Experimental evolution reveals nitrate tolerance mechanisms in Desulfovibrio vulgaris


Elevated nitrate in the environment inhibits sulfate reduction by important microorganisms of sulfate-reducing bacteria (SRB). Several SRB may respire nitrate to survive under elevated nitrate, but how SRB that lack nitrate reductase survive to elevated nitrate remains elusive. To understand nitrate adaptation mechanisms, we evolved 12 populations of a model SRB (i.e., Desulfovibrio vulgaris Hildenborough, DvH) under elevated NaNO3 for 1000 generations, analyzed growth and acquired mutations, and linked their genotypes with phenotypes. Nitrate-evolved (EN) populations significantly (p < 0.05) increased nitrate tolerance, and whole-genome resequencing identified 119 new mutations in 44 genes of 12 EN populations, among which six functional gene groups were discovered with high mutation frequencies at the population level. We observed a high frequency of nonsense or frameshift mutations in nitrosative stress response genes (NSR: DVU2543, DVU2547, and DVU2548), nitrogen regulatory protein C family genes (NRC: DVU2394-2396, DVU2402, and DVU2405), and nitrate cluster (DVU0246-0249 and DVU0251). Mutagenesis analysis confirmed that loss-of-functions of NRC and NSR increased nitrate tolerance. Also, functional gene groups involved in fatty acid synthesis, iron regulation, and two-component system (LytR/LytS) known to be responsive to multiple stresses, had a high frequency of missense mutations. Mutations in those gene groups could increase nitrate tolerance through regulating energy metabolism, barring entry of nitrate into cells, altering cell membrane characteristics, or conferring growth advantages at the stationary phase. This study advances our understanding of nitrate tolerance mechanisms and has important implications for linking genotypes with phenotypes in DvH.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Increased NaNO3 tolerance in EN populations compared to AN populations.
Fig. 2: Growth phenotype of DvH parental strain (JZ001) and marker exchange mutants (ME2543, ME2547 and ME2548) of nitrosative stress response genes (NSR).
Fig. 3: Growth phenotype of DvH parental strain (JZ001) and marker exchange mutants (ME2394, ME2395, ME2396, and ME2405) of nitrogen regulatory protein family C genes (NRC).
Fig. 4: A schematic representation of possible nitrate tolerance mechanisms in DvH.


  1. 1.

    Zhou JZ, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou AF, et al. How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol. 2011;9:452–66.

    CAS  PubMed  Google Scholar 

  2. 2.

    Bowles MW, Mogollon JM, Kasten S, Zabel M, Hinrichs KU. Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities. Science. 2014;344:889–91.

    CAS  PubMed  Google Scholar 

  3. 3.

    Plugge CM, Zhang W, Scholten JC, Stams AJ. Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol. 2011;2:81.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    He Q, He Z, Joyner DC, Joachimiak M, Price MN, Yang ZK, et al. Impact of elevated nitrate on sulfate-reducing bacteria: a comparative study of Desulfovibrio vulgaris. ISME J. 2010;4:1386–97.

    CAS  PubMed  Google Scholar 

  5. 5.

    Kamp A, Hogslund S, Risgaard-Petersen N, Stief P. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes. Front Microbiol. 2015;6:1492.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hubert C, Voordouw G. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol. 2007;73:2644–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Canter LW. Nitrates in groundwater, Routledge, Abingdon, 2019.

  8. 8.

    Ascott MJ, Gooddy DC, Wang L, Stuart ME, Lewis MA, Ward RS, et al. Global patterns of nitrate storage in the vadose zone. Nat Commun. 2017;8:1416.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Green SJ, Prakash O, Jasrotia P, Overholt WA, Cardenas E, Hubbard D, et al. Denitrifying bacteria from the genus rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Appl Environ Microbiol. 2012;78:1039–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hubert C. Microbial ecology of oil reservoir souring and its control by nitrate injection. Springer:Berlin,Germany; 2010. p. 2753–66.

  11. 11.

    Suri N, Voordouw J, Voordouw G. The effectiveness of nitrate-mediated control of the oil field sulfur cycle depends on the toluene content of the oil. Front Microbiol. 2017;8:956.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    ECHET Lucassen, Smolders AJP, Van der Salm AL, Roelofs JGM. High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands. Biogeochemistry. 2004;67:249–67.

    Google Scholar 

  13. 13.

    Marietou A. Nitrate reduction in sulfate-reducing bacteria. FEMS Microbiol Lett. 2016;363:fnw155.

    PubMed  Google Scholar 

  14. 14.

    Cadby IT, Ibrahim SA, Faulkner M, Lee DJ, Browning D, Busby SJ, et al. Regulation, sensory domains and roles of two Desulfovibrio desulfuricans ATCC27774 Crp family transcription factors, HcpR1 and HcpR2, in response to nitrosative stress. Mol Microbiol. 2016;102:1120–37.

    CAS  PubMed  Google Scholar 

  15. 15.

    Haveman SA, Greene EA, Voordouw G. Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environ Microbiol. 2005;7:1461–5.

    CAS  PubMed  Google Scholar 

  16. 16.

    Callbeck CM, Agrawal A, Voordouw G. Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate. Appl Environ Microbiol. 2013;79:5059–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Redding AM, Mukhopadhyay A, Joyner DC, Hazen TC, Keasling JD. Study of nitrate stress in Desulfovibrio vulgaris Hildenborough using iTRAQ proteomics. Brief Funct Genomic Proteomic. 2006;5:133–43.

    CAS  PubMed  Google Scholar 

  18. 18.

    Korte HL, Fels SR, Christensen GA, Price MN, Kuehl JV, Zane GM, et al. Genetic basis for nitrate resistance in Desulfovibrio strains. Front Microbiol. 2014;5:153.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Korte HL, Saini A, Trotter VV, Butland GP, Arkin AP, Wall JD. Independence of nitrate and nitrite inhibition of Desulfovibrio vulgaris Hildenborough and use of nitrite as a substrate for growth. Environ Sci Technol. 2014;49:924–31.

    Google Scholar 

  20. 20.

    Elena SF, Lenski RE. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003;4:457–69.

    CAS  PubMed  Google Scholar 

  21. 21.

    Lenski RE. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J. 2017;11:2181.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Barrick JE, Lenski RE. Genome dynamics during experimental evolution. Nat Rev Genet. 2013;14:827–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Zhou A, Hillesland KL, He Z, Schackwitz W, Tu Q, Zane GM, et al. Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris. ISME J. 2015;9:2360–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Adams J, Rosenzweig F. Experimental microbial evolution: history and conceptual underpinnings. Genomics. 2014;104:393–8.

    CAS  PubMed  Google Scholar 

  25. 25.

    van Ditmarsch D, Boyle KE, Sakhtah H, Oyler JE, Nadell CD, Deziel E, et al. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep. 2013;4:697–708.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gerstein AC, Chun HJE, Grant A, Otto SP. Genomic convergence toward diploidy in Saccharomyces cerevisiae. PLoS Genet. 2006;2:1396–401.

    CAS  Google Scholar 

  27. 27.

    Kerr B, Neuhauser C, Bohannan BJ, Dean AM. Local migration promotes competitive restraint in a host-pathogen ‘tragedy of the commons’. Nature. 2006;442:75–78.

    CAS  PubMed  Google Scholar 

  28. 28.

    Burch CL, Chao L. Evolution by small steps and rugged landscapes in the RNA Virus ϕ6. Genetics. 1999;151:921–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Levy SF, Blundell JR, Venkataram S, Petrov DA, Fisher DS, Sherlock G. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature. 2015;519:181.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Bell G. Evolutionary rescue of a green alga kept in the dark. Biol Lett. 2013;9:20120823.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Stern DL. The genetic causes of convergent evolution. Nat Rev Genet. 2013;14:751–64.

    CAS  PubMed  Google Scholar 

  32. 32.

    Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature. 2016;536:165.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, et al. The molecular diversity of adaptive convergence. Science. 2012;335:457–61.

    CAS  PubMed  Google Scholar 

  34. 34.

    Vogwill T, Phillips RL, Gifford DR, MacLean RC. Divergent evolution peaks under intermediate population bottlenecks during bacterial experimental evolution. P Roy Soc B-Biol Sci. 2016;283:20160749.

  35. 35.

    Cooper VS, Schneider D, Blot M, Lenski RE. Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol. 2001;183:2834–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Mehta-Kolte MG, Stoeva MK, Mehra A, Redford SA, Youngblut MD, Zane G, et al. Adaptation of Desulfovibrio alaskensis G20 to perchlorate, a specific inhibitor of sulfate reduction. Environ Microbiol. 2019;21:1395–406.

    CAS  PubMed  Google Scholar 

  37. 37.

    Zhou A, Baidoo E, He Z, Mukhopadhyay A, Baumohl JK, Benke P, et al. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution. ISME J. 2013;7:1790–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Mukhopadhyay A, He Z, Alm EJ, Arkin AP, Baidoo EE, Borglin SC, et al. Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J Bacteriol. 2006;188:4068–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kong Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics. 2011;98:152–3.

    CAS  PubMed  Google Scholar 

  40. 40.

    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Narasimhan V, Danecek P, Scally A, Xue YL, Tyler-Smith C, Durbin R. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics. 2016;32:1749–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. In: Sun L, Shou W (eds). Engineering and analyzing multicellular systems: methods and protocols. Springer New York: New York, NY; 2014. pp. 165–88.

  44. 44.

    Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over 60,000 generations. Nature. 2017;551:45–50.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, et al. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol. 2004;22:554–9.

    CAS  PubMed  Google Scholar 

  46. 46.

    Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.

  47. 47.

    Pelley JW. Protein synthesis and degradation. In: Pelley JW (ed). Elsevier’s Integrated Review Biochemistry (Second Edition). W.B. Saunders, Philadelphia: 2012, pp. 149–60.

  48. 48.

    Kelley LA, Mezulis S, Yates CM, Wass MN. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Keller KL, Bender KS, Wall JD. Development of a markerless genetic exchange system for Desulfovibrio vulgaris Hildenborough and its use in generating a strain with increased transformation efficiency. Appl Environ Microbiol. 2009;75:7682–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Aragao D, Macedo S, Mitchell EP, Romao CV, Liu MY, Frazao C, et al. Reduced hybrid cluster proteins (HCP) from Desulfovibrio desulfuricans ATCC 27774 and Desulfovibrio vulgaris (Hildenborough): X-ray structures at high resolution using synchrotron radiation. J Biol Inorg Chem. 2003;8:540–8.

    CAS  PubMed  Google Scholar 

  51. 51.

    Price MN, Huang KH, Alm EJ, Arkin AP. A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res. 2005;33:880–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Rajeev L, Luning EG, Dehal PS, Price MN, Arkin AP, Mukhopadhyay A. Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium. Genome Biol. 2011;12:R99.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Bender KS, Yen HC, Hemme CL, Yang Z, He Z, He Q, et al. Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol. 2007;73:5389–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Zhou A, Chen YI, Zane GM, He Z, Hemme CL, Joachimiak MP, et al. Functional characterization of Crp/Fnr-type global transcriptional regulators in Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol. 2012;78:1168–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    He Q, Huang KH, He Z, Alm EJ, Fields MW, Hazen TC, et al. Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcriptional analysis. Appl Environ Microbiol. 2006;72:4370–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS. Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol. 2004;5:R90.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Cadby IT, Busby SJ, Cole JA. An HcpR homologue from Desulfovibrio desulfuricans and its possible role in nitrate reduction and nitrosative stress. Biochem Soc Trans. 2011;39:224–9.

    CAS  PubMed  Google Scholar 

  58. 58.

    Haveman SA, Brunelle V, Voordouw JK, Voordouw G, Heidelberg JF, Rabus R. Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase. J Bacteriol. 2003;185:4345–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Walian PJ, Allen S, Shatsky M, Zeng L, Szakal ED, Liu H, et al. High-throughput isolation and characterization of untagged membrane protein complexes: outer membrane complexes of Desulfovibrio vulgaris. J Proteome Res. 2012;11:5720–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Los DA, Murata N. Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta. 2004;1666:142–57.

    CAS  PubMed  Google Scholar 

  61. 61.

    Rowlett VW, Mallampalli V, Karlstaedt A, Dowhan W, Taegtmeyer H, Margolin W, et al. Impact of membrane phospholipid alterations in Escherichia coli on cellular function and bacterial stress adaptation. J Bacteriol. 2017;199:e00849–16.

  62. 62.

    Zhou A, Lau R, Baran R, Ma J, von Netzer F, Shi W, et al. Key metabolites and mechanistic changes for salt tolerance in an experimentally evolved sulfate-reducing bacterium, Desulfovibrio vulgaris. mBio. 2017;8:e01780–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G. Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol. 2004;186:7944–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Finkel SE. Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol. 2006;4:113–20.

    CAS  PubMed  Google Scholar 

  65. 65.

    Farrell MJ, Finkel SE. The growth advantage in stationary-phase phenotype conferred by rpoS mutations is dependent on the pH and nutrient environment. J Bacteriol. 2003;185:7044–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Clark ME, He Q, He Z, Huang KH, Alm EJ, Wan XF, et al. Temporal transcriptomic analysis as Desulfovibrio vulgaris hildenborough transitions into stationary phase during electron donor depletion. Appl Environ Microbiol. 2006;72:5578–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Galhardo RS, Hastings PJ, Rosenberg SM. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol. 2007;42:399–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, et al. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol. 2012;194:686–701.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The experimental work of this study (October 2013 to June 2017) was largely supported by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Science Focus Area Program at Lawrence Berkeley National Laboratory is based upon work supported by the U.S. Department of Energy, Office of Science, and Office of Biological & Environmental Research under contract number DE-AC02-05CH11231, the Office of the Vice President for Research at the University of Oklahoma (JZ), and the National Program on Key Basic Research Project of China (973 Program, No. 2015CB150505 to SC); the subsequent integration work (October 2018 to March 2020) of this study, including supplementary experiments, data analysis and manuscript writing, was mainly supported by the National Natural Science Foundation of China (Grant numbers 31770539 and 91951207 to ZH, grant number 31672262 to QY), and the Special Funds for Scientific and Technological Innovation in Guangdong Province (Grant number 2018A030310302 to BW).

Author information



Corresponding authors

Correspondence to Shouwen Chen or Qingyun Yan or Jizhong Zhou or Zhili He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Liu, F., Zhou, A. et al. Experimental evolution reveals nitrate tolerance mechanisms in Desulfovibrio vulgaris. ISME J 14, 2862–2876 (2020). https://doi.org/10.1038/s41396-020-00753-5

Download citation