
pared to ORFs across the 279 genomes (Fisher’s exact test,
p < 0.001, Bonferroni correction; Fig. 3d), agreeing with the
result of a previous study [59]. A further look at the dis-
tribution of pseudogenes on the pan-genomes of the 279
isolates (Fig. 3c) revealed that mobile genetic elements
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(MGEs), which consist of genomic islands, insertion
sequences, prophages and plasmid genes, carried a sig-
nificantly higher proportion of pseudogenes than the
remaining regions of the genome (12.4% vs. 3.0%; p <
0.001, χ2 test). This could be because MGEs are more likely
to be dispensable for the cell, but might also suggest
selection against “junk DNA” whose activity could be
harmful under certain conditions (although some genes
carried by genomic islands might provide adaptive
functions).

There were 343 gene families whose members had
undergone pseudogenization or back events during ecolo-
gical niche shifts (Fig. 4, Supplementary Dataset S3). For
such families, pseudogenization was in line with niche shift,

thus we hypothesized that the functional transitions of these
genes might be important in the ancestral environment and
became dispensable in the new niche (and vice versa for the
back events), potentially contributing to ecological adapta-
tion. In 43 of these families, pseudogenization or back
events occurred during the niche change in the same
direction for at least twice (see those marked with an
asterisk in Table 1 as examples and an illustrated example
in Fig. 4a), indicating convergent evolution in response to
niche shift in different roseobacter strains (we also provided
a summary of families experiencing repeated pseudogen-
ization irrespective of niche shift in Supplementary Fig. S3
and Supplementary Dataset S4). A vast majority of these
families were transposons, hypothetical proteins, or those

Fig. 3 Overview of the pseudogenes in the 279 newly sequenced
Ruegeria genomes. a The number of pseudogenes per genome (left)
and the number of pseudogene-containing gene families (right) plotted
against the phylogenetic depth (shown in Fig. 1a). Genomes are first
divided into different groups according to the phylogenetic depth
cutoff. Pseudogenes are estimated using genomes within the same
group. b The number of pseudogenes per genome in different ecolo-
gical niches. Pseudogenes are estimated using the whole data set (i.e.,
279 genomes). C-mu coral mucus, C-sk coral skeleton, C-sw coral
ambient seawater, C-tis coral tissue, M-tis macroalgal tissue, M-sw

macroalgal ambient seawater, M-sd macroalgal ambient sediment.
c The pan-genome of the 279 sequenced Ruegeria isolates for the
chromosome and the plasmid, respectively. Genes are sorted according
to the genome of the model roseobacter Ruegeria pomeroyi DSS-3 (the
innermost circle). The chromosome and the plasmid pan-genomes are
not plotted in proportion to their number of nucleotides. d Proportions
of different COG functional categories for the total pseudogenes and
ORFs. The asterisk denotes significant difference (p < 0.05; Fisher’s
exact test).

494 X. Chu et al.



with unknown or ecologically irrelevant functions, and after
excluding them there remained 41 families that were of
particular interest. As follows, we elaborated on potential
implications of pseudogenization (or back events) in these
families for ecological adaptation of Ruegeria (Table 1,
Supplementary Table S2; see also Supplementary Text S2).

Resource recovery and energy acquisition in coral
skeleton

The porous calcium carbonate skeleton is characterized as a
separate and relatively stable environment protected from

external surroundings. It is a harsh environment since light
intensity is exceedingly low, with only <1% photo-
synthetically active radiation penetration due to the absor-
bance by zooxanthellae-rich coral tissues [60, 61]. We
therefore hypothesized that genes involved in resource and
energy utilization may be pseudogenized during the niche
shift from coral skeleton to energy-richer niches as a result
of the relaxation of energy limitation. In agreement with this
idea, we found that two gene families involved in cell wall
degradation and recycling were pseudogenized in the shifts
from the energy-limited coral skeleton to energy-richer
niches (Table 1). Cell wall recycling is a common process
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Table 1 Examples (n= 26) of the 41 ecologically relevant gene families in which functional transitions are in line with niche shifts. Families
involved in different categories are marked with superscript c.

Gene namea Functionb Niche shift Functional transition

Resource recovery and energy acquisition

murQ N-acetylmuramic acid 6-phosphate
etherase MurQ

C-sk -> M-sd P

mltE Membrane-bound lytic murein
transglycosylase E

C-sk -> C-tis P

coxS Carbon monoxide dehydrogenase small
chain CoxS

C-sk -> M-tis P

Nitrogen metabolism and carbohydrate utilization

ntrY Nitrogen regulation sensor histidine
kinase ntrY

M-sd -> C-sk P

rpiA Ribose 5-phosphate isomerase A M-sd -> C-sk P
c Sugar ABC transporter, permease protein M-sd -> C-mu P

Transport system

TRAP transporter C-sk -> M-sd P

TAXI family TRAP transporter solute-binding
subunit

C-sk -> M-sd P

nhaGc Na+/H+antiporter C-sk -> M-sd P

Na+/solute symporter C-sk -> M-tis P
c Sugar ABC transporter, permease protein M-sd -> C-mu P

ABC-type peptide/nickel transport system
permease protein

M-sd -> C-sk P

ntpF/atpF V/A-type H+/Na+-transporting ATPase
subunit F

M-sd -> C-sk P

Stress response

Thioredoxin C-sk -> M-sd P

nhaGc Na+/H+antiporter C-sk -> M-sd P

phaA pH adaption potassium efflux system
protein PhaA

C-sk -> M-sd P

nsrRd Nitrite-sensitive transcriptional repressor NsrR M-sd -> C-sk P

General stress protein A M-sd -> C-sk P

gstA Glutathione S-transferase M-sd -> C-mu P

gstAd Glutathione S-transferase C-sk -> M-tis & M-sw P

Bacteria–host and bacteria–bacteria interactions

pulF Type II secretory pathway, component PulF C-sk -> M-tis P

trbE Type IV secretion system protein TrbE C-sk -> C-mu P

virB11 Type IV secretion system protein VirB11 M-sd -> M-tis P

impB Type VI secretion system protein ImpB M-sd -> C-sk P

tipF Flagellum assembly factor TipF M-sd -> C-sk P

flaA Flagellin protein FlaA M-sd -> C-sk P

flgD Flagellar basal-body rod modification
protein FlgD

M-sd -> C-sk B

fliI Flagellum-specific ATP synthase FliI C-sk -> M-sd P

C-mu Coral mucus, C-tis Coral tissue, C-sk Coral skeleton, M-tis Macroalgal tissue, M-swMacroalgal ambient seawater, M-sdMacroalgal ambient
sediment, P pseudogenization, B back event
aThe gene family is indicated by the gene name.
bFunction of each gene family is based on a combination of annotations from CDD, RAST, KEGG, and Prokka.
cThese gene families are involved in two different categories.
dRepeated pseudogenization or back events occurred in these gene families.
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for resource recovery in bacteria [62], which can recycle up
to 50% of the peptidoglycan (PG) components of their cell
wall per generation to rebuild cell wall or to use as energy
sources [63, 64]. One of the gene families encodes the N-
acetylmuramic acid 6-phosphate etherase MurQ, which is
required for the utilization of anhydro-N-acetylmuramic
acid derived from cell wall murein [65]. The other encodes
the membrane-bound lytic murein transglycosylase E,
which is essential for non-hydrolytic cleavage of the glycan
strands of bacterial cell wall [66]. Consistent with the
increase in energy availability during the niche shift,
pseudogenization of these families suggests the importance
of cell wall recycling in recovering resources and preserving
critical energy resources in coral skeleton, in a way similar
to the low-light adaptation through PG recycling in two
cyanobacteria species [67]. In addition, the family encoding
the carbon monoxide (CO) dehydrogenase small chain
CoxS was pseudogenized during the niche shift from coral
skeleton to macroalgal tissue (Table 1). As this enzyme
participates in the oxidation of CO into CO2, which is an
energy supplement to roseobacters [38], the increase in
energy availability during the niche shift may also relax the
functional constraint of the gene involved in this pathway.

Pseudogenization events related to nitrogen
regulation and carbohydrate utilization

Pore water within the coral skeleton is highly enriched in
nitrogen (N) sources like ammonium, nitrite and nitrate, the
concentrations of which are about ten times higher than that
in the ambient seawater [68, 69]. Consequently, increase in
N availability during the niche change might relax the
functional constraint of genes induced under N starvation.
This idea was supported by the pseudogenization event in
the gene family encoding the nitrogen regulation sensor
histidine kinase NtrY during the shift from macroalgal
ambient sediment to coral skeleton (Table 1). Genes of the
Ntr family were reported to be significantly upregulated in
response to N starvation [70]. Hence, we speculated that
NtrY was important for the survival of roseobacters in the
ancestral N-limited niche, but became dispensable when
they shifted to coral skeleton where N is more abundant.

As macroalgae release a large portion of their fixed
carbon mainly in the form of carbohydrates to the sur-
rounding environment [35, 71], the ambient seawater and
sediments are both rich in organic matter [36, 37]. Inter-
estingly, we found two pseudogene-containing families
related to the carbohydrate utilization in the macroalgal
ecosystem. During the shift from macroalgal ambient
sediment to coral skeleton, one gene encoding the ribose 5-
phosphate isomerase A was pseudogenized. RipA converts
ribose 5-phosphate to ribulose 5-phosphate, and plays a
pivotal role in the pentose phosphate pathway [72].

Pseudogenized during the shift from macroalgal ambient
sediment to coral mucus, the other gene encodes the per-
mease protein of a sugar ABC transporter. Considering the
rich carbohydrates in the S. hemiphyllum ecosystem, it is
therefore conceivable that roseobacters inhabiting macro-
algal ambient sediment harbored plenty of genes to utilize
the abundant carbohydrates in the environment. The pseu-
dogenization of the two gene families suggests that they are
more necessary for carbohydrate utilization in macroalgal
ecosystem than in coral skeleton or mucus where carbo-
hydrates may be less available [73].

Transport systems suited to coral skeleton and
macroalgal ecosystem

Among the families undergoing pseudogenization or back
events during niche shift, we found several cases related to
transport systems that may enable bacteria to obtain nutrients
from environments. Specifically, two gene families both
encoding tripartite ATP-independent periplasmic (TRAP)
transporter proteins were pseudogenized during the niche
change from coral skeleton to macroalgal ambient sediment
(Table 1). TRAP transporters are widely used in marine
bacteria inhabiting high-salt and nutrient-poor environments,
which has a lower energetic cost than ABC transporters [74].
The family encoding the secondary Na+/H+ antiporter was
also pseudogenized during the shift from coral skeleton to
macroalgal ambient sediment (Table 1). In addition, a
pseudogenization event occurred in the gene family encod-
ing Na+/solute symporter during the shift from coral skele-
ton to macroalgal tissue (Table 1). In agreement with the
energy limitation in coral skeleton, functional changes of
these secondary transporters upon niche shifts imply that
they may be more favorable in coral skeleton than in mac-
roalgal niches, serving as an extra energy-saving strategy.

Considering the above mentioned gene family encoding
the permease protein of sugar ABC transporter (Table 1),
we speculated that ATP-driven primary transporters are
presumably kept in energy-rich niches while low-energy
demanding secondary transporters are favorable in energy-
limited environments. This idea was further supported by
two gene families pseudogenized during the shift from
macroalgal ambient sediment to coral skeleton (Table 1),
which encode the ABC-type peptide/nickel transport system
permease protein and the V/A-type H+/Na+-transporting
ATPase subunit F, respectively [75].

While we interpreted the different preferences of trans-
port systems in the context of energy sources, we were
aware that the performance of transport systems is also
correlated with other important factors such as substrate
availability and ion gradients. It should be noted that con-
tradictory cases might exist here, including the loss of
functions of ATPase components (OG0005367) and

Gene loss through pseudogenization contributes to the ecological diversification of a generalist. . . 497



oligopeptide transport ATP-binding protein OppF
(OG0008986) upon shifts from coral skeleton to macroalgal
ambient sediment (Supplementary Dataset S3). In these
cases, the functional changes plausibly were associated with
factors other than energy, such as the uncharacterized sub-
strate levels in different niches.

Stress response genes coping with environmental
changes

Coral and macroalgal ecosystems are both exposed to
changing physiochemical conditions such as oxygen,
osmolarity, temperature and pH [76]. We identified several
matched cases associated with stress responses, involving
functional transitions between macroalgal and coral eco-
systems. For example, three gene families were pseudo-
genized during the shift from coral skeleton to macroalgal
ambient sediment (Table 1), including a thioredoxin (a key
antioxidant in defense against oxidative stress), a Na+/H+

antiporter involved in pH homeostasis, and a potassium
efflux system protein PhaA for pH adaptation. Given the
diurnal fluctuation in oxygen and pH levels in coral skeleton,
which drop sharply during the night [29, 31], these pseu-
dogenization events may suggest the roles of these genes in
oxidative stress response and pH regulation during habitat
change. When the niche shifted from macroalgal ambient
sediment to coral skeleton, the nitrite-sensitive transcrip-
tional repressor NsrR and the general stress protein A were
both pseudogenized (Table 1). NsrR likely contains an
[Fe–S] cluster, and is known as a key regulator to cope with
oxidative and nitrosative stresses [77, 78]. These two genes
may help resist stress conditions in macroalgal ambient
sediment.

In addition, the gene family encoding glutathione S-
transferase, a protein responsible for protection against
oxidative stress [79], was pseudogenized during the shift
from macroalgal ambient sediment to coral mucus
(Table 1). Members of another gene family encoding the
same function were repeatedly pseudogenized during the
shifts from coral skeleton to macroalgal tissue and macro-
algal ambient seawater (Table 1). The frequent functional
changes of this gene likely reflect the ability of roseobacters
inhabiting different ecological niches to sense and rapidly
respond to oxidative stresses through pseudogenization.

Genes mediating organismal interactions correlated
with environmental changes

We found that pseudogenization and back events frequently
occurred in gene families encoding the components of
secretion systems and flagella, potentially mediating
bacteria-host and bacteria-bacteria interactions (Table 1).
For example, genes encoding the components of Type II,

IV, and VI secretion systems were pseudogenized during
niche shifts between coral and macroalgal ecosystems or
between niches within each ecosystem (Table 1). Particu-
larly, T4SS and T6SS were demonstrated to be important in
the interactions with host and other bacteria [80]. Con-
sidering the diversity and specificity of bacterial secretion
systems, secreting effector proteins or cytotoxins into cer-
tain environments may represent a competitive strategy that
helps roseobacters exploit the host or compete with other
bacteria inhabiting the same niche [80].

Further, pseudogenization or back events occurred in
gene families associated with bacterial flagellar assembly
and export (TipF, FlaA, FlgD, and FliI) during niche shifts
between macroalgal ambient sediment and coral skeleton
(Table 1). Besides enabling motility, bacterial flagella play
additional roles in surface adhesion and biofilm formation,
which may enhance the resistance to antimicrobial agents
and enable the embedded cells to outcompete unrelated
neighbors for both space and resources [81]. As a classic
example are genes encoding components of the flagellar
(mentioned above), whose mutant can lead to defective
adhesion to coral [82] and the loss of the ability of biofilm
formation and swarming motility (which may be relevant to
roseobacters’ activities in the sediment) [83]. These events
suggest the potential importance of dynamic regulation of
flagellar assembly in host colonization and bacterial survi-
val during niche shifts.

As each niche can be further divided into multiple phy-
siochemical microenvironments, which differs from time to
time, the nature of each niche is likely much more complex
and heterogeneous than we can characterize. Accordingly,
the resident microbial communities can be even more
diverse and dynamic. Recently, a surprisingly greater
microbiome diversity was revealed in coral skeleton than in
coral mucus and tissue [84, 85], which may have been
shaped by multiple physiochemical gradients across depth
layers and limited dispersal of microbes in the skeletal
matrix [86]. It was therefore speculated that roseobacters
inhabiting coral skeleton may harbor some “niche factors”
aiding competition with other members in the community or
serving as cell-cell communication strategy [87]. One
explanation for the pseudogenization events upon shift from
coral skeleton to coral mucus could be that the microbiome
diversity decreased as a result of niche shift, which leads to
reduced extent of microbial interactions. Likewise, the
functional transitions between coral and macroalgal eco-
systems may reflect the different composition and diversity
of microbial community in different niches. As microbial
communities on algal surface differ remarkably from the
free-living bacteria in the surrounding seawater [33, 88], it
is possible that bacteria inhabiting distinct niches of mac-
roalgal ecosystem are equipped with various weapons to
defend against competitors and persist in the niche.
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However, the knowledge about specific niche factors in
different environments at the current stage of research is still
very limited. Therefore, future studies are necessary to
address these important questions.

Caveats and future research needs

Similar to a recent study [89], we defined the ecological
niche of roseobacters according to their isolation sites. Yet,
this could lead to several caveats and future research needs.
Importantly, the relationship between isolation sites and
habitats is not simple, which could further be complicated
by potential disruption in sampling (e.g., a reliable method
to separate coral tissue from skeleton and mucus has not
been available [90]). In the present study, although we

presented interesting examples regarding the correlation
between pseudogenization events and niche shifts, it is
possible that some of these occurred simply by chance.
Most of the pseudogenization or back events occurring
during niche shifts were annotated as hypothetical proteins
(Supplementary Dataset S3). For those with an assigned
function, due to their small number (n= 41) of ecologically
matched cases (Table 1, Supplementary Table S2), it is very
difficult to perform rigorous statistical tests to examine
whether specific functions are more likely to be associated
with such events. As a matter of expediency, we elaborated
on the relationship between their functions and the niche
change, highlighting potential contributions of pseudogen-
ization or back events to niche adaptation, which, however,
could be speculative. In addition, except for a few cases
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macroalgae, respectively, are kindly provided by CHUI Pui Yi and
ANG Put On Jr. with permission to use here.

Gene loss through pseudogenization contributes to the ecological diversification of a generalist. . . 499



(e.g., [91],), the knowledge of the adaptiveness of pseudo-
genes is still scarce. With the above caveats in mind, we
suggest that function-testing experiments and population
genetics analyses are needed before any conclusion of the
adaptive role of pseudogenization are reached. This is
beyond the scope of this study and awaits future work.

In addition, while most samples were collected in the
same season and from locations nearby in Hong Kong, we
cannot rule out the effect of sampling sites and dates on the
evolutionary changes of functional genes. Since roseo-
bacters isolated from samples collected before May 2017
and on Feb 25, 2018 (Ngo Mei Chau) together account for
only ~14% of all isolates (Supplementary Table S1), we
removed them from an updated analysis to minimize the
effect of sampling sites and dates. A total of 306 gene
families were identified, among which 262 families were
consistent with the families identified with the dataset
before removing the time-inconsistent isolates. Although
the number of ecologically matched cases decreased from
41 to 31 in the updated analysis, 28 of them remained
consistent with the previous ones (Supplementary Data-
set S3). Among the rest three newly identified cases, two
families encoding the multidrug ABC transporter ATP-
binding protein and the flagellar biosynthesis protein FliR,
respectively, were pseudogenized during the niche shift
from macroalgal ambient sediment to coral skeleton. The
remaining one encodes a catalase for mitigating oxidative
stresses, and it was pseudogenized during the shift from
coral skeleton to macroalgal ambient sediment.

Concluding remarks

Through comprehensive genomic analyses of 279 newly
sequenced Ruegeria isolates collected from coral and
macroalgal ecosystems nearby, we showed that gene loss
via pseudogenization is likely an important mechanism
driving genome content differentiation of this ecologically
diverse and metabolically versatile marine bacterial lineage,
and further identified a potential correlation between chan-
ges in genome content mediated by pseudogenization and
shifts in ecological niches harbored in these two typical
coastal ecosystems. Genes whose pseudogenization events
may be correlated with niche switches include those
involved in resource recovery and energy conservation, N
metabolism and carbohydrate utilization, transport systems,
stress response and organismal interactions (summarized in
Fig. 5). Since gene loss by pseudogenization often requires
only a single point-nonsense mutation, this mechanism may
enable roseobacters to rapidly respond to environmental
changes and adapt to new habitats. Overall, our study
suggests that gene loss mediated by gene pseudogenization

is an important contributor to the genetic variation and
ecological diversification of the Roseobacter group. This
mechanism may similarly act in other generalist bacteria.

Data availability

The 279 genome sequences released in this study have been
deposited at the NCBI GenBank database under
PRJNA593724 and PRJNA596594. The genome accession
number of each isolate is shown in Supplementary Data-
set S1. The full list of the identified pseudogenes is shown
in Supplementary Dataset S5.
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