Biofilm matrix disrupts nematode motility and predatory behavior

Abstract

In nature, bacteria form biofilms by producing exopolymeric matrix that encases its entire community. While it is widely known that biofilm matrix can prevent bacterivore predation and contain virulence factors for killing predators, it is unclear if they can alter predator motility. Here, we report a novel “quagmire” phenotype, where Pseudomonas aeruginosa biofilms could retard the motility of bacterivorous nematode Caenorhabditis elegans via the production of a specific exopolysaccharide, Psl. Psl could reduce the roaming ability of C. elegans by impeding the slithering velocity of C. elegans. Furthermore, the presence of Psl in biofilms could entrap C. elegans within the matrix, with dire consequences to the nematode. After being trapped in biofilms, C. elegans could neither escape effectively from aversive stimuli (noxious blue light), nor leave easily to graze on susceptible biofilm areas. Hence, this reduced the ability of C. elegans to roam and predate on biofilms. Taken together, our work reveals a new function of motility interference by specific biofilm matrix components, and emphasizes its importance in predator–prey interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Biofilms impede locomotion and restrict roaming of C. elegans.
Fig. 2: Psl is more important than Pel at impeding nematode locomotion under influence by wsp operon.
Fig. 3: Psl immobilizes and delays C. elegans from escape and attacking susceptible biofilms.
Fig. 4: Role of alginate in the quagmire phenotype.

References

  1. 1.

    Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2:95–108.

    CAS  Article  Google Scholar 

  2. 2.

    Branda SS, Vik Å, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol. 2005;13:20–6.

    CAS  Article  Google Scholar 

  3. 3.

    Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 2015;39:649–69.

    CAS  Article  Google Scholar 

  4. 4.

    Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci. 2013;14:20983–1005.

    Article  Google Scholar 

  5. 5.

    Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 2013;77:1–52.

    Article  Google Scholar 

  6. 6.

    Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, et al. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol. 1998;180:4416–25.

    CAS  Article  Google Scholar 

  7. 7.

    Chua SL, Liu Y, Li Y, Ting HJ, Kohli GS, Cai Z, et al. Reduced Intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2017;7:451.

    Article  Google Scholar 

  8. 8.

    Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol. 2009;7:263–73.

    CAS  Article  Google Scholar 

  9. 9.

    Chua SL, Liu Y, Yam JK, Chen Y, Vejborg RM, Tan BG, et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun. 2014;5:4462.

    CAS  Article  Google Scholar 

  10. 10.

    Hickman JW, Tifrea DF, Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA. 2005;102:14422–7.

  11. 11.

    Hay ID, Remminghorst U, Rehm BH. MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol. 2009;75:1110–20.

    CAS  Article  Google Scholar 

  12. 12.

    Roy AB, Petrova OE, Sauer K. The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol. 2012;194:2904–15.

    CAS  Article  Google Scholar 

  13. 13.

    Zheng Y, Tsuji G, Opoku-Temeng C, Sintim HO. Inhibition of P. aeruginosa c-di-GMP phosphodiesterase RocR and swarming motility by a benzoisothiazolinone derivative. Chem Sci. 2016;7:6238–44.

    CAS  Article  Google Scholar 

  14. 14.

    Atkinson S, Goldstone RJ, Joshua GWP, Chang C-Y, Patrick HL, Cámara M, et al. Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type III secretion. PLOS Pathog. 2011;7:e1001250.

    CAS  Article  Google Scholar 

  15. 15.

    Tan M-W, Mahajan-Miklos S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA. 1999;96:715–20.

  16. 16.

    Desai SK, Padmanabhan A, Harshe S, Zaidel-Bar R, Kenney LJ. Salmonella biofilms program innate immunity for persistence in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2019;116:12462–7.

  17. 17.

    Kirienko NV, Kirienko DR, Larkins-Ford J, Wählby C, Ruvkun G, Ausubel FM. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe. 2013;13:406–16.

    CAS  Article  Google Scholar 

  18. 18.

    Shtonda BB, Avery L. Dietary choice behavior in Caenorhabditis elegans. J Exp Biol. 2006;209:89–102.

    Article  Google Scholar 

  19. 19.

    Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB, Richardson SH, et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol. 2009;73:622–38.

    CAS  Article  Google Scholar 

  20. 20.

    Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–77.

    CAS  Article  Google Scholar 

  21. 21.

    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Katta HY, Mojica A, et al. Genomes OnLine database (GOLD) v.7: updates and new features. Nucleic Acids Res. 2018;47:D649–59.

    Article  Google Scholar 

  22. 22.

    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.

    CAS  Article  Google Scholar 

  23. 23.

    Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, et al., Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA. 2006;103:8487–92.

  24. 24.

    Chua SL, Ding Y, Liu Y, Cai Z, Zhou J, Swarup S, et al. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. Open Biol. 2016;6:160162.

    Article  Google Scholar 

  25. 25.

    Ward S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci USA. 1973;70:817–21.

  26. 26.

    Lee KH, Aschner M. A simple light stimulation of Caenorhabditis elegans. Curr Protoc Toxicol. 2016;67:11.21.1–5.

    Google Scholar 

  27. 27.

    Damron FH, Yu HD. Pseudomonas aeruginosa MucD regulates the alginate pathway through activation of MucA degradation via MucP proteolytic activity. J Bacteriol. 2011;193:286–91.

    CAS  Article  Google Scholar 

  28. 28.

    Boucher JC, Yu H, Mudd MH, Deretic V. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun. 1997;65:3838–46.

    CAS  Article  Google Scholar 

  29. 29.

    Jones CJ, Ryder CR, Mann EE, Wozniak DJ. AmrZ modulates Pseudomonas aeruginosa biofilm architecture by directly repressing transcription of the psl operon. J Bacteriol. 2013;195:1637–44.

    CAS  Article  Google Scholar 

  30. 30.

    Cezairliyan B, Vinayavekhin N, Grenfell-Lee D, Yuen GJ, Saghatelian A, Ausubel FM. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLOS Pathog. 2013;9:e1003101.

    CAS  Article  Google Scholar 

  31. 31.

    Gallagher LA, Manoil C. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol. 2001;183:6207–14.

    CAS  Article  Google Scholar 

  32. 32.

    Lewenza S, Charron-Mazenod L, Giroux L, Zamponi AD. Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas aeruginosa PAO1 virulence. PeerJ. 2014;2:e521–1.

    Article  Google Scholar 

  33. 33.

    Tan MW, Mahajan-Miklos S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA. 1999;96:715–20.

    CAS  Article  Google Scholar 

  34. 34.

    Franklin M, Nivens D, Weadge J, Howell P. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol. 2011;2:167.

    Article  Google Scholar 

  35. 35.

    Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GCL, et al. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLOS Pathog. 2011;7:e1001264.

    CAS  Article  Google Scholar 

  36. 36.

    Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS, Sadovskaya I, et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci USA. 2015;112:11353–8.

  37. 37.

    Chew SC, Kundukad B, Seviour T, van der Maarel JRC, Yang L, Rice SA, et al. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. mBio. 2014;5:e01536–14.

    Article  Google Scholar 

  38. 38.

    Sutherland IW. The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol. 2001;9:222–7.

    CAS  Article  Google Scholar 

  39. 39.

    Samuel BS, Rowedder H, Braendle C, Félix M-A, Ruvkun G. Caenorhabditis elegans responses to bacteria from its natural habitats. Proc Natl Acad Sci USA. 2016;113:E3941–9.

  40. 40.

    Muir RE, Tan MW. Virulence of Leucobacter chromiireducens subsp. solipictus to Caenorhabditis elegans: characterization of a novel host-pathogen interaction. Appl Environ Microbiol. 2008;74:4185–98.

    CAS  Article  Google Scholar 

  41. 41.

    Antunes CA, Clark L, Wanuske MT, Hacker E, Ott L, Simpson-Louredo L, et al. Caenorhabditis elegans star formation and negative chemotaxis induced by infection with corynebacteria. Microbiology. 2016;162:84–93.

    CAS  Article  Google Scholar 

  42. 42.

    Hodgkin J, Félix MA, Clark LC, Stroud D, Gravato-Nobre MJ. Two Leucobacter strains exert complementary virulence on Caenorhabditis including death by worm-star formation. Curr Biol. 2013;23:2157–61.

    CAS  Article  Google Scholar 

  43. 43.

    Dirksen P, Marsh SA, Braker I, Heitland N, Wagner S, Nakad R, et al. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC Biol. 2016;14:38.

    Article  Google Scholar 

  44. 44.

    Johnke J, Dirksen P, Schulenburg H. Community assembly of the native C. elegans microbiome is influenced by time, substrate and individual bacterial taxa. Environ Microbiol. 2020;22:1265–79.

    CAS  Article  Google Scholar 

  45. 45.

    Häußler S, Tümmler B, Weißbrodt H, Rohde M, Steinmetz I. Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis. 1999;29:621–5.

    Article  Google Scholar 

  46. 46.

    Pedersen SS, Høiby N, Espersen F, Koch C. Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax. 1992;47:6–13.

    CAS  Article  Google Scholar 

  47. 47.

    Yu M, Chua SL. Demolishing the great wall of biofilms in Gram-negative bacteria: to disrupt or disperse? Med Res Rev. 2020;40:1103–16. https://doi.org/10.1002/med.21647.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology Startup Grant (BE2B) and State Key Laboratory of Chemical Biology and Drug Discovery Fund (1-BBX8).

Author information

Affiliations

Authors

Contributions

SLC designed methods and experiments. SYC, SYL, and ZS carried out laboratory experiments, analyzed the data, and interpreted the results. SLC, SYL, and SYC wrote the paper. All authors have contributed to, seen, and approved the paper.

Corresponding author

Correspondence to Song Lin Chua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chan, S.Y., Liu, S.Y., Seng, Z. et al. Biofilm matrix disrupts nematode motility and predatory behavior. ISME J (2020). https://doi.org/10.1038/s41396-020-00779-9

Download citation

Search