Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microbial carrying capacity and carbon biomass of plastic marine debris

Abstract

Trillions of plastic debris fragments are floating at sea, presenting a substantial surface area for microbial colonization. Numerous cultivation-independent surveys have characterized plastic-associated microbial biofilms, however, quantitative studies addressing microbial carbon biomass are lacking. Our confocal laser scanning microscopy data show that early biofilm development on polyethylene, polypropylene, polystyrene, and glass substrates displayed variable cell size, abundance, and carbon biomass, whereas these parameters stabilized in mature biofilms. Unexpectedly, plastic substrates presented lower volume proportions of photosynthetic cells after 8 weeks, compared to glass. Early biofilms displayed the highest proportions of diatoms, which could influence the vertical transport of plastic debris. In total, conservative estimates suggest 2.1 × 1021 to 3.4 × 1021 cells, corresponding to about 1% of the microbial cells in the ocean surface microlayer (1.5 × 103 to 1.1 × 104 tons of carbon biomass), inhabit plastic debris globally. As an unnatural addition to sea surface waters, the large quantity of cells and biomass carried by plastic debris has the potential to impact biodiversity, autochthonous ecological functions, and biogeochemical cycles within the ocean.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Three-dimensional visualization of biofilm on four substrates after 1 week (left column) and 8 weeks (right column) of immersion.
Fig. 2: Cell abundance (105 × cells/mm2) on four substrates after 1 week and 8 weeks of immersion.
Fig. 3: Curves show kernel density estimations for the cell length distributions on four substrates after 1 and 8 weeks of immersion.
Fig. 4: Temporal development of biofilms over the incubation period on four substrates (polyethylene (PE), polypropylene (PP), polystyrene (PS), glass (Glass)).

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

References

  1. 1.

    Van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, Van Franeker JA, et al. A global inventory of small floating plastic debris. Environ Res Lett. 2015;10:124006.

    Google Scholar 

  2. 2.

    Reisser J, Shaw J, Hallegraeff G, Proietti M, Barnes DK, Thums M, et al. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS ONE. 2014;9:e100289.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Mincer TJ, Zettler ER, Amaral-Zettler LA. Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility. In: Rei Yamashita KT, Bee Geok Yeo, Hideshige Takada, Jan A. van Franeker, Megan Dalton, Eric Dale, editors. Hazardous chemicals associated with plastics in the marine environment. Springer: Cham; 2016. pp. 221–33.

  4. 4.

    Morét-Ferguson S, Law KL, Proskurowski G, Murphy EK, Peacock EE, Reddy CM. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar Pollut Bull. 2010;60:1873–8.

    PubMed  Google Scholar 

  5. 5.

    Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE. 2014;9:e111913.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47:7137–46.

    CAS  PubMed  Google Scholar 

  7. 7.

    Amaral-Zettler LA, Zettler ER, Slikas B, Boyd GD, Melvin DW, Morrall CE, et al. The biogeography of the plastisphere: implications for policy. Front Ecol Environ. 2015;13:541–6.

    Google Scholar 

  8. 8.

    De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol. 2015;49:9629–38.

    PubMed  Google Scholar 

  9. 9.

    De Tender CA, Schlundt C, Devriese LI, Mincer TJ, Zettler ER, Amaral-Zettler LA. A review of microscopy and comparative molecular-based methods to characterize “plastisphere” communities. Anal Methods. 2017;9:2132–43.

    Google Scholar 

  10. 10.

    Gong W, Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Mar Sci. 2019;6:219.

    Google Scholar 

  11. 11.

    Bonk F, Popp D, Harms H, Centler F. PCR-based quantification of taxa-specific abundances in microbial communities: quantifying and avoiding common pitfalls. J Microbiol Methods. 2018;153:139–47.

    CAS  PubMed  Google Scholar 

  12. 12.

    Neu TR, Lawrence JR. Innovative techniques, sensors, and approaches for imaging biofilms at different scales. Trends Microbiol. 2015;23:233–42.

    CAS  PubMed  Google Scholar 

  13. 13.

    Bochdansky AB, Clouse MA, Herndl GJ. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 2017;11:362–73.

    PubMed  Google Scholar 

  14. 14.

    Schlundt C, Welch JLM, Knochel AM, Zettler ER, Amaral‐Zettler LA. Spatial structure in the “plastisphere”: molecular resources for imaging microscopic communities on plastic marine debris. Mol Ecol Resour. 2020;20:620–634.

    CAS  PubMed  Google Scholar 

  15. 15.

    Bruinsma G, Van der Mei H, Busscher H. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials. 2001;22:3217–24.

    CAS  PubMed  Google Scholar 

  16. 16.

    Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, et al. Evidence for selective bacterial community structuring on microplastics. Environ Microbiol. 2018;20:2796–808.

    CAS  PubMed  Google Scholar 

  17. 17.

    Khachikyan A, Milucka J, Littmann S, Ahmerkamp S, Meador T, Könneke M, et al. Direct cell mass measurements expand the role of small microorganisms in nature. Appl Environ Microbiol. 2019;85:e00493–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Romanova N, Sazhin A. Relationships between the cell volume and the carbon content of bacteria. Oceanology. 2010;50:522–30.

    Google Scholar 

  19. 19.

    Menden-Deuer S, Lessard EJ. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr. 2000;45:569–79.

    CAS  Google Scholar 

  20. 20.

    Massana R, Logares R. Eukaryotic versus prokaryotic marine picoplankton ecology. Environ Microbiol. 2013;15:1254–61.

    PubMed  Google Scholar 

  21. 21.

    Loferer-Krößbacher M, Klima J, Psenner R. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol. 1998;64:688–94.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lee S, Fuhrman JA. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol. 1987;53:1298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Erni-Cassola G, Zadjelovic V, Gibson MI, Christie-Oleza JA. Distribution of plastic polymer types in the marine environment; a meta-analysis. J Hazard Mater. 2019;369:691–8.

    CAS  PubMed  Google Scholar 

  24. 24.

    Dudek KL, Cruz BN, Polidoro B, Neuer S. Microbial colonization of microplastics in the Caribbean Sea. Limnol Oceanogr Lett. 2020;5:5–17.

    Google Scholar 

  25. 25.

    Carpenter EJ, Smith K. Plastics on the Sargasso Sea surface. Science. 1972;175:1240–1.

    CAS  PubMed  Google Scholar 

  26. 26.

    Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol. 2020;18:139–51.

    CAS  PubMed  Google Scholar 

  27. 27.

    Patil JS, Anil AC. Biofilm diatom community structure: influence of temporal and substratum variability. Biofouling. 2005;21:189–206.

    CAS  PubMed  Google Scholar 

  28. 28.

    Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett. 2017;4:258–67.

    CAS  Google Scholar 

  29. 29.

    Michels J, Stippkugel A, Lenz M, Wirtz K, Engel A. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc R Soc B. 2018;285:20181203.

    PubMed  Google Scholar 

  30. 30.

    Lobelle D, Cunliffe M. Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull. 2011;62:197–200.

    CAS  PubMed  Google Scholar 

  31. 31.

    Mueller LN, de Brouwer JF, Almeida JS, Stal LJ, Xavier JB. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecol. 2006;6:1.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    De Tender CA, Devriese LI, Haegeman A, Maes S, Vangeyte JR, Cattrijsse A, et al. Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environ Sci Technol. 2017;51:7350–60.

    PubMed  Google Scholar 

  33. 33.

    Tetu SG, Sarker I, Schrameyer V, Pickford R, Elbourne LD, Moore LR, et al. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun Biol. 2019;2:1–9.

    Google Scholar 

  34. 34.

    Capolupo M, Sørensen L, Jayasena KDR, Booth AM, Fabbri E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 2020;169:115270.

    CAS  PubMed  Google Scholar 

  35. 35.

    Vosshage AT, Neu TR, Gabel F. Plastic alters biofilm quality as food resource of the freshwater Gastropod Radix balthica. Environ Sci Technol. 2018;52:11387–93.

    CAS  PubMed  Google Scholar 

  36. 36.

    Dussud C, Meistertzheim A, Conan P, Pujo-Pay M, George M, Fabre P, et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut. 2018;236:807–16.

    CAS  PubMed  Google Scholar 

  37. 37.

    Armitage AR, Gonzalez VL, Fong P. Decoupling of nutrient and grazer impacts on a benthic estuarine diatom assemblage. Estuar Coast Shelf Sci. 2009;84:375–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Yokota K, Waterfield H, Hastings C, Davidson E, Kwietniewski E, Wells B. Finding the missing piece of the aquatic plastic pollution puzzle: interaction between primary producers and microplastics. Limnol Oceanogr Lett. 2017;2:91–104.

    Google Scholar 

  39. 39.

    Oberbeckmann S, Kreikemeyer B, Labrenz M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol. 2018;8:2709.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kirstein IV, Wichels A, Krohne G, Gerdts G. Mature biofilm communities on synthetic polymers in seawater-specific or general? Mar Environ Res. 2018;142:147–54.

    CAS  PubMed  Google Scholar 

  41. 41.

    Kettner MT, Rojas‐Jimenez K, Oberbeckmann S, Labrenz M, Grossart HP. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ Microbiol. 2017;19:4447–59.

    CAS  PubMed  Google Scholar 

  42. 42.

    Kettner MT, Oberbeckmann S, Labrenz M, Grossart HP. The eukaryotic life on microplastics in brackish ecosystems. Front Microbiol. 2019;10:538.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Bayoudh S, Othmane A, Bettaieb F, Bakhrouf A, Ouada HB, Ponsonnet L. Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata. Mater Sci Eng C. 2006;26:300–5.

    CAS  Google Scholar 

  44. 44.

    Bendinger B, Rijnaarts HH, Altendorf K, Zehnder AJ. Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol. 1993;59:3973–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Thompson SE, Coates JC. Surface sensing and stress-signalling in Ulva and fouling diatoms–potential targets for antifouling: a review. Biofouling. 2017;33:410–32.

    PubMed  Google Scholar 

  46. 46.

    Araya P, Chamy R, Mota M, Alves M. Biodegradability and toxicity of styrene in the anaerobic digestion process. Biotechnol Lett. 2000;22:1477–81.

    CAS  Google Scholar 

  47. 47.

    Pinto M, Langer TM, Hüffer T, Hofmann T, Herndl GJ. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS ONE. 2019;14:e0217165.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun. 2016;7:11965.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Zobell CE. The effect of solid surfaces upon bacterial activity. J Bacteriol. 1943;46:39–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Karl DM, Björkman KM, Dore JE, Fujieki L, Hebel DV, Houlihan T, et al. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Res Part II: Topical Stud Oceanogr. 2001;48:1529–66.

    CAS  Google Scholar 

  51. 51.

    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res II. 2001;48:1405–47.

    CAS  Google Scholar 

  52. 52.

    Flemming H-C, Wuertz S. Bacteria and Archaea on Earth and their abundance in biofilms. Nat Rev Microbiol. 2019;17:247.

    CAS  PubMed  Google Scholar 

  53. 53.

    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci. 1998;95:6578–83.

    CAS  PubMed  Google Scholar 

  54. 54.

    Bjørnsen PK. Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol. 1986;51:1199–204.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Bloem J, Veninga M, Shepherd J. Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol. 1995;61:926–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci. 2012;109:16213–6.

    CAS  PubMed  Google Scholar 

  57. 57.

    Pernice MC, Forn I, Gomes A, Lara E, Alonso-Sáez L, Arrieta JM, et al. Global abundance of planktonic heterotrophic protists in the deep ocean. ISME J. 2015;9:782–92.

    CAS  PubMed  Google Scholar 

  58. 58.

    Bölter M, Bloem J, Meiners K, Möller R. Enumeration and biovolume determination of microbial cells–a methodological review and recommendations for applications in ecological research. Biol Fertil Soils. 2002;36:249–59.

    Google Scholar 

Download references

Acknowledgements

Thanks to Gregory Boyd, Jessica Fields, and Kiera Saleem for their help with sampling. We also thank Louis Kerr of the Central Microscope Facility at the Marine Biological Laboratory for technical support. The work was also supported by NSF collaborative grants to LAA-Z (OCE-1155571), ERZ (OCE-1155379), and TJM (OCE-1155671), NOAA grant NA17NOS9990024 to LAA-Z an American Chemistry Council award to LAA-Z, ERZ, and TJM, and funds from FAU World Class Faculty and Scholar Program to TJM.

Author information

Affiliations

Authors

Contributions

All authors were involved in conceiving the study. TJM, SZ, LAA-Z, and ERZ designed the experiments; TJM, LAA-Z, and ERZ conducted the incubation experiment. SZ analyzed the samples. SZ carried out the data analysis and wrote the paper with significant assistance and comments from all the other authors.

Corresponding author

Correspondence to Tracy J. Mincer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Zettler, E.R., Amaral-Zettler, L.A. et al. Microbial carrying capacity and carbon biomass of plastic marine debris. ISME J 15, 67–77 (2021). https://doi.org/10.1038/s41396-020-00756-2

Download citation

Further reading

Search

Quick links