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Abstract
Plant microbiomes have important roles in plant health and productivity. However, despite flowers being directly linked to
reproductive outcomes, little is known about the microbiomes of flowers and their potential interaction with pathogen
infection. Here, we investigated the temporal spatial dynamics of the apple stigma microbiome when challenged with a
phytopathogen Erwinia amylovora, the causal agent of fire blight disease. We profiled the microbiome from the stigmas of
individual flowers, greatly increasing the resolution at which we can characterize shifts in the composition of the
microbiome. Individual flowers harbored unique microbiomes at the operational taxonomic unit level. However, taxonomic
analysis of community succession showed a population gradually dominated by bacteria within the families
Enterobacteriaceae and Pseudomonadaceae. Flowers inoculated with E. amylovora established large populations of the
phytopathogen, with pathogen-specific gene counts of >3.0 × 107 in 90% of the flowers. Yet, only 42% of inoculated flowers
later developed fire blight symptoms. This reveals that pathogen abundance on the stigma is not sufficient to predict disease
outcome. Our data demonstrate that apple flowers represent an excellent model in which to characterize how plant
microbiomes establish, develop, and correlate with biological processes such as disease progression in an experimentally
tractable plant organ.

Introduction

The most important function of flowers, the reproductive
organs of angiosperms, is to provide a mechanism for
pollination, the union of sperm contained within pollen, to
the ovules contained in the ovary. The fertilized ovules
produce seeds that will later germinate to become the next
generation plants. Yet, unlike other vegetative organs, such
as the roots, stems, and leaves that are present through a

large part of the plant’s lifecycle, flowers develop on mature
plants and are typically present for the limited period during
bloom. As such, research characterizing the microbiome of
the flower is generally less developed than for other plant
organs.

Flowers of apple, also known as apple blossoms,
(Malus x domestica) have been subject to considerable
research attention as they are the direct precursors of apple
fruits, one of the most consumed fruits worldwide [1]. The
ephemeral nature of apple flowers, with mature flowers
from opening of the blossom to petal fall only lasting for
5–10 days in spring, offers a unique environment in which
to study community succession [1, 2]. During bloom,
petals open in a relatively short period of time, typically
within 1 day, which exposes the internal flower parts to the
environment and microorganisms. Several of these internal
flower parts exude various types of nutrient-rich secretions
including nectar, stigmatic exudate, and pollen exudate,
for the purpose of attracting pollinators, and inducing the
germination of pollen grains [1, 3]. These secretions are
rich in sugars, amino acids, polysaccharides, and glyco-
proteins, which are excellent sources of nutrients for many
microorganisms [1, 3, 4]. The stigma is particularly
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nutrient rich and harbors a larger microbial biomass than
other flower parts [5, 6]. Previous research has docu-
mented a relatively low diversity of the stigma micro-
biome, although certain lineages predominantly within the
families Enterobacteriaceae and Pseudomonadaceae tend
to be dominant [7].

While the stigma provides an excellent niche for
microbial colonization, it also offers an opportunity for
pathogen infection. Many pathogens have evolved to take
advantage of this environmental niche, among which one
of the most important is the phytopathogenic bacterium
Erwinia amylovora (Ea), the causal agent of fire blight.
Fire blight is considered as one of the most devastating
diseases of apple, with annual losses and costs of control
estimated at over $100 million in the USA [8]. During
bloom, Ea cells are spread to apple flowers by insects,
wind, or rain and multiply on the stigma surface [9]. Ea
cells can then migrate from the stigma to the hypanthium
and enter into the host through natural openings. Initial
infection occurs at the ovary tissue and can spread to other
parts of the plants through the plant vasculature system.
Fire blight infection can result in significant yield reduc-
tion and/or tree death. In this regard, uncovering envir-
onmental or biologic factors that can inhibit the spread or
development of fire blight are of considerable research
interest.

One potential source of fire blight control is the natural
microbiome of the stigma. Yet, there exist considerable
knowledge gaps concerning how the stigma microbiome
is established and structured. The studies that have con-
sidered the stigma microbiome have generally focused on
cataloging microbial diversity through various culture-
dependent and culture-independent methods [7, 10] and
few studies have investigated the temporal development
of the microbiome [2]. Furthermore, previous research has
predominantly studied the microbiome using pooled
flower samples, thus the extent to which the microbiome
differs among individual flowers of the same genetic
background is uncertain. Finally, how the colonization of
a phytopathogen affects the development, composition, or
structure of the stigma microbiome is essentially
unknown. In this study, we examined the temporal
development of the stigma microbiome in the presence
and absence of Ea to investigate how this organism
influences the development of the normal microflora of
the apple flower stigma. In addition, we characterized the
variability of the microbiome amongst 100 individual
stigmas inoculated with Ea to assess if the presence and
abundance of a pathogen would alter the state of the
microbiome, and if any microbiome traits were associated
with the proportion of flowers that later developed
disease.

Materials and methods

Sampling site

To limit the effects of host and environmental conditions,
we used flowers from nine trees of the same apple cultivar
‘Early Macoun’ (Malus pumila NY75414-1) planted at the
same geographical location (Lockwood Farm, Hamden,
Connecticut, 41.406 N 72.906W). All trees were the same
age and under the same maintenance program. Weather data
(temperature and humidity) prior to and during bloom (from
April 29 to May 28, 2018) is summarized in Table S1.

Experiment design and stigma collection

Labeling flower clusters

On May 6, 2018, flower clusters that were in “king bloom”

stage (central flower opened but the six side flowers still
closed, see Fig. 1a) were labeled with plastic tags. Flower
clusters were located randomly on the trees to maximize
spatial variation. The day after the flower clusters were
tagged (May 7), we identified the tagged clusters in which
all the side flowers were open, and flower clusters with
unopened side flowers were not used. This defined the Day
1 flowers. In this manner, only side flowers of roughly the
same developmental stage, the first day of petal opening,
were used in subsequent experiments.

Sampling for temporal alterations of the stigma
microbiome

On May 7, ten of the ~40 tagged flower clusters were
selected, and the stigmas of an individual side flower
collected from a unique flower cluster were harvested with
sterile scissors (see Fig. 1b) and placed in a sterile 1.5 ml
microcentrifuge tube. Collected stigma samples were kept
in liquid nitrogen and transported to the laboratory for
immediate processing. These samples were labeled as day
1 samples. The next day, another ten flowers were selected
for DNA extraction as described above (as day two sam-
ples). Immediately after sample collection on day 2, Ea
was inoculated onto 20 tagged flower clusters and labeled
as Ea treated. The inoculum consisted of an overnight
culture of Ea 110 grown in lysogeny broth diluted to a
final concentration of 1 × 106 CFU/ml in sterile water. The
diluted culture was spray-inoculated to the open flowers
using a handheld sprayer to ensure every flower was
evenly exposed. Another 20 flower clusters were sprayed
with sterile water as water controls. On each day from day
3 to day 5, stigmas from 20 Ea-treated and 20 water-
treated flowers were collected individually from each
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flower cluster and processed according to the same method
described above.

Sampling for spatial patterns in the stigma microbiome

To investigate a larger spatial sampling of Ea-inoculated
flowers, we performed a parallel experiment, and tagged an
additional 150 flower clusters to ensure flowers used in the
experiment were the same age as the rest of the experi-
mental set. As described for the temporal sampling, the
flower clusters were individually spray-inoculated with Ea
(1 × 106 CFU/ml) on day 2, and stigma samples of indivi-
dual flowers were harvested on day 4. A total of 100 flowers
of the same developmental stage were harvested for DNA
extraction, while the remaining flowers of each flower
cluster were left on the tree to monitor disease development.
Blossom blight symptoms of black withering and dying of
the remaining flowers were evaluated 2 weeks after inocu-
lation on May 24, 2018 (Fig. 1c). An illustrated scheme of
both temporal and spatial sampling is shown in Fig. S1.

DNA extraction and sequencing of 16S rRNA genes

For extraction of bacterial DNA, 200 µl of 0.5× phosphate-
buffered saline was added to each microcentrifuge tube
containing stigma samples. Epiphytic microbes were
removed from the stigma by a 5-min water bath sonication
followed by a 30-s vortex. DNA was extracted from the
200 µl of bacterial suspension by using the DNeasy Pow-
erSoil Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The amount of template DNA
added in the PCR reaction (25 µl) ranged from 10.0 ng to

20.0 ng as determined by Nanodrop2000 (Thermo Fisher
Scientific, Waltham, MA). DNA was amplified by using the
515f/806r primer set, which targets the V4 region of the
bacterial 16S rRNA gene, with both primers containing a 6-
bp barcode unique to each sample [11]. PNA clamps were
added to the PCR mixture at a concentration of 0.75 µM to
block the PCR amplification of apple plastid and mito-
chondrial sequences [7]. PCR conditions were performed as
described in Steven et al. [7]. Successful PCR amplifica-
tions at the correct amplicon size were confirmed by gel
electrophoresis. Negative controls were included for both
sequence datasets. Negative controls consisted of sterile
water used as a DNA extraction control and subsequent
template for PCR. No amplicon bands were ever observed
in gel electrophoresis of negative reactions. The PCR pro-
ducts (including negative controls) were purified and nor-
malized by using the SequalPrep normalization plate kit
(Invitrogen, CA, USA). Sequencing was conducted on an
Illumina MiSeq v2.2.0 platform through services provided
by the UConn MARS facility.

Quantitative PCR for enumeration of Ea

The abundance of Ea in each collected stigma sample was
quantified by determining the cycle threshold (CT) value of
the Ea-specific gene amsC [12]. Quantitative PCR (qPCR)
was performed using a SsoAdvanced universal SYBR
Green supermix (Bio-Rad, CA, USA), as described pre-
viously [13]. The CT values for a 1/10 dilution series of
known amsC gene copies of Ea chromosomal DNA was
determined to make a standard curve for calculation of copy
numbers in stigma samples.

Fig. 1 Illustration of apple flower clusters. a An apple flower cluster
at “king bloom.” This is when flower clusters of the same age were
tagged. b Once the surrounding flowers opened (1 day after king
bloom), stigmas of side flowers were sampled and named as “day 1”.
Each sample contains stigmas collected from an individual

flower collected from a unique flower cluster. A close up photo of
individual stigmas is shown in the inset. c An example showing a
flower with fire blight disease (foreground) and a healthy flower
(background) coexisting in the same flower cluster. A schematic dia-
gram outlining the sampling design is shown in Fig. S1.
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Bioinformatics and statistical analysis

Illumina sequencing reads were assembled into contigs and
quality screened by using mothur v1.39.5 as previously
described [14]. Sequences that were at least 253 bp in length,
contained no ambiguous bases, and no homopolymers of
more than 8 bp were used in the analysis. Chimeric
sequences were identified by using VSEARCH as imple-
mented in mothur [15], and all potentially chimeric sequen-
ces were removed. To maintain a similar sampling effort
between samples, samples with less than 10,000 sequences
per sample were also removed. The resulting sequence
counts per sample are presented in Table S2. Negative con-
trol samples did show some sequence recovery but were in
the range of 66–341 sequences (Table S2), or less than 1% of
sequences recovered in the sample libraries.

Sampling effort was normalized to the depth of the
smallest sample, and operational taxonomic units (OTUs)
were defined at 100% sequence identity, employing the
OptiClust algorithm in mothur [16]. Taxonomic classifica-
tion of sequences was performed with the Ribosomal
Database Project classifier against the SILVA v132
reference alignment in mothur [17, 18]. Non-metric multi-
dimensional scaling (NMDS) was used to visualize
the pairwise distances among samples with Bray–Curtis
distances in the Vegan package in R [19]. Descriptive
diversity statistics were calculated in mothur. The correlation
between alpha diversity determined with the non-parametric
Shannon’s Diversity Index, and Ea abundance in each
sample was generated with the ggplot2.0 package for R [20].
Statistically significant differences in diversity metrics were
identified with a one-way ANOVA and Tukey–Kramer post
hoc test in the agricolae package in R.

Results

Temporal patterns in stigma microbial community
assembly

We characterized the microbial community on stigmas
collected from individual flowers, over a period of 5 days
after petal opening, to investigate the temporal dynamics in
community assembly and microbial succession on the
stigma. Meanwhile, we included Ea-inoculated stigmas to
compare community succession in the presence of a phy-
topathogen. A total of 2,930,231 high-quality sequences
were obtained from 96 samples with the number of
sequences ranging from 10,210 to 97,668 (Table S2). These
sequences clustered into 46,809 OTUs (mean 222 per
sample) at 100% sequence similarity.

At the phylum level, 24 phyla were detected. In both the
water control and Ea-inoculated datasets, the dominant

phylum was Proteobacteria (94.3% of total sequences),
followed by Cyanobacteria (3.6%), Actinobacteria (0.8%),
Firmicutes (0.2%), and Bacteroidetes (0.2%). A temporal
pattern was observed, in that phyla outside the Proteo-
bacteria were most abundant in the early time points (days
1 and 2) accounting for 15% of sequences and decreasing to
<1% at later time points (Fig. S2).

Given the dominance of Proteobacteria, these sequences
were classified to deeper taxonomic ranks. Sixty-seven
families were identified, with the majority of sequences
belonging to the Enterobacteriaceae the family to which
Erwinia belongs (average 70.0%, blue bars) and Pseudomo-
nadaceae (26.2%, red bars in Fig. 2), with small contributions
from Moraxellaceae (0.6%), Beijerinckiaceae (0.2%),
unclassified Gammaproteobacteria (0.3%), Burkholderiaceae
(0.3%), and Xanthomonadaceae (0.2%) (Fig. 2). Temporal
patterns in the dataset showed that the mean relative abun-
dance of Enterobacteriacea-related sequences was generally
stable for the water controls with no significant differences
between time points (Fig. 3a). In contrast, the Ea-treated
flowers showed reduced Enterobacteriacea relative abun-
dance on day 2 (Fig. 3a, P < 0.01). For the Pseudomonada-
ceae populations, there were no significant differences in
relative abundance associated with the temporal sampling
(Fig. 3b). In regards to differences between the control and
Ea-treated flowers, by day 5 the water controls harbored
significantly lower populations of the Enterobacteriacea and
significantly higher populations of the Pseudomonadaceae
(Fig. 3a, b, P < 0.01). Taken together, these data show that
two families of bacteria tend to monopolize the stigma
environment and that the Ea treatment has a significant effect
of the final composition of these populations.

Abundance of Ea on individual flowers

We employed two methods to assess the abundance of Ea in
the datasets, relative abundance of Ea sequences in the
dataset and Ea copy numbers quantified by qPCR of an Ea-
specific gene. To estimate Ea relative abundance, we
identified an OTU in the dataset that had 100% sequence
identity with the inoculated Ea strain (OTU1; Table S3). It
is important to note that this is only a presumptive identi-
fication of Ea as the genus Erwinia contains several non-
pathogenic strains that may not be distinguished with the
short 16S rRNA gene sequence employed for OTU binning
in this study [21–23].

OTU1 was detected every day, but not in all samples. On
days 1 and 2, prior to the stigma treatments, OTU1 made up
an average of 4% and 6% of the microbiome sequences,
respectively (filled bars in Fig. 2). In the control water
sprayed stigmas the proportion of OTU1 gradually
increased from an average of 2% of sequences on day 3 to
13% on day 4, finally making up an average of 24% of
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sequence on day 5; although the differences were not sta-
tistically significant (Fig. 3c). In contrast, the populations of
OTU1 were larger in the Ea-treated stigmas. By day 3 (one
day after inoculation) OTU1 accounted for an average of
50% of the sequence libraries, increasing to 86% on day 4

and ending at 94% of sequences on day 5, a 2.9-fold
increase and significantly larger population in comparison
to the controls (Fig. 3c, P < 0.001).

In addition, qPCR was performed to quantify the genome
copies of Ea in each stigma sample. As was observed for

Fig. 3 Comparison of metrics of microbiome composition between
water control and Ea-inoculated flowers. a Relative abundance
of Enterobacteriaceae-related sequences. b Relative abundance of
Pseudomonadaceae-related sequences. c Relative abundance of
OTU1; 100% sequence identity to Ea. d Ea amsC gene copy numbers.
Within each group, bars labeled with different letters were significantly

different by one-way ANOVA followed by a post hoc Tukey–Kramer
test. The F-statistic and P value of the ANOVA test are indicated. The
dashed boxes indicate significant differences between water control
and Ea-inoculated flowers sampled on the same day. The asterisks
indicate P values of the test statistic; *P < 0.05; **P < 0.01; ***P <
0.001. The F-statistic is also indicated within the box.

Fig. 2 Temporal dynamics in the predominant bacterial families
present on stigmas of individual flowers. Each column represents a
single flower. The seven most abundant families are displayed, and the
category “rare” represents the sum of the remaining taxa. The relative
abundance of OTU1, identified as sharing 100% sequence identity
with Erwinia amylovora, is indicated by hatched lines. Copy numbers
of the E. amylovora amsC gene in each sample were determined by

qPCR, and are displayed in the bar graphs above the stacked columns.
The average DNA copies are indicated as well as the average relative
abundance of OTU1. The change in Ea inoculated compared to water
control is labeled in the brackets. Water control: flower clusters
sprayed with sterile H2O. Ea inoculated: flower clusters sprayed with a
bacterial suspension of E. amylovora strain 110. Days 1–5 represent
the number of days after petals opened during bloom.
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relative abundance of OTU1, Ea was identified across the
dataset. In the pretreated stigmas (days 1 and 2) the average
copy number of Ea DNA was 8.0 × 106 and 7.56 × 106,
respectively (Figs. 2 and 3d). In the control datasets, average
Ea counts did not significantly increase (Fig. 3d). In the Ea-
inoculated flowers the copy number of Ea on day 3 was
similar to the control flowers, suggesting Ea had not yet
established strong growth on the stigma (Figs. 2 and 3d).
However, by day 4 the average abundance of Ea on the
treated stigmas reached 3.0 × 107, a threefold increase com-
pared to the controls, and increased further on day 5 reaching
an average of 4.3 × 108, a 28-fold increase in comparison to
the controls (Figs. 2 and 3d). Taken together, these data

suggest that Ea may be naturally present in an orchard with a
history of fire blight infection, as it was commonly detected
in the pretreated and control stigmas. Yet, the Ea inoculation
clearly increased Ea colonization, which was readily appar-
ent by day 4, 2 days after the inoculation (Fig. 3d).

Effects of Ea inoculation on community composition
and diversity

To test if Ea treatment had a significant effect on micro-
biome composition, we visualized the Bray–Curtis dis-
tances among samples of each dataset using NMDS. The
samples clearly clustered due to Ea inoculation, which was

Fig. 4 Non-metric multidimensional scaling (NMDS) plot display-
ing relationships of stigma microbial community composition.
Samples from water control samples are shown in green and Ea
inoculated samples are shown in gold. a Non-metric multi-
dimensional scaling (NMDS) plot displaying relationships of stigma
microbial community composition in samples from water control
(green) and Ea inoculated samples (gold). Symbols indicate stigma
sample collection day. The distances were determined using the
Bray–Curtis metric and the stress value of the ordination is indicated.
Statistically significant differences in clustering were evaluated via the
Adonis permutation test and P values are indicated. b Comparative

analysis of community diversity (Shannon index) among stigma
samples. Changes in diversity over time for the water control samples
(left panel) and the Ea-inoculated samples (middle panel), respec-
tively. The bar above day 1 and day 2 indicates the pre-treatment
samples, which are the same between the panels. Overall diversity of
water control samples versus Ea-inoculated samples (far right panel).
Statistically significant differences were identified by ANOVA com-
parisons of means, employing a post hoc Tukey–Kramer test for
multiple comparisons. Boxes labeled with different letters showed
statistically significant differences (P value < 0.05).
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confirmed by permutational multivariate ANOVA (P <
0.001, Fig. 4a). In addition, samples were also clustered
based on days post-bloom (P < 0.001, Fig. 4a). Diversity of
the stigma communities was assessed by calculating the
Shannon’s Diversity index. For both control and Ea-
inoculated datasets there was a trend toward increased
diversity in the early time points, which then decreased by
days 4 and 5 (Fig. 4b, P < 0.05). When the control and Ea-
inoculated datasets were combined to test the overall effect
of pathogen presence on microbial diversity, there was no
significant difference in diversity due to Ea treatment
(Fig. 4b, F1,82= 2.788, P= 0.109).

Collectively, these findings indicate that taxonomically
diverse microbial populations initially colonize the stigma
of the apple flower. Gradually, a community dominated by
representatives of the Pseudomonadaceae and Enter-
obacteriaceae families outcompetes these populations and
become the predominant community members (Fig. 2),
which results in an overall decrease in diversity of the
stigma microbial community (Fig. 4b, c). In the face of Ea
challenge there is a significant shift in the composition of
the microbial community (Fig. 4a). Yet, there is no sig-
nificant effect on the diversity of the community as a whole
in comparison to the control flowers (Fig. 4b).

The influence of Ea inoculation on 100 spatially
separated flower clusters

Having shown that inoculation of Ea influenced the
development and composition of the stigma microbiome,
we wanted to expand this analysis to include a larger sample
size, encompassing the spatial variation in microbiome
composition between flowers and to link microbiome
composition to disease development. In this effort,
100 spatially separated flower clusters (~400 individual

flowers) were inoculated with Ea. Stigmas from one indi-
vidual flowers were collected from each flower cluster for
microbiome characterization, while the remainder of the
flowers were left on the tree to assess the rate of disease
development (Fig. 1, Fig. S1). Three weeks after Ea
inoculation, only 42.4% of the remaining flowers developed
fire blight symptoms. The variation in disease development
extended to flower clusters, with diseased and healthy
flowers coexisting in the same cluster (Fig. 1). Given that
the genetic background of the host, flower age, and patho-
gen exposure were all identical between the inoculated
flowers, and the trials were all performed in the same
orchard and thus under the same environmental conditions,
these observations suggest that none of these factors are
sufficient to explain or predict disease occurrence at the
single flower level.

Variation in genome copies of Ea among the 100
flower clusters

We measured the amsC copy number from 100 individual
flowers by qPCR. The copy number varied from 1.3 × 104

to 3.7 × 1010. The average was 4.4 × 109 (dashed line,
Fig. 5a) and the majority (90%) of stigmas harbored >3.0 ×
107 gene copies of Ea, which is similar to the average of day
4 inoculated flowers in the temporal dynamics study. This
data suggest that the majority of the stigmas have surpassed
the threshold population of ca 105–107 cells that are thought
to be required for disease development [24, 25].

Microbiome composition among the 100 flower
clusters

A total of 4,176,840 high-quality 16S rRNA gene sequen-
ces were recovered from the 100 flowers, with the number

Fig. 5 a DNA copy numbers of
the Ea specific gene amsC
ordered by abundance in 100
flowers. The dashed line
represents average copy number
across the samples. b Relative
abundance (%) of the two major
bacterial families within
Proteobacteria in the stigma
microbiome of 100 flowers.
Each column represents an
individual flower. The columns
are ordered by amsC copy
number to match (a). c OTUs
within the family
Pseudomonadaceae and
d Enterobacteriaceae. The
category “rare” represents the
sum of the remaining taxa.
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of sequences ranging from 19,297 to 80,130 per sample.
After normalizing sampling to the smallest dataset, clus-
tering produced 27,843 OTUs (mean 282 per sample) at
100% sequence similarity. The detailed information for
each dataset is presented in Table S2.

At the phylum level, 22 phyla were identified among the
sequences. The most abundant, Proteobacteria, ranged
from 96.8% to 100% of recovered sequences, followed by
Actinobacteria (0–0.5%), Cyanobacteria (0–1.6%), and
Firmicutes (0–1.5%) (Fig. S3). Within the Proteobacteria,
59 families were identified and Pseudomonadaceae (red bar
in Fig. 5b) and Enterobacteriaceae (blue bar) were pre-
dominant (>81.5% in each sample). Notably, the proportion
of Pseudomonadaceae and Enterobacteriaceae varied
widely among the 100 samples, from 0.02% to 99.20% and
from 0.45% to 99.97%, respectively (Fig. 5b).

OTUs within the Pseudomonadaceae and
Enterobacteriaceae

Sequences within Pseudomonadaceae and Enterobacter-
iaceae were classified to deeper taxonomic ranks to inves-
tigate if particular OTUs were associated with Ea
abundance. Of the ten most abundant OTUs in the dataset,
four belonged to the Pseudomonadaceae and six to the
Enterobacteriaceae, representing five different genera
(Table S3). By and large each flower harbored a unique
microbiome composition, with widely varying abundance
of the predominant OTUs among the samples (Fig. 5c, d).
Furthermore, there was no observable pattern in specific
OTUs being co-abundant in the samples with a low

abundance of Ea (Fig. 5b, c). Correlational analysis con-
firmed these observational data, with no significant corre-
lations between the relative abundance of the numerically
dominant Pseudomonadaceae OTUs and Ea absolute
abundance (Fig. S4A) and similarly low explanatory power
for the Enterobacteriaceae OTUs (Fig. S4B).

Correlates of Ea abundance to metrics of the stigma
microbiome

To test if there were any aspects in the community data that
were predictive of Ea abundance we performed four cor-
relational analyses. First, the most abundant OTU in the
dataset (OTU1) shared 100% sequence identity with
the inoculated Ea strain (Table S3). Therefore, we tested the
correlation between the relative abundance of OTU1 and the
amsC gene copy number of Ea, and thereby testing if
the relative abundance of OTU1 was correlated to Ea
absolute abundance (Fig. 6a). The result showed that there
was a significant positive relationship between the two
metrics (P < 0.001), but with an R2= 0.280, suggesting low
explanatory power. This low explanatory power could be
due to two factors. First, the relative abundance of OTU1 is
an imperfect measure of Ea abundance, as there are likely
other members of the microbiome that are closely related to
Ea that cluster into the same OTU. Second, as relative
abundance is a proportional value, it is bounded at the upper
end at 100% of recovered sequences. Thus, as Ea absolute
abundance increases, eventually proportional abundances
can no longer increase. As can be seen in Fig. 5a several
stigmas with similar Ea counts showed wide variations in

Fig. 6 Correlation between Ea
copy numbers and (a) relative
abundance (%) of OTU1.
b Relative abundance (%) of
sequences within the
Pseudomonadaceae family (c)
community diversity (Shannon
index) and d number of
recovered OTUs. Correlations
were determined with AVONA
test of linear effects model with
Shannon diversity and recovered
OTUs, and exponential effects
model with OTU1 and
Pseudomonadaceae-related
sequences. The dashed line is
the threshold population (107

cells) that are thought to be
required for disease
development.
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sequences belonging to OTU1 (Fig. 6a). Thus, these data
suggest that increasing Ea counts will generally inflate the
recovery of Ea OTUs, but there is little predictive power in
estimating absolute pathogen abundance from relative
abundance data. Similarly, we investigated if there was a
predictive relationship between the relative abundance of
the Pseudomonadaceae and the copy numbers of Ea. In this
way we could test if the presence of the Pseudomonadaceae
may inhibit Ea growth. The relationship displayed a sig-
nificant negative pattern (P < 0.001) but again had a low
predictive value (R2= 0.250, Fig. 6b). Thus, the proportion
of recovered Pseudomonadaceae sequences also showed
poor predictive value in determining pathogen abundance.
Finally, we tested if Ea abundance was correlated to two
different metrics of diversity of the stigma microbiome,
Shannon’s diversity index and the number of recovered
OTUs. In both cases there was no relationship between Ea
abundance and diversity (Fig. 6c, d). Thus, there was no
apparent effect of Ea abundance on the overall diversity of
the stigma microbial communities.

Discussion

The apple flower microbiome has been previously recog-
nized as an important factor for plant health and as a
potential source of biocontrol agents against plant patho-
gens [1, 10, 26]. In addition, since the stigma is the
major site of pollination and supports the growth of a large
microbial population, microbial growth on the stigma may
also influence pollination [27, 28]. Thus, the stigma of a
flower is a particularly important plant tissue for studying
the microflora that associate with plants. Yet, information
concerning the establishment, composition, and develop-
ment of the microbiome on flower stigmas, as well as
the disturbance by the colonization of a phytopathogen,
are largely lacking. Previous studies have generally
described the flower microbiome from whole flowers or
nectar [1, 2, 29]. Our previous work has shown that the
stigma generally harbors an overlapping set of OTUs as
other flower parts including the stamen, petals, and recep-
tacle, although particular OTUs tend to be overrepresented
in the stigma [7]. In this regard, the stigma is likely a
representative model of the overall flower microbiome. In
this study, we present data based on collecting the
stigmas from a single flower, increasing both the temporal
and spatial resolution at which the microbiome can be
characterized.

Temporal dynamics are important for understanding the
evolution of microbial communities [30–32]. Shade et al.
characterized the development of the microbiome on pools
of apple flowers under a management program of treating
the flowers with the antibiotic streptomycin to control fire

blight. They found bacteria in the phyla TM7 and Deino-
coccus were predominant and showed signals of ecological
successions with flower age [2]. We show that bacteria
within the families Pseudomonadaceae and Enterobacter-
iaceae were numerically dominant (Fig. 2), which is more
congruous with other studies of both the culture-dependent
[10] and culture-independent characterizations [7] of apple
flower microbial populations. The discrepancy between this
study and the [2] report is likely due to methodological
differences between studies or PCR biases induced by dif-
ferent PCR primer and blocking pairs versus the PNA
clamps used here. In either case, both studies identified
strong signals in how the microbiome is structured with
flower age. The data presented here point to a core micro-
biome that was gradually established on the stigma pre-
dominantly composed of Pseudomonadaceae and/or
Enterobacteriaceae within the phylum Proteobacteria
(Fig. 2). The succession of these families was associated
with a reduction of other bacterial taxa, such as the Mor-
axellaceae, Xanthomonadaceae, and Burkholderiaceae,
which were only present in the early stages of bloom
(Fig. 2). Concurrently, the later stages of bloom were
associated with a lower diversity, supporting the observa-
tion that a small number of taxa had monopolized the
stigma environment as the flower aged (Fig. 2). These
observations are consistent with the stigmas being open to
colonization by numerous bacteria in the initial stages of
bloom. As the petals open, multiple bacteria carried by
wind, dew, or insects are introduced to the stigma creating a
diverse microbial population. However, with time those
bacteria best adapted to the stigma environment prevail and
flourish. Yet this suggests that environmental conditions at
the time of petal opening may have a large impact on the
establishment and development of the stigma microbiome.
As the stigmas collected here were all present on flowers
opened on the same date, the temporal dynamics are
somewhat confounded with environmental conditions.
Thus, the community succession dynamics described here
only represent a single possible trajectory for the develop-
ment of the microbiome. Increasing the number of temporal
studies performed in different regions and under varied
climatic conditions will better constrain the factors that
govern the assembly the stigma microbiome. However, the
dominance of just two bacterial families on the stigma is
analogous to other observations, that complex microbial
communities inoculated into a simple medium converge on
a state similarly composed of bacteria in the families
Pseudomonadaceae and Enterobacteriaceae, a phenom-
enon referred to as “emergent simplicity” [33]. Thus, there
may be conserved rules that govern the assembly of
microbial communities, with respect to niche adaptation
[5, 6], and microbial competition [34]. Yet, predicting
specific microbiome states of individuals or whether the
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factors that govern community assembly are deterministic
or stochastic still remain significant knowledge gaps.

Inoculation of the flowers with Ea induced a significant
shift in the structure of the microbiome (Fig. 4a), but the
data indicated that the abundance of Ea did not alter
microbiome diversity (Fig. 6c, d), but Ea abundance was
negatively correlated with the presence of other microbes,
particularly within the family Pseudomonadaceae (Fig. 6b),
although the relationship showed little predictive value in
linking Pseudomonadaceae relative abundance to absolute
Ea abundance. Most notably 90% of inoculated flowers
demonstrated large counts of Ea (>3.0 ×107 pathogen spe-
cific gene copies) and a high relative abundance of
sequences identical to the inoculated pathogen (Fig. 5a, d),
yet less than half of the flowers (42%) later developed fire
blight symptoms. As the stigma sampling for microbiome
characterization is by necessity destructive, we cannot
definitively link the status of the microbiome to disease
development. However, these data strongly point to the
absolute abundance of Ea to be a poor predictive mea-
surement of disease occurrence [24]. Thus, there must be
another bottleneck in fire blight disease development
beyond Ea growth on the stigma. These could include
microclimate [35], antimicrobial compounds or yeasts in the
nectar [10, 29], and host system sensing signals for
detecting high bacterial density [36]. Yet, the observation of
a high carrier rate of a pathogen with low disease incidence
is synonymous with reports for many human pathogens. For
instance, it is well established that 20–40% of the popula-
tion are asymptomatic persistent carriers of Staphylococcus
aureus, with a further 70–90% of people considered tran-
sient carriers [37]. Yet only a minority of people will
develop diseases such as sepsis, pneumonia, or osteomye-
litis caused by S. auerus infection [38, 39]. A similar phe-
nomena are observed for Cutibacterium acnes as a
contributor to skin acne, which is also a major population in
the healthy skin microbiome [40]. In this respect, the
dynamics of Ea growth and fire blight development appear
to follow similar dynamics of other diseases, with a high
carrier rate, but lower disease incidence. The consequences
of these potentially high carrier rates of Ea on the incidence
rate of fire blight disease are currently unknown. For
instance, it is possible that asymptomatic flowers may act as
an unrecognized reservoir of the pathogen.

Conclusion

In this study, we show that the apple flower stigma
microbiome shares many characteristics with other host
microbiome systems. In the initial stages of stigma coloni-
zation, the microbiome is temporally dynamic, which
eventually settles into an equilibrium community (Fig. 2).

Similar dynamics have been found in infants, fish, and soil
[41–43]. At the OTU level, individual flowers harbor lar-
gely unique microbiomes (Fig. 5c, d), similar to vertebrates
and insects [44–46]. Despite the diversity of the stigma
microbiome at the OTU level (~200 OTUs per sample), the
OTUs fell into just two predominant families (Pseudomo-
nadaceae and Enterobacteriaceae) that differed in abun-
dance between individual flowers (Figs. 2 and 5). This
mirrors the observation of the dominance of the Firmicutes
and Bacteroidetes in the human intestinal tract, the so-called
Firmicutes/Bacteroidetes ratio, and its potential influence
on characteristics such as obesity [47, 48]. Finally, we
observe that virtually all flowers exposed to the phyto-
pathogen Ea developed large pathogen loads (Fig. 5), yet
only a fraction (~42%) of the flowers developed disease,
reflecting a common observation that pathogen burden is
not always predictive of disease development [36, 49]. This
suggests that to the extent that natural microbiome members
may be acting as biocontrol agents they are likely acting
through regulating pathogen activity rather than abundance.
This highlights the importance of characterizing bacterial
interactions and functional ecology of the stigma micro-
biome. Thus, we propose that the stigma microbiome
represents a model system that can be employed to inves-
tigate the rules that govern microbial community assembly,
development, and disease progression and severity.

Data availability

The sequences data, including negative controls, are
deposited at the Sequence Read Archive under accession
number PRJNA597302.
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