Evolution of diversity explains the impact of pre-adaptation of a focal species on the structure of a natural microbial community

Abstract

Rapid within-species evolution can alter community structure, yet the mechanisms underpinning this effect remain unknown. Populations that rapidly evolve large amounts of phenotypic diversity are likely to interact with more species and have the largest impact on community structure. However, the evolution of phenotypic diversity is, in turn, influenced by the presence of other species. Here, we investigate how microbial community structure changes as a consequence of rapidly evolved within-species diversity using Pseudomonas fluorescens as a focal species. Evolved P. fluorescens populations showed substantial phenotypic diversification in resource-use (and correlated genomic change) irrespective of whether they were pre-adapted in isolation or in a community context. Manipulating diversity revealed that more diverse P. fluorescens populations had the greatest impact on community structure, by suppressing some bacterial taxa, but facilitating others. These findings suggest that conditions that promote the evolution of high within-population diversity should result in a larger impact on community structure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of experimental design.
Fig. 2: Differences in resource use between clones.
Fig. 3: Phenotypic variation in resource use after pre-adaptation reflects associated genomic changes.
Fig. 4: Effect of diversity on community composition.
Fig. 5: Effect of pre-adaptation on community structure at different levels of diversity.
Fig. 6: Effect of diversity on the abundance of common bacterial ASVs.
Fig. 7: Density of the focal species at the end of the experiment.

Data availability

All data and R code used in the analysis will be made available on GitHub and archived on Zenodo.

References

  1. 1.

    Hairston NG Jr, Ellner SP, Geber MA, Yoshida T, Fox JA. Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett. 2005;8:1114–27.

    Google Scholar 

  2. 2.

    Ellner SP, Geber MA, Hairston NG Jr. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol Lett. 2011;14:603–14.

    PubMed  Google Scholar 

  3. 3.

    Gómez P, Paterson S, De Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:12453.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Buckling A, Craig Maclean R, Brockhurst MA, Colegrave N. The beagle in a bottle. Nature. 2009;457:824–9.

    CAS  PubMed  Google Scholar 

  5. 5.

    Gómez P, Buckling A. Real-time microbial adaptive diversification in soil. Ecol Lett. 2013;16:650–5.

    PubMed  Google Scholar 

  6. 6.

    Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 2012;10:e1001330.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lankau RA. Rapid evolutionary change and the coexistence of species. Annu Rev Ecol Evol Syst. 2011;42:335–54.

    Google Scholar 

  8. 8.

    Pantel JH, Duvivier C, Meester LD. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecol Lett. 2015;18:992–1000.

    PubMed  Google Scholar 

  9. 9.

    Hart SP, Turcotte MM, Levine JM. Effects of rapid evolution on species coexistence. Proc Natl Acad Sci. 2019;116:2112–7.

    CAS  PubMed  Google Scholar 

  10. 10.

    Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998;394:69.

    CAS  PubMed  Google Scholar 

  11. 11.

    Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M. Ecological consequences of genetic diversity. Ecol Lett. 2008;11:609–23.

    PubMed  Google Scholar 

  12. 12.

    Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, et al. Why intraspecific trait variation matters in community ecology. Trends Ecol evolution. 2011;26:183–92.

    Google Scholar 

  13. 13.

    Violle C, Enquist BJ, McGill BJ, Jiang LIN, Albert CH, Hulshof C, et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol. 2012;27:244–52.

    PubMed  Google Scholar 

  14. 14.

    Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau OL, Paull JS. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc R Soc B Biol Sci. 2010;277:1789–97.

    Google Scholar 

  15. 15.

    Bailey SF, Dettman JR, Rainey PB, Kassen R. Competition both drives and impedes diversification in a model adaptive radiation. Proc R Soc B Biol Sci. 2013;280:20131253.

    Google Scholar 

  16. 16.

    Jousset A, Eisenhauer N, Merker M, Mouquet N, Scheu S. High functional diversity stimulates diversification in experimental microbial communities. Sci Adv. 2016;2:e1600124.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Schluter D. Experimental evidence that competition promotes divergence in adaptive radiation. Science. 1994;266:798–801.

    CAS  PubMed  Google Scholar 

  18. 18.

    Ellis CN, Traverse CC, Mayo-Smith L, Buskirk SW, Cooper VS. Character displacement and the evolution of niche complementarity in a model biofilm community. Evolution. 2015;69:283–93.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Zee PC, Fukami T. Priority effects are weakened by a short, but not long, history of sympatric evolution. Proc R Soc B Biol Sci. 2018;285:20171722.

    Google Scholar 

  20. 20.

    Schluter D. Ecological character displacement in adaptive radiation. Am Nat. 2000;156:S4–S16.

    Google Scholar 

  21. 21.

    Urban MC, De Meester L. Community monopolization: local adaptation enhances priority effects in an evolving metacommunity. Proc R Soc B Biol Sci. 2009;276:4129–38.

    Google Scholar 

  22. 22.

    De Meester L, Vanoverbeke J, Kilsdonk LJ, Urban MC. Evolving perspectives on monopolization and priority effects. Trends Ecol Evol. 2016;31:136–46.

    PubMed  Google Scholar 

  23. 23.

    Luján AM, Gómez P, Buckling A. Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol Lett. 2015;11:20140934.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    O’Brien S, Hesse E, Luján A, Hodgson DJ, Gardner A, Buckling A. No effect of intraspecific relatedness on public goods cooperation in a complex community. Evolution. 2018;72:1165–73.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.

    Google Scholar 

  26. 26.

    Li H Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997 2013.

  27. 27.

    Garrison E, Marth G Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:12073907 2012.

  28. 28.

    Garrison E Vcflib: A C++ library for parsing and manipulating VCF files. GitHub https://www.githubcom/ekg/vcflib 2012.

  29. 29.

    Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 2016;5:1492.

  30. 30.

    Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Stredwick JM, et al. The RDP (ribosomal database project) continues. Nucleic Acids Res. 2000;28:173–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2010;27:592–3.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hall AR, Colegrave N. How does resource supply affect evolutionary diversification? Proc R Soc B Biol Sci. 2006;274:73–78.

    Google Scholar 

  33. 33.

    Venail PA, MacLean RC, Bouvier T, Brockhurst MA, Hochberg ME, Mouquet N. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature. 2008;452:210.

    CAS  PubMed  Google Scholar 

  34. 34.

    Robertson A. Experimental design on the measurement of heritabilities and genetic correlations: biometrical genetics. Biometrics. 1959;15:219–26.

    Google Scholar 

  35. 35.

    Barrett RD, MacLean RC, Bell G. Experimental evolution of pseudomonas fluorescens in simple and complex environments. Am Naturalist. 2005;166:470–80.

    Google Scholar 

  36. 36.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  37. 37.

    Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5:169–72.

    PubMed  Google Scholar 

  38. 38.

    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community Ecol Package. 2007;10:631–7.

    Google Scholar 

  40. 40.

    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.

    CAS  PubMed  Google Scholar 

  41. 41.

    Cailliez F. The analytical solution of the additive constant problem. Psychometrika. 1983;48:305–8.

    Google Scholar 

  42. 42.

    Love M, Anders S, Huber W. Differential analysis of count data–the DESeq2 package. Genome Biol. 2014;15:10–1186.

    Google Scholar 

  43. 43.

    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS computational Biol. 2014;10:e1003531.

    Google Scholar 

  44. 44.

    Jombart T, Balloux F, Dray S. Adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics. 2010;26:1907–9.

    CAS  PubMed  Google Scholar 

  45. 45.

    Lenth R Emmeans: Estimated marginal means, aka least-squares means. R Package Version 2018; 1.

  46. 46.

    R Core Team. R: A language and environment for statistical computing. 2013.

  47. 47.

    Wickham H ggplot2: elegant graphics for data analysis. 2016. Springer.

  48. 48.

    Vellend M. The consequences of genetic diversity in competitive communities. Ecology. 2006;87:304–11.

    PubMed  Google Scholar 

  49. 49.

    Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science. 2008;320:1081–5.

    CAS  PubMed  Google Scholar 

  50. 50.

    Narwani A, Alexandrou MA, Herrin J, Vouaux A, Zhou C, Oakley TH, et al. Common ancestry is a poor predictor of competitive traits in freshwater green algae. PLoS ONE. 2015;10:e0137085.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Buckling A, Kassen R, Bell G, Rainey PB. Disturbance and diversity in experimental microcosms. Nature. 2000;408:961.

    CAS  PubMed  Google Scholar 

  52. 52.

    Castledine M, Buckling A, Padfield D. A shared coevolutionary history does not alter the outcome of coalescence in experimental populations of Pseudomonas fluorescens. J Evol Biol. 2019;32:58–65.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a NERC grant awarded to AB, SP, and RG.

Author information

Affiliations

Authors

Contributions

AB, DP, AV, and EH conceived the study and designed the experiments. AV, DP, and EH conducted the experiments and DP analysed the data. SP and RG provided new perspectives. DP, EH, and AB wrote the first draft of the manuscript, with all authors contributing to the final version

Corresponding authors

Correspondence to Daniel Padfield or Elze Hesse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Padfield, D., Vujakovic, A., Paterson, S. et al. Evolution of diversity explains the impact of pre-adaptation of a focal species on the structure of a natural microbial community. ISME J (2020). https://doi.org/10.1038/s41396-020-00755-3

Download citation

Search